Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 862
Filter
1.
Int J Biol Macromol ; 269(Pt 1): 132021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697441

ABSTRACT

Challenges in enzyme and product recovery are currently intriguing in modern biotechnology. Coping enzyme stability, shelf life and efficiency, nanomaterials-based immobilization were epitomized of industrial practice. Herein, a α-amylase from Geobacillus thermoleovorans was purified and bound effectively on to a modified 3-Aminopropyltriethoxysilane (APTES)-Fe3O4 nanoparticle. It was revealed that the carrier-bound enzyme catalysis (pH 8 and 60 °C) was significant in contrast to the free enzyme (pH 7.5 and 55 °C). Furthermore, Zn2+ and Cu2+ were shown to cause inhibitory effects in both enzyme states. Unlike chloroform, toluene, benzene, and butanol, minimal effects were observed with ethanol, acetone, and hexane. The bound enzyme retained 27.4 % of its initial activity after being stored for 36 days. In addition, the reusability of the bound enzyme showed a gradual decline in activity after the first cycle; however, after 13 cycles, its residual activity at 53 % was observed. These data proved significant enough to use this enzyme for industrial starch and analogous substrate bio-processing.


Subject(s)
Enzyme Stability , Enzymes, Immobilized , Propylamines , alpha-Amylases , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Propylamines/chemistry , Silanes/chemistry , Geobacillus/enzymology , Temperature , Hydrogen-Ion Concentration , Biocatalysis , Catalysis , Magnetite Nanoparticles/chemistry , Starch/chemistry
2.
Colloids Surf B Biointerfaces ; 239: 113975, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762934

ABSTRACT

Early and accurate cancer diagnosis is crucial for improving patient survival rates. Luminescent nanoparticles have emerged as a promising tool in fluorescence bioimaging for cancer diagnosis. To enhance diagnostic accuracy, ligands promoting endocytosis into cancer cells are commonly incorporated onto nanoparticle surfaces. Folic acid (FA) is one such ligand, known to specifically bind to folate receptors (FR) overexpressed in various cancer cells such as cervical and ovarian carcinoma. Therefore, surface modification of luminescent nanoparticles with FA can enhance both luminescence efficiency and diagnostic accuracy. In this study, luminescent europium-doped hydroxyapatite (EuHAp) nanocrystals were prepared via hydrothermal method and subsequently modified with (3-Aminopropyl)triethoxysilane (APTES) followed by FA to target FR-positive human cervical adenocarcinoma cell line (HeLa) cells. The sequential grafting of APTES and then FA formed a robust covalent linkage between the nanocrystals and FA. Rod-shaped FA-modified EuHAp nanocrystals, approximately 100 nm in size, exhibited emission peaks at 589, 615, and 650 nm upon excitation at 397 nm. Despite a reduction in photoluminescence intensity following FA modification, fluorescence microscopy revealed a remarkable 120-fold increase in intensity compared to unmodified EuHAp, attributed to the enhanced uptake of FA-modified EuHAp. Additionally, confocal microscope observations confirmed the specificity and the internalization of FA-modified EuHAp nanocrystals in HeLa cells. In conclusion, the modification of EuHAp nanocrystals with FA presents a promising strategy to enhance the diagnostic potential of cancer bioimaging probes.


Subject(s)
Durapatite , Europium , Folic Acid , Nanoparticles , Humans , Folic Acid/chemistry , Europium/chemistry , Nanoparticles/chemistry , HeLa Cells , Durapatite/chemistry , Luminescence , Microscopy, Fluorescence , Propylamines/chemistry , Particle Size , Luminescent Agents/chemistry
3.
Analyst ; 149(12): 3317-3324, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38742381

ABSTRACT

In this work, the release of giant liposome (∼100 µm in diameter) content was imaged by shadow electrochemiluminescence (ECL) microscopy. Giant unilamellar liposomes were pre-loaded with a sucrose solution and allowed to sediment at an ITO electrode surface immersed in a solution containing a luminophore ([Ru(bpy)3]2+) and a sacrificial co-reactant (tri-n-propylamine). Upon polarization, the electrode exhibited illumination over its entire surface thanks to the oxidation of ECL reagents. However, as soon as liposomes reached the electrode surface, dark spots appeared and then spread over time on the surface. This observation reflected a blockage of the electrode surface at the contact point between the liposome and the electrode surface, followed by the dilution of ECL reagents after the rupture of the liposome membrane and release of its internal ECL-inactive solution. Interestingly, ECL reappeared in areas where it initially faded, indicating back-diffusion of ECL reagents towards the previously diluted area and thus confirming liposome permeabilization. The whole process was analyzed qualitatively and quantitatively within the defined region of interest. Two mass transport regimes were identified: a gravity-driven spreading process when the liposome releases its content leading to ECL vanishing and a diffusive regime when ECL recovers. The reported shadow ECL microscopy should find promising applications for the imaging of transient events such as molecular species released by artificial or biological vesicles.


