Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 20(3): e1011140, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427688

ABSTRACT

During meiosis, genetic recombination is initiated by the formation of many DNA double-strand breaks (DSBs) catalysed by the evolutionarily conserved topoisomerase-like enzyme, Spo11, in preferred genomic sites known as hotspots. DSB formation activates the Tel1/ATM DNA damage responsive (DDR) kinase, locally inhibiting Spo11 activity in adjacent hotspots via a process known as DSB interference. Intriguingly, in S. cerevisiae, over short genomic distances (<15 kb), Spo11 activity displays characteristics of concerted activity or clustering, wherein the frequency of DSB formation in adjacent hotspots is greater than expected by chance. We have proposed that clustering is caused by a limited number of sub-chromosomal domains becoming primed for DSB formation. Here, we provide evidence that DSB clustering is abolished when meiotic prophase timing is extended via deletion of the NDT80 transcription factor. We propose that extension of meiotic prophase enables most cells, and therefore most chromosomal domains within them, to reach an equilibrium state of similar Spo11-DSB potential, reducing the impact that priming has on estimates of coincident DSB formation. Consistent with this view, when Tel1 is absent but Ndt80 is present and thus cells are able to rapidly exit meiotic prophase, genome-wide maps of Spo11-DSB formation are skewed towards pericentromeric regions and regions that load pro-DSB factors early-revealing regions of preferential priming-but this effect is abolished when NDT80 is deleted. Our work highlights how the stochastic nature of Spo11-DSB formation in individual cells within the limited temporal window of meiotic prophase can cause localised DSB clustering-a phenomenon that is exacerbated in tel1Δ cells due to the dual roles that Tel1 has in DSB interference and meiotic prophase checkpoint control.


Subject(s)
DNA Breaks, Double-Stranded , Saccharomyces cerevisiae Proteins , DNA , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Intracellular Signaling Peptides and Proteins/genetics , Meiosis/genetics , Prophase/genetics , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
2.
Nature ; 623(7986): 347-355, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914934

ABSTRACT

Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.


Subject(s)
Adenosine Triphosphatases , Centromere , DNA-Binding Proteins , Multiprotein Complexes , Animals , Female , Mice/classification , Mice/genetics , Adenosine Triphosphatases/metabolism , Aneuploidy , Centromere/genetics , Centromere/metabolism , Chromosome Segregation , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , DNA-Binding Proteins/metabolism , Hybridization, Genetic , Infertility, Female/genetics , Meiosis/genetics , Multiprotein Complexes/metabolism , Oocytes/metabolism , Prophase/genetics , Cell Nucleus/genetics
3.
PLoS Genet ; 19(11): e1011066, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38019881

ABSTRACT

The centromere is an epigenetic mark that is a loading site for the kinetochore during meiosis and mitosis. This mark is characterized by the H3 variant CENP-A, known as CID in Drosophila. In Drosophila, CENP-C is critical for maintaining CID at the centromeres and directly recruits outer kinetochore proteins after nuclear envelope break down. These two functions, however, happen at different times in the cell cycle. Furthermore, in Drosophila and many other metazoan oocytes, centromere maintenance and kinetochore assembly are separated by an extended prophase. We have investigated the dynamics of function of CENP-C during the extended meiotic prophase of Drosophila oocytes and found that maintaining high levels of CENP-C for metaphase I requires expression during prophase. In contrast, CID is relatively stable and does not need to be expressed during prophase to remain at high levels in metaphase I of meiosis. Expression of CID during prophase can even be deleterious, causing ectopic localization to non-centromeric chromatin, abnormal meiosis and sterility. CENP-C prophase loading is required for multiple meiotic functions. In early meiotic prophase, CENP-C loading is required for sister centromere cohesion and centromere clustering. In late meiotic prophase, CENP-C loading is required to recruit kinetochore proteins. CENP-C is one of the few proteins identified in which expression during prophase is required for meiotic chromosome segregation. An implication of these results is that the failure to maintain recruitment of CENP-C during the extended prophase in oocytes would result in chromosome segregation errors in oocytes.


