Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.536
Filter
1.
Sensors (Basel) ; 24(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793851

ABSTRACT

Investigating the neural mechanisms underlying both cooperative and competitive joint actions may have a wide impact in many social contexts of human daily life. An effective pipeline of analysis for hyperscanning data recorded in a naturalistic context with a cooperative and competitive motor task has been missing. We propose an analytical pipeline for this type of joint action data, which was validated on electroencephalographic (EEG) signals recorded in a proof-of-concept study on two dyads playing cooperative and competitive table tennis. Functional connectivity maps were reconstructed using the corrected imaginary part of the phase locking value (ciPLV), an algorithm suitable in case of EEG signals recorded during turn-based competitive joint actions. Hyperbrain, within-, and between-brain functional connectivity maps were calculated in three frequency bands (i.e., theta, alpha, and beta) relevant during complex motor task execution and were characterized with graph theoretical measures and a clustering approach. The results of the proof-of-concept study are in line with recent findings on the main features of the functional networks sustaining cooperation and competition, hence demonstrating that the proposed pipeline is promising tool for the analysis of joint action EEG data recorded during cooperation and competition using a turn-based motor task.


Subject(s)
Algorithms , Electroencephalography , Humans , Electroencephalography/methods , Brain/physiology , Male , Adult , Cooperative Behavior , Proof of Concept Study , Female , Signal Processing, Computer-Assisted
2.
Transl Vis Sci Technol ; 13(5): 2, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38696181

ABSTRACT

Purpose: Currently, no solution exists to restore natural eyelid kinematics for patients with complete eyelid paralysis due to loss of function of both the levator palpebrae superioris and orbicularis oculi. These rare cases are prone to complications of chronic exposure keratopathy which may lead to corneal blindness. We hypothesized that magnetic force could be used to fully automate eyelid movement in these cases through the use of eyelid-attached magnets and a spectacle-mounted magnet driven by a programmable motor (motorized magnetic levator prosthesis [MMLP]). Methods: To test this hypothesis and establish proof of concept, we performed a finite element analysis (FEA) for a prototype MMLP to check the eyelid-opening force generated by the device and verified the results with experimental measurements in a volunteer with total bidirectional eyelid paralysis. The subject was then fitted with a prototype to check the performance of the device and its success. Results: With MMLP, eye opening was restored to near normal, and blinking was fully automated in close synchrony with the motor-driven polarity reversal, with full closure on the blink. The device was well tolerated, and the participant was pleased with the comfort and performance. Conclusions: FEA simulation results conformed to the experimentally observed trend, further supporting the proof of concept and design parameters. This is the first viable approach in human patients with proof of concept for complete reanimation of a bidirectionally paretic eyelid. Further study is warranted to refine the prototype and determine the feasibility and safety of prolonged use. Translational Relevance: This is first proof of concept for our device for total bidirectional eyelid paralysis.


Subject(s)
Blinking , Eyelids , Proof of Concept Study , Humans , Blinking/physiology , Eyelids/physiopathology , Eyelid Diseases/physiopathology , Eyelid Diseases/therapy , Oculomotor Muscles/physiopathology , Finite Element Analysis , Biomechanical Phenomena , Prostheses and Implants , Prosthesis Design , Magnets , Male
3.
Sci Rep ; 14(1): 10502, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714849

ABSTRACT

We aimed to conduct a proof-of-concept study of INV-001 in visualizing lymphatic vessels and nodes without venous contamination and to determine the optimal dose condition of INV-001 for magnetic resonance lymphangiography (MRL) in healthy beagles. MRL was performed using a 3.0-Tesla (T) whole body clinical magnetic resonance imaging (MRI) scanner. A dose-finding study of INV-001 for MRL in beagles (N = 6) was carried out according to an adaptive optimal dose finding design. For the reproducibility study (N = 6), MRL was conducted at selected INV-001 doses (0.056 and 0.112 mg Fe/kg) with a 15 mM concentration. Additionally, an excretion study (N = 3) of INV-001 was conducted by analyzing T1, T2, and T2* maps of the liver and kidney 48 h post-administration. INV-001 administration at doses of 0.056 and 0.112 mg Fe/kg (concentration: 15 mM) consistently demonstrated the visualization of contrast-enhanced lymphatic vessels and nodes without venous contamination in the beagles. The contrast enhancement effect was highest at 30 min after INV-001 administration, then gradually decreasing. No toxicity-related issues were identified during the study. After 48 h, the T1, T2, and T2* values in the liver and both kidneys were found to be comparable to the pre-administration values, indicating thorough INV-001 excretion. The optimal dosing conditions of INV-001 for MRL for contrast-enhanced visualization of lymphatic vessels and nodes exclusively with no venous contamination in beagles was determined to be 0.056 mg Fe/kg with a 15 mM concentration.


