Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
J Neuroinflammation ; 20(1): 260, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37951917

ABSTRACT

BACKGROUND: Emerging evidence has shown that myeloid cells that infiltrate into the peri-infarct region may influence the progression of ischemic stroke by interacting with microglia. Properdin, which is typically secreted by immune cells such as neutrophils, monocytes, and T cells, has been found to possess damage-associated molecular patterns (DAMPs) properties and can perform functions unrelated to the complement pathway. However, the role of properdin in modulating microglia-mediated post-stroke neuroinflammation remains unclear. METHODS: Global and conditional (myeloid-specific) properdin-knockout mice were subjected to transient middle cerebral artery occlusion (tMCAO). Histopathological and behavioral tests were performed to assess ischemic brain injury in mice. Single-cell RNA sequencing and immunofluorescence staining were applied to explore the source and the expression level of properdin. The transcriptomic profile of properdin-activated primary microglia was depicted by transcriptome sequencing. Lentivirus was used for macrophage-inducible C-type lectin (Mincle) silencing in microglia. Conditioned medium from primary microglia was administered to primary cortex neurons to determine the neurotoxicity of microglia. A series of cellular and molecular biological techniques were used to evaluate the proinflammatory response, neuronal death, protein-protein interactions, and related signaling pathways, etc. RESULTS: The level of properdin was significantly increased, and brain-infiltrating neutrophils and macrophages were the main sources of properdin in the ischemic brain. Global and conditional myeloid knockout of properdin attenuated microglial overactivation and inflammatory responses at the acute stage of tMCAO in mice. Accordingly, treatment with recombinant properdin enhanced the production of proinflammatory cytokines and augmented microglia-potentiated neuronal death in primary culture. Mechanistically, recombinant properdin served as a novel ligand that activated Mincle receptors on microglia and downstream pathways to drive primary microglia-induced inflammatory responses. Intriguingly, properdin can directly bind to the microglial Mincle receptor to exert the above effects, while Mincle knockdown limits properdin-mediated microglial inflammation. CONCLUSION: Properdin is a new medium by which infiltrating peripheral myeloid cells communicate with microglia, further activate microglia, and exacerbate brain injury in the ischemic brain, suggesting that targeted disruption of the interaction between properdin and Mincle on microglia or inhibition of their downstream signaling may improve the prognosis of ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Mice , Animals , Microglia/metabolism , Ischemic Stroke/metabolism , Properdin/metabolism , Properdin/pharmacology , Neuroinflammatory Diseases , Macrophages/metabolism , Infarction, Middle Cerebral Artery/pathology , Brain Injuries/metabolism , Brain Ischemia/metabolism , Mice, Inbred C57BL
2.
Pregnancy Hypertens ; 32: 43-49, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37088032

ABSTRACT

OBJECTIVES: Pre-eclampsia (PE) is a leading cause of obstetric morbidity, with no definitive therapy other than delivery. We aimed to compare complement markers in maternal and fetal circulation, and placental tissue, between women with PE and healthy pregnant controls. STUDY DESIGN: Maternal and umbilical cord blood was tested for iC3b, C3, C4, properdin, Ba and C5b-9, and placental tissue for C3d, C4d, C9 and C1q, from women with PE (n = 34) and healthy pregnant controls (n = 33). Maternal properdin and Ba tests were repeated in a separate validation cohort (PE n = 35; healthy pregnant controls n = 35). MAIN OUTCOME MEASURES: Complement concentrations in maternal and umbilical cord blood, and placental immunohistochemical complement deposition. RESULTS: Women with PE had significantly lower concentrations of properdin (mean: 4828 vs 6877 ng/ml, p < 0.001) and C4 (mean: 0.20 vs 0.31 g/l, p < 0.001), and higher Ba (median: 150 vs 113 ng/ml, p = 0.012), compared to controls. After controlling for gestational age at blood draw, average properdin concentration was 1945 ng/ml lower in PE vs controls (95 % CI: 1487-2402, p < 0.001). Of the cord blood markers assessed, only Ba differed significantly between PE and controls (median: 337 vs 233 ng/ml, p = 0.004). C4d staining of the syncytiotrophoblast membrane was increased in PE vs controls (median immunoreactivity score 3 vs 0, p < 0.001). Maternal properdin and C4 were significantly negatively correlated with placental C4d staining. CONCLUSIONS: Our data confirm excessive placental complement deposition associated with significant concurrent changes in maternal and fetal circulating complement biomarkers in PE. Inhibition of complement activation is a potential therapeutic target.