Subject(s)
Drosophila Proteins , Meiosis , Animals , Meiosis/genetics , Chromosome Segregation/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Prophase/genetics , Centromere/genetics , Centromere/metabolism , Drosophila/genetics , Drosophila/metabolism , Mitosis , Kinetochores/metabolism , Centromere Protein A/genetics , Centromere Protein A/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism
4.
Mol Cell ; 81(10): 2231-2245.e11, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33826921

ABSTRACT

Long undecoded transcript isoforms (LUTIs) represent a class of non-canonical mRNAs that downregulate gene expression through the combined act of transcriptional and translational repression. While single gene studies revealed important aspects of LUTI-based repression, how these features affect gene regulation on a global scale is unknown. Using transcript leader and direct RNA sequencing, here, we identify 74 LUTI candidates that are specifically induced in meiotic prophase. Translational repression of these candidates appears to be ubiquitous and is dependent on upstream open reading frames. However, LUTI-based transcriptional repression is variable. In only 50% of the cases, LUTI transcription causes downregulation of the protein-coding transcript isoform. Higher LUTI expression, enrichment of histone 3 lysine 36 trimethylation, and changes in nucleosome position are the strongest predictors of LUTI-based transcriptional repression. We conclude that LUTIs downregulate gene expression in a manner that integrates translational repression, chromatin state changes, and the magnitude of LUTI expression.


Subject(s)
Gene Expression Regulation, Fungal , Genomics , Saccharomyces cerevisiae/genetics , Chromatin/metabolism , Genes, Reporter , Meiosis/genetics , Nanopore Sequencing , Nucleosomes/metabolism , Open Reading Frames/genetics , Promoter Regions, Genetic/genetics , Prophase/genetics , Protein Biosynthesis/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcription, Genetic
5.
PLoS Genet ; 16(9): e1009048, 2020 09.
Article in English | MEDLINE | ID: mdl-32931493

ABSTRACT

During meiotic prophase, sister chromatids are organized into axial element (AE), which underlies the structural framework for the meiotic events such as meiotic recombination and homolog synapsis. HORMA domain-containing proteins (HORMADs) localize along AE and play critical roles in the regulation of those meiotic events. Organization of AE is attributed to two groups of proteins: meiotic cohesins REC8 and RAD21L; and AE components SYCP2 and SYCP3. It has been elusive how these chromosome structural proteins contribute to the chromatin loading of HORMADs prior to AE formation. Here we newly generated Sycp2 null mice and showed that initial chromatin loading of HORMAD1 was mediated by meiotic cohesins prior to AE formation. HORMAD1 interacted not only with the AE components SYCP2 and SYCP3 but also with meiotic cohesins. Notably, HORMAD1 interacted with meiotic cohesins even in Sycp2-KO, and localized along cohesin axial cores independently of the AE components SYCP2 and SYCP3. Hormad1/Rad21L-double knockout (dKO) showed more severe defects in the formation of synaptonemal complex (SC) compared to Hormad1-KO or Rad21L-KO. Intriguingly, Hormad1/Rec8-dKO but not Hormad1/Rad21L-dKO showed precocious separation of sister chromatid axis. These findings suggest that meiotic cohesins REC8 and RAD21L mediate chromatin loading and the mode of action of HORMAD1 for synapsis during early meiotic prophase.


Subject(s)
Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Animals , Chromatids/genetics , Chromatids/metabolism , Chromatin/metabolism , Chromosomes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Male , Meiosis/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , Phosphoproteins/genetics , Prophase/genetics , Spermatocytes/metabolism , Synaptonemal Complex/metabolism , Cohesins
6.
Mol Cell ; 79(6): 902-916.e6, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32768407

ABSTRACT

A long-standing conundrum is how mitotic chromosomes can compact, as required for clean separation to daughter cells, while maintaining close parallel alignment of sister chromatids. Pursuit of this question, by high resolution 3D fluorescence imaging of living and fixed mammalian cells, has led to three discoveries. First, we show that the structural axes of separated sister chromatids are linked by evenly spaced "mini-axis" bridges. Second, when chromosomes first emerge as discrete units, at prophase, they are organized as co-oriented sister linear loop arrays emanating from a conjoined axis. We show that this same basic organization persists throughout mitosis, without helical coiling. Third, from prophase onward, chromosomes are deformed into sequential arrays of half-helical segments of alternating handedness (perversions), accompanied by correlated kinks. These arrays fluctuate dynamically over <15 s timescales. Together these discoveries redefine the foundation for thinking about the evolution of mitotic chromosomes as they prepare for anaphase segregation.