Subject(s)
Contrast Media , Lymphatic Vessels , Lymphography , Magnetic Resonance Imaging , Animals , Dogs , Magnetic Resonance Imaging/methods , Lymphography/methods , Contrast Media/administration & dosage , Lymphatic Vessels/diagnostic imaging , Male , Reproducibility of Results , Female , Lymph Nodes/diagnostic imaging , Proof of Concept Study
4.
BMJ Open ; 14(5): e078104, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719328

ABSTRACT

INTRODUCTION: Stroke is a leading cause of disability throughout the world. Unilateral upper limb impairment is common in people who have had a stroke. As a result of impaired upper limb function, people who have had a stroke often employ abnormal 'compensatory' movements. In the short term, these compensatory movements allow the individual to complete tasks, though long-term movement in this manner can lead to limitations. Telerehabilitation offers the provision of rehabilitation services to patients at a remote location using information and communication technologies. 'EvolvRehab' is one such telerehabilitation system, which uses activities to assess and correct compensatory upper body movements, although the feasibility of its use is yet to be determined in National Health Service services. Using EvolvRehab, we aim to assess the feasibility of 6 weeks telerehabilitation in people after a stroke. METHODS AND ANALYSIS: A multisite feasibility study with embedded design phase. Normally distributed data will be analysed using paired samples t-tests; non-normally distributed data will be analysed using related samples Wilcoxon signed rank tests. Thematic content analysis of interview transcripts will be used to investigate the usability and perceived usefulness of the EvolvRehab kit. ETHICS AND DISSEMINATION: This study has received ethical approval from Solihull Research Ethics Committee (REC reference: 23/WM/0054). Dissemination will be carried out according to the dissemination plan co-written with stroke survivors, including academic publications and presentations; written reports; articles in publications of stakeholder organisations; presentations to and publications for potential customers. TRIAL REGISTRATION NUMBER: NCT05875792.


Subject(s)
Feasibility Studies , Stroke Rehabilitation , Telerehabilitation , Humans , Stroke Rehabilitation/methods , Telerehabilitation/methods , Proof of Concept Study , Upper Extremity/physiopathology , Stroke/physiopathology
5.
PLoS One ; 19(5): e0302829, 2024.
Article in English | MEDLINE | ID: mdl-38728342

ABSTRACT

Restless Legs Syndrome (RLS) is a common sleep disorder characterized by an urge to move the legs that is responsive to movement (particularly during rest), periodic leg movements during sleep, and hyperarousal. Recent evidence suggests that the involvement of the adenosine system may establish a connection between dopamine and glutamate dysfunction in RLS. Transcranial magnetic stimulation (TMS) is a non-invasive electrophysiological technique widely applied to explore brain electrophysiology and neurochemistry under different experimental conditions. In this pilot study protocol, we aim to investigate the effects of dipyridamole (a well-known enhancer of adenosinergic transmission) and caffeine (an adenosine receptor antagonist) on measures of cortical excitation and inhibition in response to TMS in patients with primary RLS. Initially, we will assess cortical excitability using both single- and paired-pulse TMS in patients with RLS. Then, based on the measures obtained, we will explore the effects of dipyridamole and caffeine, in comparison to placebo, on various TMS parameters related to cortical excitation and inhibition. Finally, we will evaluate the psycho-cognitive performance of RLS patients to screen them for cognitive impairment and/or mood-behavioral dysfunction, thus aiming to correlate psycho-cognitive findings with TMS data. Overall, this study protocol will be the first to shed lights on the neurophysiological mechanisms of RLS involving the modulation of the adenosine system, thus potentially providing a foundation for innovative "pharmaco-TMS"-based treatments. The distinctive TMS profile observed in RLS holds indeed the potential utility for both diagnosis and treatment, as well as for patient monitoring. As such, it can be considered a target for both novel pharmacological (i.e., drug) and non-pharmacological (e.g., neuromodulatory), "TMS-guided", interventions.


Subject(s)
Caffeine , Dipyridamole , Restless Legs Syndrome , Transcranial Magnetic Stimulation , Humans , Restless Legs Syndrome/drug therapy , Restless Legs Syndrome/physiopathology , Transcranial Magnetic Stimulation/methods , Caffeine/pharmacology , Caffeine/therapeutic use , Pilot Projects , Dipyridamole/pharmacology , Dipyridamole/therapeutic use , Male , Adenosine/metabolism , Adult , Female , Purinergic P1 Receptor Antagonists/therapeutic use , Purinergic P1 Receptor Antagonists/pharmacology , Middle Aged , Proof of Concept Study
6.
BMC Anesthesiol ; 24(1): 187, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796436