Subject(s)
Placenta , Pre-Eclampsia , Pregnancy , Female , Humans , Placenta/metabolism , Properdin/metabolism , Complement Activation , Trophoblasts/metabolism
3.
Immunol Rev ; 313(1): 46-59, 2023 01.
Article in English | MEDLINE | ID: mdl-36097870

ABSTRACT

Structures of alternative pathway proteins have offered a comprehensive structural basis for understanding the molecular mechanisms governing activation and regulation of the amplification pathway of the complement cascade. Although properdin (FP) is required in vivo to sustain a functional alternative pathway, structural studies have been lagging behind due to the extended structure and polydisperse nature of FP. We review recent progress with respect to structure determination of FP and its proconvertase/convertase complexes. These structures identify in detail regions in C3b, factor B and FP involved in their mutual interactions. Structures of FP oligomers obtained by integrative studies have shed light on how FP activity depends on its oligomerization state. The accumulated structural knowledge allows us to rationalize the effect of point mutations causing FP deficiency. The structural basis for FP inhibition by the tick CirpA proteins is reviewed and the potential of alphafold2 predictions for understanding the interaction of FP with other tick proteins and the NKp46 receptor on host immune cells is discussed. The accumulated structural knowledge forms a comprehensive basis for understanding molecular interactions involving FP, pathological conditions arising from low levels of FP, and the molecular strategies used by ticks to suppress the alternative pathway.


Subject(s)
Complement Activation , Properdin , Humans , Properdin/genetics , Properdin/metabolism , Complement Pathway, Alternative
4.
Immunol Rev ; 313(1): 162-180, 2023 01.
Article in English | MEDLINE | ID: mdl-36336911

ABSTRACT

The alternative pathway (AP) is the phylogenetically oldest arm of the complement system and may have evolved to mark pathogens for elimination by phagocytes. Studies using purified AP proteins or AP-specific serum showed that C3b amplification on bacteria commenced following a lag phase of about 5 min and was highly dependent on the concentration of complement. Most pathogens have evolved several elegant mechanisms to evade complement, including expressing proteases that degrade AP proteins and secreting proteins that block function of C3 convertases. In an example of convergent evolution, many microbes recruit the AP inhibitor factor H (FH) using molecular mechanisms that mimic FH interactions with host cells. In most instances, the AP serves to amplify C3b deposited on microbes by the classical pathway (CP). The role of properdin on microbes appears to be restricted to stabilization of C3 convertases; scant evidence exists for its role as an initiator of the AP on pathogens in the context of serum. Therapeutic complement inhibition carries with it an increased risk of infection. Antibody (Ab)-dependent AP activation may be critical for complement activation by vaccine-elicited Ab when the CP is blocked, and its molecular mechanism is discussed.


Subject(s)
Bacterial Infections , Complement Activation , Complement Pathway, Alternative , Humans , Complement Activation/physiology , Properdin/metabolism , Bacterial Infections/metabolism , Complement C3b/metabolism
5.
Immunol Rev ; 313(1): 194-216, 2023 01.
Article in English | MEDLINE | ID: mdl-36203396

ABSTRACT

This review aimed to capture the key findings that animal models have provided around the role of the alternative pathway and amplification loop (AP/AL) in disease. Animal models, particularly mouse models, have been incredibly useful to define the role of complement and the alternative pathway in health and disease; for instance, the use of cobra venom factor and depletion of C3 provided the initial insight that complement was essential to generate an appropriate adaptive immune response. The development of knockout mice have further underlined the importance of the AP/AL in disease, with the FH knockout mouse paving the way for the first anti-complement drugs. The impact from the development of FB, properdin, and C3 knockout mice closely follows this in terms of mechanistic understanding in disease. Indeed, our current understanding that complement plays a role in most conditions at one level or another is rooted in many of these in vivo studies. That C3, in particular, has roles beyond the obvious in innate and adaptive immunity, normal physiology, and cellular functions, with or without other recognized AP components, we would argue, only extends the reach of this arm of the complement system. Humanized mouse models also continue to play their part. Here, we argue that the animal models developed over the last few decades have truly helped define the role of the AP/AL in disease.