Subject(s)
Cell Cycle Proteins/genetics , Chromosomes/genetics , DNA-Binding Proteins/genetics , Mitosis/genetics , Adenosine Triphosphatases/genetics , Anaphase/genetics , Animals , Cell Cycle Proteins/isolation & purification , Chromatids/genetics , Chromosomal Proteins, Non-Histone , DNA Topoisomerases, Type II/genetics , DNA-Binding Proteins/isolation & purification , Imaging, Three-Dimensional , Mammals , Metaphase/genetics , Prophase/genetics
7.
Cell Rep ; 31(8): 107681, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32460023

ABSTRACT

Centrosome separation in late G2/ early prophase requires precise spatial coordination that is determined by a balance of forces promoting and antagonizing separation. The major effector of centrosome separation is the kinesin Eg5. However, the identity and regulation of Eg5-antagonizing forces is less well characterized. By manipulating candidate components, we find that centrosome separation is reversible and that separated centrosomes congress toward a central position underneath the flat nucleus. This positioning mechanism requires microtubule polymerization, as well as actin polymerization. We identify perinuclear actin structures that form in late G2/early prophase and interact with microtubules emanating from the centrosomes. Disrupting these structures by breaking the interactions of the linker of nucleoskeleton and cytoskeleton (LINC) complex with perinuclear actin filaments abrogates this centrosome positioning mechanism and causes an increase in subsequent chromosome segregation errors. Our results demonstrate how geometrical cues from the cell nucleus coordinate the orientation of the emanating spindle poles before nuclear envelope breakdown.


Subject(s)
Actins/metabolism , Centrosome/metabolism , Chromosome Segregation/genetics , Prophase/genetics , Humans
8.
Chromosoma ; 128(3): 489-500, 2019 09.
Article in English | MEDLINE | ID: mdl-31489491

ABSTRACT

Mammalian female fertility relies on the proper development of follicles. Right after birth in the mouse, oocytes associate with somatic ovarian cells to form follicles. These follicles grow during the adult lifetime to produce viable gametes. In this study, we analyzed the role of the ATM and rad3-related (ATR) kinase in mouse oogenesis and folliculogenesis using a hypomorphic mutation of the Atr gene (Murga et al. 2009). Female mice homozygotes for this allele have been reported to be sterile. Our data show that female meiotic prophase is not grossly altered when ATR levels are reduced. However, follicle development is substantially compromised, since Atr mutant ovaries present a decrease of growing follicles. Comprehensive analysis of follicular cell death and proliferation suggest that wild-type levels of ATR are required to achieve optimal follicular development. Altogether, these findings suggest that reduced ATR expression causes sterility due to defects in follicular progression rather than in meiotic recombination. We discuss the implications of these findings for the use of ATR inhibitors such as anti-cancer drugs and its possible side-effects on female fertility.


Subject(s)
Oogenesis , Ovarian Follicle/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Female , Meiosis/genetics , Mice , Oogenesis/genetics , Ovary/metabolism , Prophase/genetics
9.
Nucleic Acids Res ; 47(20): 10881-10893, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31511882

ABSTRACT

RNA-modifying enzymes targeting mRNA poly(A) tails are universal regulators of post-transcriptional gene expression programs. Current data suggest that an RNA-binding protein (RBP) directed tug-of-war between tail shortening and re-elongating enzymes operates in the cytoplasm to repress or activate specific mRNA targets. While this concept is widely accepted, it was primarily described in the final meiotic stages of frog oogenesis and relies molecularly on a single class of RBPs, i.e. CPEBs, the deadenylase PARN and cytoplasmic poly(A) polymerase GLD-2. Using the spatial and temporal resolution of female gametogenesis in the nematode C. elegans, we determined the distinct roles of known deadenylases throughout germ cell development and discovered that the Ccr4-Not complex is the main antagonist to GLD-2-mediated mRNA regulation. We find that the Ccr4-Not/GLD-2 balance is critical for essentially all steps of oocyte production and reiteratively employed by various classes of RBPs. Interestingly, its two deadenylase subunits appear to affect mRNAs stage specifically: while a Caf1/GLD-2 antagonism regulates mRNA abundance during all stages of oocyte production, a Ccr4/GLD-2 antagonism regulates oogenesis in an mRNA abundance independent manner. Our combined data suggests that the Ccr4-Not complex represents the evolutionarily conserved molecular opponent to GLD-2 providing an antagonistic framework of gene-specific poly(A)-tail regulation.