ABSTRACT

PURPOSE: Oxygen delivery (DO2) and its monitoring are highlighted to aid postoperative goal directed therapy (GDT) to improve perioperative outcomes such as acute kidney injury (AKI) after high-risk cardiac surgeries associated with multiple morbidities and mortality. However, DO2 monitoring is neither routine nor done postoperatively, and current methods are invasive and only produce intermittent DO2 trends. Hence, we proposed a novel algorithm that simultaneously integrates cardiac output (CO), hemoglobin (Hb) and oxygen saturation (SpO2) from the Edwards Life Sciences ClearSight System® and Masimo SET Pulse CO-Oximetry® to produce a continuous, real-time DO2 trend. METHODS: Our algorithm was built systematically with 4 components - machine interface to draw data with PuTTY, data extraction with parsing, data synchronization, and real-time DO2 presentation using a graphic-user interface. Hb readings were validated. RESULTS: Our algorithm was implemented successfully in 93% (n = 57 out of 61) of our recruited cardiac surgical patients. DO2 trends and AKI were studied. CONCLUSION: We demonstrated a novel proof-of-concept and feasibility of continuous, real-time, non-invasive DO2 monitoring, with each patient serving as their own control. Our study also lays the foundation for future investigations aimed at identifying personalized critical DO2 thresholds and optimizing DO2 as an integral part of GDT to enhance outcomes in perioperative cardiac surgery.


Subject(s)
Algorithms , Cardiac Surgical Procedures , Feasibility Studies , Oximetry , Oxygen , Humans , Cardiac Surgical Procedures/methods , Male , Female , Oxygen/metabolism , Oxygen/administration & dosage , Oxygen/blood , Oximetry/methods , Aged , Middle Aged , Proof of Concept Study , Acute Kidney Injury , Monitoring, Physiologic/methods , Cardiac Output/physiology , Hemoglobins/metabolism , Hemoglobins/analysis , Oxygen Saturation/physiology
7.
BMJ Open ; 14(5): e076852, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38772581

ABSTRACT

OBJECTIVES: Patients with chronic conditions enrolled in high-deductible health plans (HDHPs) face cost-related access barriers and high out-of-pocket spending. Our objectives were to develop a novel behavioural intervention to help HDHP enrollees with chronic conditions use cost-conscious strategies and evaluate the intervention's preliminary effectiveness, acceptability and feasibility. DESIGN: Prospective. SETTING: Online (USA). PARTICIPANTS: 36 US adults enrolled in an HDHP through their employer or an exchange with diabetes, hypertension, asthma, coronary artery disease and/or chronic obstructive pulmonary disease. 31/36 participants completed the study. INTERVENTION: We developed a 5-week intervention consisting of a website with educational modules on discussing costs with clinicians, saving for future healthcare costs, comparing healthcare prices and quality, preparing for appointments, following up after appointments and planning for future healthcare needs; and emails encouraging participants to access each module. OUTCOMES: We conducted a single-arm proof-of-concept pilot study of the intervention. Baseline and postintervention surveys measured primary outcomes of health insurance literacy and confidence in using cost-conscious strategies. 10 participants completed postintervention interviews. RESULTS: 31 (86%) participants completed a baseline and postintervention survey. Mean health insurance literacy scores (20-80 scale) improved from 56.5 to 67.1 (p<0.001). Mean confidence scores (0-10 scale) improved for talking to a healthcare provider about cost (6.1-7.6, p=0.0094), saving for healthcare (5.8-6.6, p=0.068), comparing prices (5.4-6.9, p=0.005) and comparing quality (6.1 to 7.6, p=0.0034). Participants found the website easy to use and helpful for learning about cost-conscious strategies on postintervention interviews. CONCLUSIONS: Our novel behavioural intervention was acceptable to HDHP enrollees with chronic conditions, feasible to deliver and associated with increased health insurance literacy and confidence in using cost-conscious strategies. This intervention should be tested in a definitive randomised controlled trial that is fully powered to evaluate its effects on cost-related access barriers, out-of-pocket spending and health outcomes in this growing patient population.