Subject(s)
Complement Pathway, Alternative , Properdin , Animals , Mice , Humans , Properdin/metabolism , Adaptive Immunity , Mice, Knockout , Disease Models, Animal
6.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36293087

ABSTRACT

Complement pathway proteins are reported to be increased in polycystic ovary syndrome (PCOS) and may be affected by obesity and insulin resistance. To investigate this, a proteomic analysis of the complement system was undertaken, including inhibitory proteins. In this cohort study, plasma was collected from 234 women (137 with PCOS and 97 controls). SOMALogic proteomic analysis was undertaken for the following complement system proteins: C1q, C1r, C2, C3, C3a, iC3b, C3b, C3d, C3adesArg, C4, C4a, C4b, C5, C5a, C5b-6 complex, C8, properdin, factor B, factor D, factor H, factor I, mannose-binding protein C (MBL), complement decay-accelerating factor (DAF) and complement factor H-related protein 5 (CFHR5). The alternative pathway of the complement system was primarily overexpressed in PCOS, with increased C3 (p < 0.05), properdin and factor B (p < 0.01). In addition, inhibition of this pathway was also seen in PCOS, with an increase in CFHR5, factor H and factor I (p < 0.01). Downstream complement factors iC3b and C3d, associated with an enhanced B cell response, and C5a, associated with an inflammatory cytokine release, were increased (p < 0.01). Hyperandrogenemia correlated positively with properdin and iC3b, whilst insulin resistance (HOMA-IR) correlated with iC3b and factor H (p < 0.05) in PCOS. BMI correlated positively with C3d, factor B, factor D, factor I, CFHR5 and C5a (p < 0.05). This comprehensive evaluation of the complement system in PCOS revealed the upregulation of components of the complement system, which appears to be offset by the concurrent upregulation of its inhibitors, with these changes accounted for in part by BMI, hyperandrogenemia and insulin resistance.


Subject(s)
Insulin Resistance , Mannose-Binding Lectin , Polycystic Ovary Syndrome , Female , Humans , Properdin/metabolism , Complement Factor H , Complement Factor B/metabolism , CD55 Antigens , Complement Factor D , Cohort Studies , Proteomics , Complement C1q , Complement C3b , Fibrinogen , Cytokines
7.
Protein Sci ; 31(10): e4432, 2022 10.
Article in English | MEDLINE | ID: mdl-36173177

ABSTRACT

Structure determination of macromolecular complexes is challenging if subunits can dissociate during crystallization or preparation of electron microscopy grids. We present an approach where a labile complex is stabilized by linking subunits though introduction of a peptide tag in one subunit that is recognized by a nanobody tethered to a second subunit. This allowed crystal structure determination at 3.9 Å resolution of the highly non-globular 320 kDa proconvertase formed by complement components C3b, factor B, and properdin. Whereas the binding mode of properdin to C3b is preserved, an internal rearrangement occurs in the zymogen factor B von Willebrand domain type A domain compared to the proconvertase not bound to properdin. The structure emphasizes the role of two noncanonical loops in thrombospondin repeats 5 and 6 of properdin in augmenting the activity of the C3 convertase. We suggest that linking of subunits through peptide specific tethered nanobodies represents a simple alternative to approaches like affinity maturation and chemical cross-linking for the stabilization of large macromolecular complexes. Besides applications for structural biology, nanobody bridging may become a new tool for biochemical analysis of unstable macromolecular complexes and in vitro selection of highly specific binders for such complexes.


Subject(s)
Properdin , Single-Domain Antibodies , Complement C3-C5 Convertases/chemistry , Complement C3-C5 Convertases/metabolism , Complement Factor B/chemistry , Complement Factor B/metabolism , Enzyme Precursors , Macromolecular Substances , Properdin/chemistry , Properdin/metabolism , Thrombospondins
8.
Front Endocrinol (Lausanne) ; 13: 918320, 2022.
Article in English | MEDLINE | ID: mdl-35909516

ABSTRACT

Introduction: Complement factors mediate the recruitment and activation of immune cells and are associated with metabolic changes during pregnancy. The aim of this study was to determine whether complement factors in the maternal serum and follicular fluid (FF) are associated with in vitro fertilization (IVF) outcomes in overweight/obese women. Methods: Forty overweight/obese (BMI = 30.8 ± 5.2 kg/m2) female patients, 33.6 ± 6.3 years old, undergoing IVF treatment for unexplained infertility were recruited. Baseline demographic information, including biochemical hormonal, metabolic, and inflammatory markers, and pregnancy outcome, was collected. Levels of 14 complement markers (C2, C4b, C5, C5a, C9, adipsin, mannose-binding lectin, C1q, C3, C3b/iC3b, C4, factor B, factor H, and properdin) were assessed in the serum and FF and compared to IVF outcome, inflammatory, and metabolic markers using multivariate and univariate models. Results: Out of 40 IVF cycles, 14 (35%) resulted in pregnancy. Compared to women with failed pregnancies, women with successful pregnancies had higher levels of adipsin in the serum and FF (p = 0.01) but lower C5a levels (p = 0.05). Serum adipsin levels were positively correlated with circulating levels of vitamin D (R = 0.5, p = 0.02), glucagon (R = 0.4, p = 0.03), leptin (R = 0.4, p = 0.01), resistin (R = 0.4, p = 0.02), and visfatin (R = 0.4, p = 0.02), but negatively correlated with total protein (R = -0.5, p = 0.03). Higher numbers of top-quality embryos were associated with increased levels of C3, properdin, C1q, factors H and B, C4, and adipsin, but with reduced C2 and C5a levels (p ≤ 0.01). Conclusions: Higher adipsin and lower C5a levels in the maternal serum during implantation are potential markers of successful outcome in obese women undergoing IVF-assisted pregnancies.