Subject(s)
Electrodes , Luminescent Measurements , Luminescent Measurements/methods , Liposomes/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Propylamines/chemistry , Unilamellar Liposomes/chemistry , Sucrose/chemistry , Tin Compounds
4.
ACS Biomater Sci Eng ; 10(5): 3057-3068, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38641433

ABSTRACT

Blood-contacting catheters play a pivotal role in contemporary medical treatments, particularly in the management of cardiovascular diseases. However, these catheters exhibit inappropriate wettability and lack antimicrobial characteristics, which often lead to catheter-related infections and thrombosis. Therefore, there is an urgent need for blood contact catheters with antimicrobial and anticoagulant properties. In this study, we employed tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) to create a stable hydrophilic coating under mild conditions. Heparin (Hep) and poly(lysine) (PL) were then modified on the TA-APTES coating surface using the layer-by-layer (LBL) technique to create a superhydrophilic TA/APTES/(LBL)4 coating on silicone rubber (SR) catheters. Leveraging the superhydrophilic nature of this coating, it can be effectively applied to blood-contacting catheters to impart antibacterial, antiprotein adsorption, and anticoagulant properties. Due to Hep's anticoagulant attributes, the activated partial thromboplastin time and thrombin time tests conducted on SR/TA-APTES/(LBL)4 catheters revealed remarkable extensions of 276 and 103%, respectively, when compared to uncoated commercial SR catheters. Furthermore, the synergistic interaction between PL and TA serves to enhance the resistance of SR/TA-APTES/(LBL)4 catheters against bacterial adherence, reducing it by up to 99.9% compared to uncoated commercial SR catheters. Remarkably, the SR/TA-APTES/(LBL)4 catheter exhibits good biocompatibility with human umbilical vein endothelial cells in culture, positioning it as a promising solution to address the current challenges associated with blood-contact catheters.


Subject(s)
Catheters , Coated Materials, Biocompatible , Heparin , Polyphenols , Tannins , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Catheters/microbiology , Polyphenols/chemistry , Polyphenols/pharmacology , Heparin/chemistry , Heparin/pharmacology , Tannins/chemistry , Tannins/pharmacology , Silanes/chemistry , Silanes/pharmacology , Anticoagulants/chemistry , Anticoagulants/pharmacology , Propylamines/chemistry , Amines/chemistry , Amines/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polylysine/chemistry , Polylysine/pharmacology , Surface Properties , Hydrophobic and Hydrophilic Interactions , Human Umbilical Vein Endothelial Cells/drug effects , Silicone Elastomers/chemistry , Adsorption , Escherichia coli/drug effects
5.
Int J Biol Macromol ; 268(Pt 2): 131790, 2024 May.
Article in English | MEDLINE | ID: mdl-38677693

ABSTRACT

The demand for paper-based packaging materials as an alternative to incumbent disposable petroleum-derived polymers for food packaging applications is ever-growing. However, typical paper-based formats are not suitable for use in unconventional applications due to inherent limitations (e.g., excessive hydrophilicity, lack antimicrobial ability), and accordingly, enabling new capabilities is necessity. Herein, a simple and environmentally friendly strategy was proposed to introduce antimicrobial and hydrophobic functions to cellulose paper through successive chemical grafting of 3-aminopropyltriethoxysilane (APS) and cinnamaldehyde (CA). The results revealed that cellulose paper not only showed long-term antibacterial effect on different bacteria, but also inhibited a wide range of fungi. Encouragingly, the modified paper, which is fluorine-free, displays a high contact angle of 119.7°. Thus, even in the wet state, the modified paper can still maintain good mechanical strength. Meanwhile, the multifunctional composite papers have excellent biocompatibility and biodegradability. Compared with ordinary cellulose paper, multifunctional composite paper can effectively prolong the shelf life of strawberries. Therefore, the multifunctional composite paper represents good application potential as a fruit packaging material.


Subject(s)
Acrolein , Cellulose , Food Packaging , Fragaria , Hydrophobic and Hydrophilic Interactions , Paper , Cellulose/chemistry , Cellulose/analogs & derivatives , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Fragaria/microbiology , Food Packaging/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Silanes/chemistry , Food Preservation/methods , Propylamines/chemistry , Microbial Sensitivity Tests
6.
Biomed Phys Eng Express ; 10(4)2024 May 24.
Article in English | MEDLINE | ID: mdl-38479000