Subject(s)
Deductibles and Coinsurance , Humans , Pilot Projects , Male , Female , Chronic Disease/therapy , Middle Aged , Adult , Prospective Studies , United States , Deductibles and Coinsurance/economics , Proof of Concept Study , Internet-Based Intervention/economics , Aged , Health Expenditures , Behavior Therapy/economics , Behavior Therapy/methods
8.
Swiss Dent J ; 134(3): 1-17, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38757922

ABSTRACT

The concept of bilateral cantilevers on a single central implant (T-design) for three-unit implant-supported fixed dental prostheses (ISFDPs) has not been explored nor tested. This technical hypothesis aimed to explore the feasibility of such an approach as a cost-effective alternative to conventional treatments. Careful considerations regarding implant diameter, length, ideal position, occlusal scheme, and bone remodeling are essential to ensure adequate support, stability, and prevention of complications. In this proof of concept, we present a preliminary case with this novel design to replace missing posterior teeth in a patient with narrow bone conditions. In addition, a series of planned investigations and preliminary results, including preclinical studies, are presented to illustrate our concept and its potential clinical implications. Clinically, after two-year follow-up, healthy and stable peri-implant tissues around the ISFDP exemplarily demonstrated excellent stability, functionality, and comfort, which is supported by acceptable fracture resistance data in vitro, suggesting indeed the practical potential and suitability. Thus, we claim that such a treatment modality has the at least theoretical potential to revolutionize implant dentistry by providing innovative and cost-effective treatment options for patients with partial ISFDPs in very specific cases. Of course, further research and evaluations are necessary to validate the clinical implications of this innovative hypothesis. Implementing the 3-on-1 T-bridge approach in partial ISFDPs could offer a promising alternative to traditional methods. If proven successful, this technique may lead to significant advancements in clinical practice, providing a less invasive cost-effective treatment option.


Subject(s)
Dental Prosthesis, Implant-Supported , Humans , Dental Prosthesis, Implant-Supported/methods , Proof of Concept Study , Denture, Partial, Fixed , Denture Design , Female
9.
Nat Commun ; 15(1): 3768, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704409

ABSTRACT

Accurate intraoperative differentiation of primary central nervous system lymphoma (PCNSL) remains pivotal in guiding neurosurgical decisions. However, distinguishing PCNSL from other lesions, notably glioma, through frozen sections challenges pathologists. Here we sought to develop and validate a deep learning model capable of precisely distinguishing PCNSL from non-PCNSL lesions, especially glioma, using hematoxylin and eosin (H&E)-stained frozen whole-slide images. Also, we compared its performance against pathologists of varying expertise. Additionally, a human-machine fusion approach integrated both model and pathologic diagnostics. In external cohorts, LGNet achieved AUROCs of 0.965 and 0.972 in distinguishing PCNSL from glioma and AUROCs of 0.981 and 0.993 in differentiating PCNSL from non-PCNSL lesions. Outperforming several pathologists, LGNet significantly improved diagnostic performance, further augmented to some extent by fusion approach. LGNet's proficiency in frozen section analysis and its synergy with pathologists indicate its valuable role in intraoperative diagnosis, particularly in discriminating PCNSL from glioma, alongside other lesions.


Subject(s)
Central Nervous System Neoplasms , Deep Learning , Frozen Sections , Glioma , Lymphoma , Humans , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/surgery , Central Nervous System Neoplasms/diagnosis , Lymphoma/pathology , Lymphoma/diagnosis , Lymphoma/surgery , Glioma/surgery , Glioma/pathology , Proof of Concept Study , Male , Female , Diagnosis, Differential , Middle Aged , Aged , Intraoperative Period
10.
Article in English | MEDLINE | ID: mdl-38722723

ABSTRACT

Quantifying muscle strength is an important measure in clinical settings; however, there is a lack of practical tools that can be deployed for routine assessment. The purpose of this study is to propose a deep learning model for ankle plantar flexion torque prediction from time-series mechanomyogram (MMG) signals recorded during isometric contractions (i.e., a similar form to manual muscle testing procedure in clinical practice) and to evaluate its performance. Four different deep learning models in terms of model architecture (based on a stacked bidirectional long short-term memory and dense layers) were designed with different combinations of the number of units (from 32 to 512) and dropout ratio (from 0.0 to 0.8), and then evaluated for prediction performance by conducting the leave-one-subject-out cross-validation method from the 10-subject dataset. As a result, the models explained more variance in the untrained test dataset as the error metrics (e.g., root-mean-square error) decreased and as the slope of the relationship between the measured and predicted joint torques became closer to 1.0. Although the slope estimates appear to be sensitive to an individual dataset, >70% of the variance in nine out of 10 datasets was explained by the optimal model. These results demonstrated the feasibility of the proposed model as a potential tool to quantify average joint torque during a sustained isometric contraction.