Subject(s)
Complement C5a , Complement Factor D , Follicular Fluid , Adult , Biomarkers/metabolism , Complement C5a/metabolism , Complement Factor D/metabolism , Female , Follicular Fluid/metabolism , Humans , Obesity/metabolism , Overweight/metabolism , Pregnancy , Pregnancy Outcome , Properdin/metabolism
9.
Immunobiology ; 227(4): 152246, 2022 07.
Article in English | MEDLINE | ID: mdl-35843030

ABSTRACT

The complement system does not only play an important role in the defence against microorganism and pathogens, but also contributes to the regulation of innate and adaptive immunity. Especially activation fragments C3a and C5a and complement activation at the interface of antigen presenting cell (APC) and T cell, were shown to have a role in T cell activation and proliferation. Whereas most complement factors are produced by the liver, properdin, a positive regulator of the C3 convertase, is mainly produced by myeloid cells. Here we show that properdin can be detected in myeloid cell infiltrate during human renal allograft rejection. In vitro, properdin is produced and secreted by human immature dendritic cells (iDCs), which is further increased by CD40-L-matured DCs (mDCs). Transfection with a specific properdin siRNA reduced properdin secretion by iDCs and mDCs, without affecting the expression of co-stimulatory markers CD80 and CD86. Co-culture of properdin siRNA-transfected iDCs and mDCs with human allogeneic T cells resulted in reduced T cell proliferation, especially under lower DC-T cell ratio's (1:30 and 1:90 ratio). In addition, T cell cytokines were altered, including a reduced TNF-α and IL-17 secretion by T cells co-cultured with properdin siRNA-transfected iDCs. Taken together, these results indicate a local role for properdin during the interaction of DCs and allogeneic T cells, contributing to the shaping of T cell proliferation and activation.


Subject(s)
Kidney Transplantation , Properdin , Cells, Cultured , Dendritic Cells , Humans , Properdin/genetics , Properdin/metabolism , RNA, Small Interfering , T-Lymphocytes
10.
Adv Immunol ; 153: 1-90, 2022.
Article in English | MEDLINE | ID: mdl-35469595

ABSTRACT

The complement system consists of three pathways (alternative, classical, and lectin) that play a fundamental role in immunity and homeostasis. The multifunctional role of the complement system includes direct lysis of pathogens, tagging pathogens for phagocytosis, promotion of inflammatory responses to control infection, regulation of adaptive cellular immune responses, and removal of apoptotic/dead cells and immune complexes from circulation. A tight regulation of the complement system is essential to avoid unwanted complement-mediated damage to the host. This regulation is ensured by a set of proteins called complement regulatory proteins. Deficiencies or malfunction of these regulatory proteins may lead to pro-thrombotic hematological diseases, renal and ocular diseases, and autoimmune diseases, among others. This review focuses on the importance of two complement regulatory proteins of the alternative pathway, Factor H and properdin, and their role in human diseases with an emphasis on: (a) characterizing the main mechanism of action of Factor H and properdin in regulating the complement system and protecting the host from complement-mediated attack, (b) describing the dysregulation of the alternative pathway as a result of deficiencies, or mutations, in Factor H and properdin, (c) outlining the clinical findings, management and treatment of diseases associated with mutations and deficiencies in Factor H, and (d) defining the unwanted and inadequate functioning of properdin in disease, through a discussion of various experimental research findings utilizing in vitro, mouse and human models.