Subject(s)
Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Gene Expression Regulation, Developmental , Oogenesis/genetics , Poly A/metabolism , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Differentiation , Cell Proliferation , Meiosis , Polyadenylation , Prophase/genetics , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism
10.
Chromosoma ; 128(3): 473-487, 2019 09.
Article in English | MEDLINE | ID: mdl-31446450

ABSTRACT

Cyclins, as regulatory partners of cyclin-dependent kinases (CDKs), control the switch-like cell cycle transitions that orchestrate orderly duplication and segregation of genomes. Compared to mitosis, relatively little is known about how cyclin-CDK complexes control meiosis, the specialized cell division that generates gametes for sexual production. Mouse cyclin B3 was previously shown to have expression restricted to the beginning of meiosis, making it a candidate to regulate meiotic events. Indeed, female mice lacking cyclin B3 are sterile because oocytes arrest at the metaphase-to-anaphase transition of meiosis I. However, whether cyclin B3 functions during spermatogenesis was untested. Here, we found that males lacking cyclin B3 are fertile and show no detectable defects in spermatogenesis based on histological analysis of seminiferous tubules. Cytological analysis further showed no detectable defects in homologous chromosome synapsis or meiotic progression, and suggested that recombination is initiated and completed efficiently. Moreover, absence of cyclin B3 did not exacerbate previously described meiotic defects in mutants deficient for cyclin E2, suggesting a lack of redundancy between these cyclins. Thus, unlike in females, cyclin B3 is not essential for meiosis in males despite its prominent meiosis-specific expression.


Subject(s)
Cyclin B/genetics , Spermatogenesis/genetics , Alleles , Amino Acid Sequence , Animals , Cyclin B/chemistry , Cyclin B/metabolism , Gene Editing , Gene Expression , Immunohistochemistry , Male , Meiosis , Metaphase/genetics , Mice , Prophase/genetics , Protein Domains , Recombination, Genetic
11.
J Cell Sci ; 132(18)2019 09 23.
Article in English | MEDLINE | ID: mdl-31427431

ABSTRACT

High-fidelity chromosome segregation relies on proper microtubule regulation. Kinesin-8 has been shown to destabilise microtubules to reduce metaphase spindle length and chromosome movements in multiple species. XMAP215/chTOG polymerases catalyse microtubule growth for spindle assembly, elongation and kinetochore-microtubule attachment. Understanding of their biochemical activity has advanced, but little work directly addresses the functionality and interplay of these conserved factors. We utilised the synthetic lethality of fission yeast kinesin-8 (Klp5-Klp6) and XMAP215/chTOG (Dis1) to study their individual and overlapping roles. We found that the non-motor kinesin-8 tailbox is essential for mitotic function; mutation compromises plus-end-directed processivity. Klp5-Klp6 induces catastrophes to control microtubule length and, surprisingly, Dis1 collaborates with kinesin-8 to slow spindle elongation. Together, they enforce a maximum spindle length for a viable metaphase-anaphase transition and limit elongation during anaphase A to prevent lagging chromatids. Our work provides mechanistic insight into how kinesin-8 negatively regulates microtubules and how this functionally overlaps with Dis1 and highlights the importance of spindle length control in mitosis.


Subject(s)
Anaphase/physiology , Kinesins/metabolism , Microtubule-Associated Proteins/metabolism , Prophase/physiology , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Anaphase/genetics , Chromosome Segregation/genetics , Chromosome Segregation/physiology , Kinesins/genetics , Kinetochores/metabolism , Microscopy, Fluorescence , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Prophase/genetics , Schizosaccharomyces pombe Proteins/genetics , Spindle Apparatus/metabolism
12.
Curr Genet ; 65(4): 817-827, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30923890