Subject(s)
Ankle Joint , Isometric Contraction , Torque , Humans , Isometric Contraction/physiology , Male , Adult , Ankle Joint/physiology , Young Adult , Proof of Concept Study , Deep Learning , Algorithms , Myography/methods , Muscle Strength/physiology , Female , Muscle, Skeletal/physiology , Neural Networks, Computer , Reproducibility of Results , Biomechanical Phenomena
11.
Sci Rep ; 14(1): 11402, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762561

ABSTRACT

Despite the therapeutic potential of chemogenetics, the method lacks comprehensive preclinical validation, hindering its progression to human clinical trials. We aimed to validate a robust but simple in vivo efficacy assay in rats which could support chemogenetic drug discovery by providing a quick, simple and reliable animal model. Key methodological parameters such as adeno-associated virus (AAV) serotype, actuator drug, dose, and application routes were investigated by measuring the food-intake-reducing effect of chemogenetic inhibition of the lateral hypothalamus (LH) by hM4D(Gi) designer receptor stimulation. Subcutaneous deschloroclozapine in rats transfected with AAV9 resulted in a substantial reduction of food-intake, comparable to the efficacy of exenatide. We estimated that the effect of deschloroclozapine lasts 1-3 h post-administration. AAV5, oral administration of deschloroclozapine, and clozapine-N-oxide were also effective but with slightly less potency. The strongest effect on food-intake occurred within the first 30 min after re-feeding, suggesting this as the optimal experimental endpoint. This study demonstrates that general chemogenetic silencing of the LH can be utilized as an optimal, fast and reliable in vivo experimental model for conducting preclinical proof-of-concept studies in order to validate the in vivo effectiveness of novel chemogenetic treatments. We also hypothesize based on our results that universal LH silencing with existing and human translatable genetic neuroengineering techniques might be a viable strategy to affect food intake and influence obesity.


Subject(s)
Clozapine , Dependovirus , Eating , Hypothalamic Area, Lateral , Proof of Concept Study , Animals , Clozapine/analogs & derivatives , Clozapine/pharmacology , Rats , Eating/drug effects , Hypothalamic Area, Lateral/drug effects , Dependovirus/genetics , Male , Exenatide/pharmacology , Humans
12.
Eur Radiol Exp ; 8(1): 60, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755410

ABSTRACT

BACKGROUND: We investigated the potential of an imaging-aware GPT-4-based chatbot in providing diagnoses based on imaging descriptions of abdominal pathologies. METHODS: Utilizing zero-shot learning via the LlamaIndex framework, GPT-4 was enhanced using the 96 documents from the Radiographics Top 10 Reading List on gastrointestinal imaging, creating a gastrointestinal imaging-aware chatbot (GIA-CB). To assess its diagnostic capability, 50 cases on a variety of abdominal pathologies were created, comprising radiological findings in fluoroscopy, MRI, and CT. We compared the GIA-CB to the generic GPT-4 chatbot (g-CB) in providing the primary and 2 additional differential diagnoses, using interpretations from senior-level radiologists as ground truth. The trustworthiness of the GIA-CB was evaluated by investigating the source documents as provided by the knowledge-retrieval mechanism. Mann-Whitney U test was employed. RESULTS: The GIA-CB demonstrated a high capability to identify the most appropriate differential diagnosis in 39/50 cases (78%), significantly surpassing the g-CB in 27/50 cases (54%) (p = 0.006). Notably, the GIA-CB offered the primary differential in the top 3 differential diagnoses in 45/50 cases (90%) versus g-CB with 37/50 cases (74%) (p = 0.022) and always with appropriate explanations. The median response time was 29.8 s for GIA-CB and 15.7 s for g-CB, and the mean cost per case was $0.15 and $0.02, respectively. CONCLUSIONS: The GIA-CB not only provided an accurate diagnosis for gastrointestinal pathologies, but also direct access to source documents, providing insight into the decision-making process, a step towards trustworthy and explainable AI. Integrating context-specific data into AI models can support evidence-based clinical decision-making. RELEVANCE STATEMENT: A context-aware GPT-4 chatbot demonstrates high accuracy in providing differential diagnoses based on imaging descriptions, surpassing the generic GPT-4. It provided formulated rationale and source excerpts supporting the diagnoses, thus enhancing trustworthy decision-support. KEY POINTS: • Knowledge retrieval enhances differential diagnoses in a gastrointestinal imaging-aware chatbot (GIA-CB). • GIA-CB outperformed the generic counterpart, providing formulated rationale and source excerpts. • GIA-CB has the potential to pave the way for AI-assisted decision support systems.


Subject(s)
Proof of Concept Study , Humans , Diagnosis, Differential , Gastrointestinal Diseases/diagnostic imaging
13.
Front Endocrinol (Lausanne) ; 15: 1398171, 2024.
Article in English | MEDLINE | ID: mdl-38752175