Subject(s)
Autoimmune Diseases , Properdin , Animals , Autoimmune Diseases/genetics , Complement Factor H/genetics , Humans , Mice , Phagocytosis , Properdin/genetics , Properdin/metabolism
11.
Sci Rep ; 12(1): 5818, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35388026

ABSTRACT

Sialic acids as the terminal caps of the cellular glycocalyx play an essential role in self-recognition and were shown to modulate complement processes via interaction between α2,3-linked sialic acids and complement factor H. Previously, it was suggested that low molecular weight α2,8-linked polysialic acid (polySia avDP20) interferes with complement activation, but the exact molecular mechanism is still unclear. Here, we show that soluble polySia avDP20 (molecular weight of ~ 6 kDa) reduced the binding of serum-derived alternative pathway complement activator properdin to the cell surface of lesioned Hepa-1c1c7 and PC-12 neuroblastoma cells. Furthermore, polySia avDP20 added to human serum blocked the alternative complement pathway triggered by plate-bound lipopolysaccharides. Interestingly, no inhibitory effect was observed with monosialic acid or oligosialic acid with a chain length of DP3 and DP5. In addition, polySia avDP20 directly bound properdin, but not complement factor H. These data show that soluble polySia avDP20 binds properdin and reduces the alternative complement pathway activity. Results strengthen the previously described concept of self-recognition of sialylation as check-point control of complement activation in innate immunity.


Subject(s)
Complement Pathway, Alternative , Properdin , Humans , Molecular Weight , Properdin/metabolism , Sialic Acids/metabolism
12.
Eur J Immunol ; 52(4): 597-608, 2022 04.
Article in English | MEDLINE | ID: mdl-35092629

ABSTRACT

Properdin, the only known positive regulator of the complement system, stabilizes the C3 convertase, thereby increasing its half-life. In contrast to most other complement factors, properdin is mainly produced extrahepatically by myeloid cells. Recent data suggest a role for properdin as a pattern recognition molecule. Here, we confirmed previous findings of properdin binding to different necrotic cells including Jurkat T cells. Binding can occur independent of C3, as demonstrated by HAP-1 C3 KO cells, excluding a role for endogenous C3. In view of the cellular source of properdin, interaction with myeloid cells was examined. Properdin bound to the surface of viable monocyte-derived pro- and anti-inflammatory macrophages, but not to DCs. Binding was demonstrated for purified properdin as well as fractionated P2, P3, and P4 properdin oligomers. Binding contributed to local complement activation as determined by C3 and C5b-9 deposition on the cell surfaces and seems a prerequisite for alternative pathway activation. Interaction of properdin with cell surfaces could be inhibited with the tick protein Salp20 and by different polysaccharides, depending on sulfation and chain length. These data identify properdin as a factor interacting with different cell surfaces, being either dead or alive, contributing to the local stimulation of complement activation.


Subject(s)
Complement C3-C5 Convertases , Properdin , Complement Activation , Complement C3-C5 Convertases/metabolism , Complement Membrane Attack Complex , Complement Pathway, Alternative , Humans , Necrosis , Properdin/metabolism
13.
Front Immunol ; 13: 1073802, 2022.
Article in English | MEDLINE | ID: mdl-36846022

ABSTRACT

Introduction: C3 glomerulopathies (C3G) are ultra-rare complement-mediated diseases that lead to end-stage renal disease (ESRD) within 10 years of diagnosis in ~50% of patients. Overactivation of the alternative pathway (AP) of complement in the fluid phase and on the surface of the glomerular endothelial glycomatrix is the underlying cause of C3G. Although there are animal models for C3G that focus on genetic drivers of disease, in vivo studies of the impact of acquired drivers are not yet possible. Methods: Here we present an in vitro model of AP activation and regulation on a glycomatrix surface. We use an extracellular matrix substitute (MaxGel) as a base upon which we reconstitute AP C3 convertase. We validated this method using properdin and Factor H (FH) and then assessed the effects of genetic and acquired drivers of C3G on C3 convertase. Results: We show that C3 convertase readily forms on MaxGel and that this formation was positively regulated by properdin and negatively regulated by FH. Additionally, Factor B (FB) and FH mutants impaired complement regulation when compared to wild type counterparts. We also show the effects of C3 nephritic factors (C3Nefs) on convertase stability over time and provide evidence for a novel mechanism of C3Nef-mediated C3G pathogenesis. Discussion: We conclude that this ECM-based model of C3G offers a replicable method by which to evaluate the variable activity of the complement system in C3G, thereby offering an improved understanding of the different factors driving this disease process.