ABSTRACT

Sister chromatid cohesion is essential for chromosome segregation both in mitosis and meiosis. Cohesion between two chromatids is mediated by a protein complex called cohesin. The loading and unloading of the cohesin are tightly regulated during the cell cycle. In vertebrate cells, cohesin is released from chromosomes by two distinct pathways. The best characterized pathway occurs at the onset of anaphase, when the kleisin component of the cohesin is destroyed by a protease, separase. The cleavage of the cohesin by separase releases entrapped sister chromatids allowing anaphase to commence. In addition, prior to the metaphase-anaphase transition, most of cohesin is removed from chromosomes in a cleavage-independent manner. This cohesin release is referred to as the prophase pathway. In meiotic cells, sister chromatid cohesion is essential for the segregation of homologous chromosomes during meiosis I. Thus, it was assumed that the prophase pathway for cohesin removal from chromosome arms would be suppressed during meiosis to avoid errors in chromosome segregation. However, recent studies revealed the presence of a meiosis-specific prophase-like pathway for cleavage-independent removal of cohesin during late prophase I in different organisms. In budding yeast, the cleavage-independent removal of cohesin is mediated through meiosis-specific phosphorylation of cohesin subunits, Rec8, the meiosis-specific kleisin, and the yeast Wapl ortholog, Rad61/Wpl1. This pathway plays a role in chromosome morphogenesis during late prophase I, promoting chromosome compaction. In this review, we give an overview of the prophase pathway for cohesin dynamics during meiosis, which has a complex regulation leading to differentially localized populations of cohesin along meiotic chromosomes.


Subject(s)
Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation/genetics , Meiosis/genetics , Morphogenesis/genetics , Anaphase/genetics , Chromatids/genetics , Metaphase , Prophase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Cohesins
13.
PLoS Genet ; 15(1): e1007730, 2019 01.
Article in English | MEDLINE | ID: mdl-30653507

ABSTRACT

Meiosis is a cellular program that generates haploid gametes for sexual reproduction. While chromosome events that contribute to reducing ploidy (homologous chromosome pairing, synapsis, and recombination) are well conserved, their execution varies across species and even between sexes of the same species. The telomere bouquet is a conserved feature of meiosis that was first described nearly a century ago, yet its role is still debated. Here we took advantage of the prominent telomere bouquet in zebrafish, Danio rerio, and super-resolution microscopy to show that axis morphogenesis, synapsis, and the formation of double-strand breaks (DSBs) all take place within the immediate vicinity of telomeres. We established a coherent timeline of events and tested the dependence of each event on the formation of Spo11-induced DSBs. First, we found that the axis protein Sycp3 loads adjacent to telomeres and extends inward, suggesting a specific feature common to all telomeres seeds the development of the axis. Second, we found that newly formed axes near telomeres engage in presynaptic co-alignment by a mechanism that depends on DSBs, even when stable juxtaposition of homologous chromosomes at interstitial regions is not yet evident. Third, we were surprised to discover that ~30% of telomeres in early prophase I engage in associations between two or more chromosome ends and these interactions decrease in later stages. Finally, while pairing and synapsis were disrupted in both spo11 males and females, their reproductive phenotypes were starkly different; spo11 mutant males failed to produce sperm while females produced offspring with severe developmental defects. Our results support zebrafish as an important vertebrate model for meiosis with implications for differences in fertility and genetically derived birth defects in males and females.


Subject(s)
Chromosomes/genetics , Endodeoxyribonucleases/genetics , Meiosis/genetics , Telomere/genetics , Animals , Chromosome Pairing/genetics , DNA Breaks, Double-Stranded , Embryonic Development/genetics , Female , In Situ Hybridization, Fluorescence , Male , Prophase/genetics , Spermatocytes/growth & development , Spermatocytes/metabolism , Testis/growth & development , Testis/pathology , Zebrafish/genetics
14.
PLoS Genet ; 15(1): e1007851, 2019 01.
Article in English | MEDLINE | ID: mdl-30605471

ABSTRACT

Sister chromatid cohesion on chromosome arms is essential for the segregation of homologous chromosomes during meiosis I while it is dispensable for sister chromatid separation during mitosis. It was assumed that, unlike the situation in mitosis, chromosome arms retain cohesion prior to onset of anaphase-I. Paradoxically, reduced immunostaining signals of meiosis-specific cohesin, including the kleisin Rec8, were observed on chromosomes during late prophase-I of budding yeast. This decrease is seen in the absence of Rec8 cleavage and depends on condensin-mediated recruitment of Polo-like kinase (PLK/Cdc5). In this study, we confirmed that this release indeed accompanies the dissociation of acetylated Smc3 as well as Rec8 from meiotic chromosomes during late prophase-I. This release requires, in addition to PLK, the cohesin regulator, Wapl (Rad61/Wpl1 in yeast), and Dbf4-dependent Cdc7 kinase (DDK). Meiosis-specific phosphorylation of Rad61/Wpl1 and Rec8 by PLK and DDK collaboratively promote this release. This process is similar to the vertebrate "prophase" pathway for cohesin release during G2 phase and pro-metaphase. In yeast, meiotic cohesin release coincides with PLK-dependent compaction of chromosomes in late meiotic prophase-I. We suggest that yeast uses this highly regulated cleavage-independent pathway to remove cohesin during late prophase-I to facilitate morphogenesis of condensed metaphase-I chromosomes.