ABSTRACT

Introduction: We present the evolution of GHD in adolescent males with persistent growth failure, in whom the diagnosis was established after a second GH stimulation test (GST). Methods: We performed a retrospective chart review of children who presented for short stature (height less < 2SD for mean/mid-parental height) and/or growth failure (sustained growth velocity < 0 SD) to pediatric endocrinology at Mount Sinai Kravis Children's Hospital, New York and who had 2 GSTs. Data collected from electronic medical records were analyzed using SPSS v28.0. Results: Of 53 patients included, 42 were males. Average GH peak on initial GST was 15.48 ± 4.92 ng/ml, at 10.07 ± 2.65 years, mean height -1.68 ± 0.56SD(28% had <2SD), IGF-1 -1.00 ± 0.88SD. After 2.23 ± 1.22 years, at 12.04 ± 2.41years, height SDs decreased to -1.82 ± 0.63SD and IGF-1 was -1.08 ± 0.84SD. At repeat GST, average GH peak was 7.59 ± 2.12 ng/dL, with 36% ≤7 ng/dl and 32% in puberty. 12 males reached adult height of 0.08 ± 0.69 SD with a mean height gain of 1.83 ± 0.56SD(p<0.005), IGF-1 of -1.15 ± 0.81SD after 4.64 ± 1.4 years of GH. Conclusion: We offer evidence for Evolving Growth Hormone Deficiency (EGHD) through repeat GST in children with persistent growth slowdown, even with pubertal progression; emphasizing the need for careful longitudinal follow-up to make accurate diagnosis.


Subject(s)
Growth Disorders , Human Growth Hormone , Humans , Male , Human Growth Hormone/deficiency , Adolescent , Retrospective Studies , Child , Female , Body Height , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/deficiency , Proof of Concept Study , Dwarfism, Pituitary/blood
14.
Article in English | MEDLINE | ID: mdl-38787676

ABSTRACT

Remodeling of the Achilles tendon (AT) is partly driven by its mechanical environment. AT force can be estimated with neuromusculoskeletal (NMSK) modeling; however, the complex experimental setup required to perform the analyses confines use to the laboratory. We developed task-specific long short-term memory (LSTM) neural networks that employ markerless video data to predict the AT force during walking, running, countermovement jump, single-leg landing, and single-leg heel rise. The task-specific LSTM models were trained on pose estimation keypoints and corresponding AT force data from 16 subjects, calculated via an established NMSK modeling pipeline, and cross-validated using a leave-one-subject-out approach. As proof-of-concept, new motion data of one participant was collected with two smartphones and used to predict AT forces. The task-specific LSTM models predicted the time-series AT force using synthesized pose estimation data with root mean square error (RMSE) ≤ 526 N, normalized RMSE (nRMSE) ≤ 0.21 , R 2 ≥ 0.81 . Walking task resulted the most accurate with RMSE = 189±62 N; nRMSE = 0.11±0.03 , R 2 = 0.92±0.04 . AT force predicted with smartphones video data was physiologically plausible, agreeing in timing and magnitude with established force profiles. This study demonstrated the feasibility of using low-cost solutions to deploy complex biomechanical analyses outside the laboratory.


Subject(s)
Achilles Tendon , Neural Networks, Computer , Running , Video Recording , Walking , Achilles Tendon/physiology , Humans , Walking/physiology , Biomechanical Phenomena , Male , Running/physiology , Adult , Female , Young Adult , Algorithms , Smartphone , Proof of Concept Study , Healthy Volunteers
15.
Appetite ; 199: 107386, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692511

ABSTRACT

BACKGROUND: Emotional eating, or eating in response to negative emotions, is a commonly reported short-term emotion regulation strategy but has been shown to be ineffective in the long term. Most emotional eating interventions based on Acceptance and Commitment Therapy (ACT) have been delivered in the context of weight loss trials, highlighting a need for ACT-based emotional eating interventions in weight-neutral contexts. AIMS: This proof-of-concept study aimed to test the acceptability and efficacy potential of a brief virtual ACT workshop for emotional eating in a small sample of adults identifying as emotional eaters. METHODS: Twenty-six adult emotional eaters completed an ACT workshop delivered in two 1.5-h sessions over two weeks. The workshop targeted awareness and acceptance of emotions and eating urges, and valued actions around eating. RESULTS: The acceptability of the workshop was demonstrated by high participant satisfaction. Significant improvements on all outcome measures were found and maintained up to 3 months follow-up. CONCLUSIONS: These proof-of-concept findings suggest that a brief virtual ACT workshop may improve emotional eating and associated ACT processes. Results from this study can inform a future randomized controlled trial to test the efficacy of the workshop and the role of theoretical processes of change. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04457804. LEVEL OF EVIDENCE: Level IV, evidence obtained from multiple time series with the intervention.