Subject(s)
Complement C3 , Kidney Diseases , Animals , Complement C3/genetics , Complement C3/metabolism , Complement Pathway, Alternative/genetics , Properdin/genetics , Properdin/metabolism , Complement C3-C5 Convertases/metabolism , Complement C3 Nephritic Factor/metabolism , Extracellular Matrix/metabolism
14.
Front Immunol ; 13: 918856, 2022.
Article in English | MEDLINE | ID: mdl-36713423

ABSTRACT

Properdin acts as an essential positive regulator of the alternative pathway of complement by stabilizing enzymatic convertases. Identical properdin monomers form head-to-tail associations of oligomers in a reported 20:54:26 ratio (most often described as an approximate 1:2:1 ratio) of tetramers (P4), trimers (P3), and dimers (P2), in blood, under normal physiological conditions. Oligomeric size is proportional to properdin function with tetramers being more active, followed by trimers and dimers. Neutrophils are the most abundant granulocyte, are recruited to inflammatory microenvironments, and are a significant source of properdin, yet the ratio of properdin oligomers released from neutrophils is unknown. The oligomer ratio of neutrophil-derived properdin could have functional consequences in local microenvironments where neutrophils are abundant and complement drives inflammation. We investigated the oligomer properties of neutrophil-derived properdin, as compared to that of normal human sera, using a novel ELISA-based method that detects function of properdin in a way that was proportional to the oligomeric size of properdin (i.e., the larger the oligomer, the higher the detected function). Unexpectedly, neutrophil-derived properdin had 5-fold lower function than donor-matched serum-derived properdin. The lower function was due to a lower percentage of tetramers/trimers and more dimers, indicating a significantly different P4:P3:P2 ratio in neutrophil-derived properdin (18:34:48) as compared to donor-matched serum (29:43:29). Release of lower-order oligomers by neutrophils may constitute a novel regulatory mechanism to control the rate of complement activation in cellular microenvironments. Further studies to determine the factors that affect properdin oligomerization and whether, or how, the predominant dimers in neutrophil-derived properdin, assimilate to the ~1:2:1 ratio found in serum are warranted.


Subject(s)
Neutrophils , Properdin , Humans , Properdin/metabolism , Neutrophils/metabolism , Complement Activation , Inflammation
15.
J Immunol ; 207(10): 2465-2472, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34635587

ABSTRACT

The complement system is an important part of innate immunity. Complement activation leads to formation of convertase enzymes, switch of their specificity from C3 to C5 cleavage, and generation of lytic membrane attack complexes (C5b-9) on surfaces of pathogens. Most C5 cleavage occurs via the complement alternative pathway (AP). The regulator properdin promotes generation and stabilization of AP convertases. However, its role in C5 activation is not yet understood. In this work, we showed that serum properdin is essential for LPS- and zymosan-induced C5b-9 generation and C5b-9-mediated lysis of rabbit erythrocytes. Furthermore, we demonstrated its essential role in C5 cleavage by AP convertases. To this end, we developed a hemolytic assay in which AP convertases were generated on rabbit erythrocytes by using properdin-depleted serum in the presence of C5 inhibitor (step 1), followed by washing and addition of purified C5-C9 components to allow C5b-9 formation (step 2). In this assay, addition of purified properdin to properdin-depleted serum during convertase formation (step 1) was required to restore C5 cleavage and C5b-9-mediated hemolysis. Importantly, C5 convertase activity was also fully restored when properdin was added together with C5b-9 components (step 2), thus after convertase formation. Moreover, with C3-depleted serum, not capable of forming new convertases but containing properdin, in step 2 of the assay, again full C5b-9 formation was observed and blocked by addition of properdin inhibitor Salp20. Thus, properdin is essential for the convertase specificity switch toward C5, and this function is independent of properdin's role in new convertase formation.


Subject(s)
Complement Activation/physiology , Complement C3-C5 Convertases/metabolism , Complement Membrane Attack Complex/metabolism , Complement Pathway, Alternative/physiology , Properdin/metabolism , Animals , Rabbits
16.
Front Immunol ; 12: 649882, 2021.
Article in English | MEDLINE | ID: mdl-33868287