Subject(s)
Cell Cycle Proteins/genetics , Meiosis/genetics , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation/genetics , Chromosomes/genetics , Phosphorylation , Prophase/genetics , Saccharomyces cerevisiae/genetics , Signal Transduction , Sister Chromatid Exchange/genetics
15.
J Vis Exp ; (132)2018 02 26.
Article in English | MEDLINE | ID: mdl-29553540

ABSTRACT

Chromatin spread techniques have been widely used to assess the dynamic localization of various proteins during gametogenesis, particularly for spermatogenesis. These techniques allow for visualization of protein and DNA localization patterns during meiotic events such as homologous chromosome pairing, synapsis and DNA repair. While a few protocols have been described in the literature, general chromatin spread techniques using mammalian prophase oocytes are limited and difficult due to the timing of meiosis initiation in fetal ovaries. In comparison, prophase spermatocytes can be collected from juvenile male mice with higher yields without the need for microdissection. However, it is difficult to obtain a pure synchronized population of cells at specific stages due to the heterogeneity of meiotic and post-meiotic germ cell populations in the juvenile and adult testis. For later stages of meiosis, it is advantageous to assess oocytes undergoing meiosis I (MI) or meiosis II (MII), because groups of mature oocytes can be collected from adult female mice and stimulated to resume meiosis in culture. Here, methods for meiotic chromatin spread preparations using oocytes dissected from fetal, neonatal and adult ovaries are described with accompanying video demonstrations. Chromosome missegregation events in mammalian oocytes are frequent, particularly during MI. These techniques can be used to assess and characterize the effects of different mutations or environmental exposures during various stages of oogenesis. As there are distinct differences between oogenesis and spermatogenesis, the techniques described within are invaluable to increase our understanding of mammalian oogenesis and the sexually dimorphic features of chromosome and protein dynamics during meiosis.


Subject(s)
Chromatin/metabolism , Metaphase/genetics , Oocytes/metabolism , Prophase/genetics , Animals , Female , Mice , Pregnancy
16.
Development ; 145(16)2018 04 16.
Article in English | MEDLINE | ID: mdl-29540502

ABSTRACT

To prevent chromosomal aberrations being transmitted to the offspring, strict meiotic checkpoints are in place to remove aberrant spermatocytes. However, in about 1% of males these checkpoints cause complete meiotic arrest leading to azoospermia and subsequent infertility. Here, we unravel two clearly distinct meiotic arrest mechanisms that occur during prophase of human male meiosis. Type I arrested spermatocytes display severe asynapsis of the homologous chromosomes, disturbed XY-body formation and increased expression of the Y chromosome-encoded gene ZFY and seem to activate a DNA damage pathway leading to induction of p63, possibly causing spermatocyte apoptosis. Type II arrested spermatocytes display normal chromosome synapsis, normal XY-body morphology and meiotic crossover formation but have a lowered expression of several cell cycle regulating genes and fail to silence the X chromosome-encoded gene ZFX Discovery and understanding of these meiotic arrest mechanisms increases our knowledge of how genomic stability is guarded during human germ cell development.


Subject(s)
Cell Cycle Checkpoints/genetics , Meiosis/genetics , Prophase/genetics , Spermatocytes/metabolism , Spermatogenesis/physiology , Apoptosis/physiology , Azoospermia/genetics , DNA Damage/genetics , DNA Repair/genetics , Gene Expression Profiling , Humans , Kruppel-Like Transcription Factors/biosynthesis , Male , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
17.
PLoS Genet ; 13(4): e1006704, 2017 04.
Article in English | MEDLINE | ID: mdl-28380054