Subject(s)
Acceptance and Commitment Therapy , Emotions , Humans , Adult , Female , Male , Acceptance and Commitment Therapy/methods , Proof of Concept Study , Middle Aged , Feeding Behavior/psychology , Young Adult , Eating/psychology , Emotional Regulation
16.
Sci Total Environ ; 934: 172969, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754506

ABSTRACT

Blue mussels are often abundant and widely distributed in polar marine coastal ecosystems. Because of their wide distribution, ecological importance, and relatively stationary lifestyle, bivalves have long been considered suitable indicators of ecosystem health and changes. Monitoring the population dynamics of blue mussels can provide information on the overall biodiversity, species interactions, and ecosystem functioning. In the present work, we combined the concept of liquid biopsy (LB), an emerging concept in medicine based on the sequencing of free circulating DNA, with the Oxford Nanopore Technologies (ONT) platform using a portable laboratory in a remote area. Our results demonstrate that this platform is ideally suited for sequencing hemolymphatic circulating cell-free DNA (ccfDNA) fragments found in blue mussels. The percentage of non-self ccfDNA accounted for >50 % of ccfDNA at certain sampling Sites, allowing the quick, on-site acquisition of a global view of the biodiversity of a coastal marine ecosystem. These ccfDNA fragments originated from viruses, bacteria, plants, arthropods, algae, and multiple Chordata. Aside from non-self ccfDNA, we found DNA fragments from all 14 blue mussel chromosomes, as well as those originating from the mitochondrial genomes. However, the distribution of nuclear and mitochondrial DNA was significantly different between Sites. Similarly, analyses between various sampling Sites showed that the biodiversity varied significantly within microhabitats. Our work shows that the ONT platform is well-suited for LB in sentinel blue mussels in remote and challenging conditions, enabling faster fieldwork for conservation strategies and resource management in diverse settings.


Subject(s)
Cell-Free Nucleic Acids , Animals , Cell-Free Nucleic Acids/analysis , Environmental Monitoring/methods , Sentinel Species , Mytilus edulis , Nanopores , Proof of Concept Study , Hemolymph
17.
Ren Fail ; 46(1): 2356708, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38803220

ABSTRACT

As no unified treatment protocol or evidence yet exists for plasmapheresis without plasma, this study explored the outcomes of using 4% human albumin (ALB) solution as a replacement solution in patients undergoing plasma exchange for multiple myeloma (MM) patients with acute kidney injury (AKI). This study was prospectively registered (ChiCTR2000030640 and NCT05251896). Bortezomib-based chemotherapy plus therapeutic plasmapheresis (TPP) with 4% human ALB solution was assessed for three years in patients with MM aged >18 years, with AKI according to the Kidney Disease Improving Global Outcomes criteria, and without previous renal impairment from other causes. The primary endpoints were changes in renal function over 18 weeks and survival outcomes at 36 months. The secondary endpoints were the incidence of adverse reactions and symptom improvement. Among the 119 patients included in the analysis, 108 experienced renal reactions. The M protein (absolute changes: median -12.12%, interquartile ranges (IQRs) -18.62 to -5.626) and creatine (median -46.91 µmol/L, IQR -64.70 to -29.12) levels decreased, whereas the estimated glomerular filtration rate (eGFR) increased (median 20.66 mL/(min·1.73 m2), IQR 16.03-25.29). Regarding patient survival, 68.1% and 35.3% of patients survived for >12 and >36 months, respectively. The three symptoms with the greatest relief were urine foam, poor appetite, and blurred vision. All 11 patients (7.6%) who experienced mild adverse reactions achieved remission. In conclusion, in MM patients with AKI, plasma-free plasmapheresis with 4% human ALB solution and bortezomib-based chemotherapy effectively alleviated light chain damage to kidney function while improving patient quality of life.


Subject(s)
Acute Kidney Injury , Bortezomib , Glomerular Filtration Rate , Multiple Myeloma , Plasmapheresis , Humans , Multiple Myeloma/complications , Multiple Myeloma/therapy , Acute Kidney Injury/therapy , Acute Kidney Injury/etiology , Plasmapheresis/methods , Male , Female , Middle Aged , Prospective Studies , Aged , Bortezomib/administration & dosage , Bortezomib/therapeutic use , Proof of Concept Study , Serum Albumin, Human/analysis , Serum Albumin, Human/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Treatment Outcome , Adult , Combined Modality Therapy , Myeloma Proteins
18.
Int J Pharm ; 658: 124185, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38703932

ABSTRACT

Production of amorphous solid dispersions (ASDs) is an effective strategy to promote the solubility and bioavailability of poorly water soluble medicinal substances. In general, ASD is manufactured using a variety of classic and modern techniques, most of which rely on either melting or solvent evaporation. This proof-of-concept study is the first ever to introduce electromagnetic drop-on-demand (DoD) technique as an alternative solvent evaporation-based method for producing ASDs. Herein 3D printing of ASDs for three drug-polymer combinations (efavirenz-Eudragit L100-55, lumefantrine-hydroxypropyl methylcellulose acetate succinate, and favipiravir-polyacrylic acid) was investigated to ascertain the reliability of this technique. Polarized light microscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Fourier Transform  Infrared (FTIR) spectroscopy results supported the formation of ASDs for the three drugs by means of DoD 3D printing, which significantly increases the equilibrium solubility of efavirenz from 0.03 ± 0.04 µg/ml to 21.18 ± 4.20 µg/ml, and the equilibrium solubility of lumefantrine from 1.26 ± 1.60 µg/ml to 20.21 ± 6.91 µg/ml. Overall, the reported findings show how this new electromagnetic DoD technology can have a potential to become a cutting-edge 3D printing solvent-evaporation technique for on-demand and continuous manufacturing of ASDs for a variety of drugs.