ABSTRACT

Intestinal ischemia reperfusion (IR)-induced tissue injury represents an acute inflammatory response with significant morbidity and mortality. The mechanism of IR-induced injury is not fully elucidated, but recent studies suggest a critical role for complement activation and for differences between sexes. To test the hypothesis that complement initiation differs by sex in intestinal IR, we performed intestinal IR on male and female WT C57B6L/, C1q-/-, MBL-/-, or properdin (P)-/- mice. Intestinal injury, C3b and C5a production and ex vivo secretions were analyzed. Initial studies demonstrated a difference in complement mRNA and protein in male and female WT mice. In response to IR, male C1q-, MBL- and P-deficient mice sustained less injury than male WT mice. In contrast, only female MBL-/- mice sustained significantly less injury than female wildtype mice. Importantly, wildtype, C1q-/- and P-/- female mice sustained significant less injury than the corresponding male mice. In addition, both C1q and MBL expression and deposition increased in WT male mice, while only elevated MBL expression and deposition occurred in WT female mice. These data suggested that males use both C1q and MBL pathways, while females tend to depend on lectin pathway during intestinal IR. Females produced significantly less serum C5a in MBL-/- and P-/- mice. Our findings suggested that complement activation plays a critical role in intestinal IR in a sex-dependent manner.


Subject(s)
Complement C1q/metabolism , Complement Pathway, Classical/physiology , Complement Pathway, Mannose-Binding Lectin/physiology , Mannose-Binding Lectin/metabolism , Reperfusion Injury/immunology , Animals , Complement C1q/genetics , Disease Models, Animal , Female , Humans , Intestines/blood supply , Intestines/immunology , Intestines/pathology , Male , Mannose-Binding Lectin/genetics , Mice , Mice, Knockout , Properdin/genetics , Properdin/metabolism , Reperfusion Injury/pathology , Sex Factors
17.
Front Immunol ; 12: 615620, 2021.
Article in English | MEDLINE | ID: mdl-33664746

ABSTRACT

The homeostasis of tissues in a chronic disease is an essential function of the alternative pathway (AP) of the complement system (CS). However, if not controlled, it may also be detrimental to healthy cells with a consequent aggravation of symptoms. The protoporphyria (PP) is a rare chronic disease that causes phototoxicity in visible light with local skin pain and general malaise. In order to establish if there is a systemic involvement of the CS during sun exposure, we designed a non-invasive method with a serum collection in winter and summer from 19 PP and 13 controls to detect the levels of CS protein: Properdin, Factor H (FH), and C5. Moreover, the global radiation data were collected from the regional agency of environmental protection (ARPA). The results show growing values for every protein in patients with PP, compared to control, in both seasons, in particular in summer compared to winter. To reinforce the evidence, we have estimated the personal exposure of patients based on the global radiation data. The main factors of the AP increased over the season, confirming the involvement of the AP in relation to light exposure. The systemic response could justify the general malaise of patients after long light exposure and can be exploited to elucidate new therapeutic approaches.


Subject(s)
Complement Pathway, Alternative/immunology , Complement Pathway, Alternative/radiation effects , Complement System Proteins/immunology , Disease Susceptibility , Protoporphyria, Erythropoietic/etiology , Sunlight/adverse effects , Adult , Biomarkers , Complement C5/immunology , Complement C5/metabolism , Complement Factor H/metabolism , Female , Humans , Male , Middle Aged , Properdin/immunology , Properdin/metabolism , Protoporphyria, Erythropoietic/diagnosis , Protoporphyria, Erythropoietic/metabolism , Seasons
18.
Int Immunopharmacol ; 93: 107429, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33571820

ABSTRACT

BACKGROUND: IgA nephropathy (IgAN) has become the most prevalent form of glomerulonephritis affecting almost 1.3% of the total population worldwide. It is an autoimmune disorder where the host autoantibody forms an immune complex with the defective galactose-deficient IgA1 and gets deposited at the mesangium and endocapillary region of glomeruli. IgA has the capability to activate alternative and lectin complement cascades which even aggravates the condition. Properdin is directly associated with IgAN by activating and stabilising the alternative complement pathway at the mesangium, thereby causing progressive renal damage. OBJECTIVE: The present review mainly focuses on correlating the influence of properdin in activating the complement cascade at glomeruli which is the major cause of disease exacerbation. Secondly, we have described the probable therapies and new targets that are under trials to check their efficacy in IgAN. METHODS: An in-depth research was carried out from different peer-reviewed articles till December 2020 from several renowned databases like PubMed, Frontier, and MEDLINE, and the information was analysed and written in a simplified manner. RESULTS: Co-deposition of properdin is observed along with IgA and C3 in 75%-100% of the patients. It is not yet fully understood whether properdin inhibition can attenuate IgAN, as many conflicting reports have revealed worsening of IgAN after impeding properdin. CONCLUSION: With no specific cure still available, the treatment strategies are of great concern to find a better target to restrict the disease progression. More research and clinical trials are required to find out a prominent target to combat IgAN.