ABSTRACT

The meiosis-specific chromosomal events of homolog pairing, synapsis, and recombination occur over an extended meiotic prophase I that is many times longer than prophase of mitosis. Here we show that, in mice, maintenance of an extended meiotic prophase I requires the gene Meioc, a germ-cell specific factor conserved in most metazoans. In mice, Meioc is expressed in male and female germ cells upon initiation of and throughout meiotic prophase I. Mouse germ cells lacking Meioc initiate meiosis: they undergo pre-meiotic DNA replication, they express proteins involved in synapsis and recombination, and a subset of cells progress as far as the zygotene stage of prophase I. However, cells in early meiotic prophase-as early as the preleptotene stage-proceed to condense their chromosomes and assemble a spindle, as if having progressed to metaphase. Meioc-deficient spermatocytes that have initiated synapsis mis-express CYCLIN A2, which is normally expressed in mitotic spermatogonia, suggesting a failure to properly transition to a meiotic cell cycle program. MEIOC interacts with YTHDC2, and the two proteins pull-down an overlapping set of mitosis-associated transcripts. We conclude that when the meiotic chromosomal program is initiated, Meioc is simultaneously induced so as to extend meiotic prophase. Specifically, MEIOC, together with YTHDC2, promotes a meiotic (as opposed to mitotic) cell cycle program via post-transcriptional control of their target transcripts.


Subject(s)
Cell Cycle Proteins/genetics , Cyclin A2/biosynthesis , Meiosis/genetics , Prophase/genetics , RNA-Binding Proteins/genetics , Animals , Cell Cycle Proteins/biosynthesis , Chromosome Pairing/genetics , Cyclin A2/genetics , Gene Expression Regulation, Developmental , Male , Mice , Mitosis/genetics , RNA-Binding Proteins/metabolism , Spermatocytes , Spermatogenesis/genetics , Spermatogonia/growth & development , Spermatogonia/metabolism
18.
J Microbiol Biotechnol ; 27(6): 1198-1203, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28335590

ABSTRACT

Hrr25, a casein kinase 1 δ/ε homolog in budding yeast, is essential to set up mono-orientation of sister kinetochores during meiosis. Hrr25 kinase activity coordinates sister chromatid cohesion via cohesin phosphorylation. Here, we investigated the prophase role of Hrr25 using the auxin-inducible degron system and by ectopic expression of Hrr25 during yeast meiosis. Hrr25 mediates nuclear division in meiosis I but does not affect DNA replication. We also found that initiation of meiotic double-strand breaks as well as joint molecule formation were normal in HRR25-deficient cells. Thus, Hrr25 is essential for termination of meiotic division but not homologous recombination.


Subject(s)
Casein Kinase I/genetics , Casein Kinase I/metabolism , Homologous Recombination , Meiosis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/enzymology , Saccharomycetales/genetics , Cell Nucleus Division/genetics , Chromosome Segregation , DNA Breaks, Double-Stranded , Prophase/genetics , Saccharomycetales/growth & development , Saccharomycetales/physiology , Spores, Fungal/physiology
19.
Mol Cell Biol ; 37(3)2017 02 01.
Article in English | MEDLINE | ID: mdl-27821479

ABSTRACT

Meiotic recombination initiates following the formation of DNA double-strand breaks (DSBs) by the Spo11 endonuclease early in prophase I, at discrete regions in the genome coined "hot spots." In mammals, meiotic DSB site selection is directed in part by sequence-specific binding of PRDM9, a polymorphic histone H3 (H3K4Me3) methyltransferase. However, other chromatin features needed for meiotic hot spot specification are largely unknown. Here we show that the recombinogenic cores of active hot spots in mice harbor several histone H3 and H4 acetylation and methylation marks that are typical of open, active chromatin. Further, deposition of these open chromatin-associated histone marks is dynamic and is manifest at spermatogonia and/or pre-leptotene-stage cells, which facilitates PRDM9 binding and access for Spo11 to direct the formation of DSBs, which are initiated at the leptotene stage. Importantly, manipulating histone acetylase and deacetylase activities established that histone acetylation marks are necessary for both hot spot activity and crossover resolution. We conclude that there are functional roles for histone acetylation marks at mammalian meiotic recombination hot spots.


Subject(s)
Histone Code , Homologous Recombination , Meiosis , Animals , Endodeoxyribonucleases/metabolism , Gene Expression Regulation , Histones/metabolism , Homologous Recombination/genetics , Meiosis/genetics , Methylation , Mice, Inbred C57BL , Models, Biological , Prophase/genetics
20.
Annu Rev Genet ; 50: 293-316, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27686280

ABSTRACT

Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.


Subject(s)
Eukaryota/genetics , Meiosis , Alveolata/genetics , Amoebozoa/genetics , Animals , Chromosome Pairing , Fungi/genetics , Prophase/genetics , Recombination, Genetic , Stramenopiles/genetics , Synaptonemal Complex/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...