Subject(s)
Printing, Three-Dimensional , Solubility , Technology, Pharmaceutical/methods , Drug Compounding/methods , Polymers/chemistry , Electromagnetic Phenomena , Proof of Concept Study , X-Ray Diffraction , Chemistry, Pharmaceutical/methods
19.
Anal Chem ; 96(21): 8317-8324, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739544

ABSTRACT

Nuclear magnetic resonance (NMR) longitudinal rotating frame relaxation time (T1ρ), rarely used in low-field NMR, can be more effective than conventional T1 and T2 relaxation times to differentiate polymorphic forms of solid pharmaceuticals. This could be attributed to T1ρ sensibility to structural and molecular dynamics that can be enhanced by changing the strength of the oscillating magnetic field (B1) of spinlock pulses. Here, we compared the capacity of T1, T2, and T1ρ to differentiate inactive (A) and active (C) crystalline forms of the World Health Organization essential drug Mebendazole. The results showed that T1 and T2 values of both forms were statistically identical at 0.47 T. Conversely, T1ρ of both forms measured with weak spinlock B1 fields, ranging from 0.08 to 0.80 mT were statistically different in the same spectrometer. The T1ρ also has the limit of detection to detect the presence of at least 10% of inactive A form in the active C form. Therefore, T1ρ, measured with weak spinlock B1 fields can be an effective, streamlined, and complementary approach for characterizing not only solid active pharmaceutical ingredients but other solid-state materials as well.


Subject(s)
Magnetic Resonance Spectroscopy , Magnetic Resonance Spectroscopy/methods , Mebendazole/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Magnetic Fields , Proof of Concept Study , Bulk Drugs
20.
BMC Med Educ ; 24(1): 431, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649959

ABSTRACT

BACKGROUND: Artificial intelligence (AI) tools are designed to create or generate content from their trained parameters using an online conversational interface. AI has opened new avenues in redefining the role boundaries of teachers and learners and has the potential to impact the teaching-learning process. METHODS: In this descriptive proof-of- concept cross-sectional study we have explored the application of three generative AI tools on drug treatment of hypertension theme to generate: (1) specific learning outcomes (SLOs); (2) test items (MCQs- A type and case cluster; SAQs; OSPE); (3) test standard-setting parameters for medical students. RESULTS: Analysis of AI-generated output showed profound homology but divergence in quality and responsiveness to refining search queries. The SLOs identified key domains of antihypertensive pharmacology and therapeutics relevant to stages of the medical program, stated with appropriate action verbs as per Bloom's taxonomy. Test items often had clinical vignettes aligned with the key domain stated in search queries. Some test items related to A-type MCQs had construction defects, multiple correct answers, and dubious appropriateness to the learner's stage. ChatGPT generated explanations for test items, this enhancing usefulness to support self-study by learners. Integrated case-cluster items had focused clinical case description vignettes, integration across disciplines, and targeted higher levels of competencies. The response of AI tools on standard-setting varied. Individual questions for each SAQ clinical scenario were mostly open-ended. The AI-generated OSPE test items were appropriate for the learner's stage and identified relevant pharmacotherapeutic issues. The model answers supplied for both SAQs and OSPEs can aid course instructors in planning classroom lessons, identifying suitable instructional methods, establishing rubrics for grading, and for learners as a study guide. Key lessons learnt for improving AI-generated test item quality are outlined. CONCLUSIONS: AI tools are useful adjuncts to plan instructional methods, identify themes for test blueprinting, generate test items, and guide test standard-setting appropriate to learners' stage in the medical program. However, experts need to review the content validity of AI-generated output. We expect AIs to influence the medical education landscape to empower learners, and to align competencies with curriculum implementation. AI literacy is an essential competency for health professionals.


Subject(s)
Artificial Intelligence , Educational Measurement , Humans , Cross-Sectional Studies , Students, Medical , Curriculum , Hypertension/drug therapy , Hypertension/therapy , Education, Medical, Undergraduate , Proof of Concept Study , Education, Medical
SELECTION OF CITATIONS
SEARCH DETAIL
...