Subject(s)
Complement C3/metabolism , Glomerulonephritis, IGA/metabolism , Immunoglobulin A/metabolism , Kidney/metabolism , Properdin/metabolism , Animals , Antigen-Antibody Complex/metabolism , Autoantibodies/metabolism , Complement Pathway, Alternative , Glomerulonephritis, IGA/genetics , Humans , Immunoglobulin A/genetics , Kidney/pathology
19.
J Biol Chem ; 296: 100083, 2021.
Article in English | MEDLINE | ID: mdl-33199367

ABSTRACT

Inhibition of the alternative pathway (AP) of complement by saliva from Anopheles mosquitoes facilitates feeding by blocking production of the anaphylatoxins C3a and C5a, which activate mast cells leading to plasma extravasation, pain, and itching. We have previously shown that albicin, a member of the SG7 protein family from An. Albimanus, blocks the AP by binding to and inhibiting the function of the C3 convertase, C3bBb. Here we show that SG7.AF, the albicin homolog from An. freeborni, has a similar potency to albicin but is more active in the presence of properdin, a plasma protein that acts to stabilize C3bBb. Conversely, albicin is highly active in the absence or presence of properdin. Albicin and SG7.AF stabilize the C3bBb complex in a form that accumulates on surface plasmon resonance (SPR) surfaces coated with properdin, but SG7.AF binds with lower affinity than albicin. Albicin induces oligomerization of the complex in solution, suggesting that it is oligomerization that leads to stabilization on SPR surfaces. Anophensin, the albicin ortholog from An. stephensi, is only weakly active as an inhibitor of the AP, suggesting that the SG7 family may play a different functional role in this species and other species of the subgenus Cellia, containing the major malaria vectors in Africa and Asia. Crystal structures of albicin and SG7.AF reveal a novel four-helix bundle arrangement that is stabilized by an N-terminal hydrogen bonding network. These structures provide insight into the SG7 family and related mosquito salivary proteins including the platelet-inhibitory 30 kDa family.


Subject(s)
Complement Inactivating Agents/chemistry , Complement Inactivating Agents/metabolism , Properdin/metabolism , Saliva/chemistry , Animals , Anopheles , Complement C3-C5 Convertases/genetics , Complement C3-C5 Convertases/metabolism , Complement Pathway, Alternative/genetics , Complement Pathway, Alternative/physiology , Crystallography, X-Ray , Culicidae , Insect Proteins/genetics , Insect Proteins/metabolism , Properdin/genetics , Surface Plasmon Resonance
20.
Front Immunol ; 11: 572562, 2020.
Article in English | MEDLINE | ID: mdl-33240263

ABSTRACT

Properdin (P) is a positive regulatory protein that stabilizes the C3 convertase and C5 convertase of the complement alternative pathway (AP). Several studies have suggested that properdin can bind directly to the surface of certain pathogens regardless of the presence of C3bBb. Saprophytic Leptospira are susceptible to complement-mediated killing, but the interaction of properdin with Leptospira spp. has not been evaluated so far. In this work, we demonstrate that properdin present in normal human serum, purified properdin, as well as properdin oligomers P2, P3, and P4, interact with Leptospira. Properdin can bind directly to the bacterial surface even in the absence of C3b. In line with our previous findings, AP activation was shown to be important for killing non-pathogenic L. biflexa, and properdin plays a key role in this process since this microorganism survives in P-depleted human serum and the addition of purified properdin to P-depleted human serum decreases the number of viable leptospires. A panel of pathogenic L.interrogans recombinant proteins was used to identify putative properdin targets. Lsa30, an outer membrane protein from L. interrogans, binds to unfractionated properdin and to a lesser extent to P2-P4 properdin oligomers. In conclusion, properdin plays an important role in limiting bacterial proliferation of non-pathogenic Leptospira species. Once bound to the leptospiral surface, this positive complement regulatory protein of the AP contributes to the formation of the C3 convertase on the leptospire surface even in the absence of prior addition of C3b.


Subject(s)
Complement C3b/metabolism , Complement Factor B/metabolism , Leptospira interrogans/physiology , Leptospira/physiology , Leptospirosis/metabolism , Properdin/metabolism , Bacterial Outer Membrane Proteins/metabolism , Cell Growth Processes , Complement Pathway, Alternative , Cytotoxicity, Immunologic , Humans , Leptospira/pathogenicity , Leptospira interrogans/pathogenicity , Leptospirosis/immunology , Properdin/immunology , Protein Binding , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...