ABSTRACT

Diagnosis of diseases with low facilities, speed, accuracy and sensitivity is an important matter in treatment. Bioprobes based on iron oxide nanoparticles are a good candidate for early detection of deadly and infectious diseases such as tetanus due to their high reactivity, biocompatibility, low production cost and sample separation under a magnetic field. In this study, silane groups were coated on surface of iron oxide nanoparticles using tetraethoxysilane (TEOS) hydrolysis. Also, NH2groups were generated on the surface of silanized nanoparticles using 3-aminopropyl triethoxy silane (APTES). Antibody was immobilized on the surface of silanized nanoparticles using TCT trichlorothriazine as activator. Silanization and stabilized antibody were investigated by using of FT-IR, EDX, VSM, SRB technique. UV/vis spectroscopy, fluorescence, agglutination test and ELISA were used for biosensor performance and specificity. The results of FT-IR spectroscopy showed that Si-O-Si and Si-O-Fe bonds and TCT chlorine and amine groups of tetanus anti-toxoid antibodies were formed on the surface of iron oxide nanoparticles. The presence of Si, N and C elements in EDX analysis confirms the silanization of iron oxide nanoparticles. VSM results showed that the amount of magnetic nanoparticles after conjugation is sufficient for biological applications. Antibody stabilization on nanoparticles increased the adsorption intensity in the uv/vis spectrometer. The fluorescence intensity of nano bioprobe increased in the presence of 10 ng ml-1. Nanobio probes were observed as agglomerates in the presence of tetanus toxoid antigen. The presence of tetanus antigen caused the formation of antigen-nanobioprobe antigen complex. Identification of this complex by HRP-bound antibody confirmed the specificity of nanobioprobe. Tetanus magnetic nanobioprobe with a diagnostic limit of 10 ng ml-1of tetanus antigen in a short time can be a good tool in LOC devices and microfluidic chips.


Subject(s)
Biosensing Techniques , Propylamines , Silanes , Tetanus Toxoid , Tetanus Toxoid/chemistry , Tetanus Toxoid/immunology , Silanes/chemistry , Spectroscopy, Fourier Transform Infrared , Biosensing Techniques/methods , Propylamines/chemistry , Humans , Enzyme-Linked Immunosorbent Assay , Magnetic Iron Oxide Nanoparticles/chemistry , Tetanus/diagnosis , Tetanus/prevention & control , Magnetite Nanoparticles/chemistry , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Limit of Detection , Iron/chemistry , Agglutination Tests/methods
7.
Steroids ; 198: 109272, 2023 10.
Article in English | MEDLINE | ID: mdl-37468115

ABSTRACT

Allopregnanolone (AP) is a neurosteroid synthesized in the brain and a positive allosteric modulator of γ-aminobutyric acid (GABA) type A receptors. Some drugs possessing the aryloxypropanamine (AOPA) pharmacophore, such as fluoxetine, exert their central nervous system (CNS) effects by increasing the brain AP. Although duloxetine (DLX), dapoxetine (DPX), atomoxetine (ATX) and propranolol (PRL) also possess the AOPA pharmacophore and are used to treat some psychiatric disorders, the capabilities of these drugs to increase the brain AP and the possible involvement of AP in their CNS effects remain to be fully elucidated. To clarify these points, we first developed a method for quantifying AP in the rat brain by liquid chromatography/electrospray ionization-tandem mass spectrometry. Analysis of the changes in the brain AP levels using this method revealed that the intraperitoneal administration of DLX (10 mg/kg), DPX (10 mg/kg) and PRL (20 mg/kg) significantly increased the brain AP (DLX: < 0.40-2.74 ng/g tissue, DPX: 1.48-3.83 ng/g tissue and PRL: < 0.40-2.09 ng/g tissue) compared to the saline administration (<0.40 ng/g tissue). These results suggested the possible involvement of the GABAergic neurosteroid, AP, in the central actions of DLX, DPX and PRL. In contrast, ATX (10 mg/kg) did not affect the AP levels in the brain. In addition, the brain and serum AP levels had a remarkably high positive correlation after the administration of DLX, DPX and PRL. Thus, this study proposed the AP-related novel mechanism of actions of DLX, DPX and PRL in the CNS.


Subject(s)
Neurosteroids , Pregnanolone , Animals , Rats , Brain , Duloxetine Hydrochloride/pharmacology , Pharmaceutical Preparations , Pharmacophore , Pregnanolone/pharmacology , Propranolol/pharmacology , Propylamines/chemistry , Propylamines/pharmacology
8.
Future Med Chem ; 15(2): 211-224, 2023 01.
Article in English | MEDLINE | ID: mdl-36802855

ABSTRACT

Propargylamine is a chemical moiety whose properties have made it a widely distributed group within the fields of medicinal chemistry and chemical biology. Its particular reactivity has traditionally popularized the preparation of propargylamine derivatives using a large variety of synthetic strategies, which have facilitated the access to these compounds for the study of their biomedical potential. This review comprehensively covers and analyzes the applications that propargylamine-based derivatives have achieved in the drug discovery field, both from a medicinal chemistry perspective and from a chemical biology-oriented approach. The principal therapeutic fields where propargylamine-based compounds have made an impact are identified, and a discussion of their influence and growing potential is included.


Subject(s)
Drug Discovery , Pargyline , Pargyline/pharmacology , Pargyline/chemistry , Propylamines/chemistry
9.
Langmuir ; 38(50): 15662-15671, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36480813

ABSTRACT

The present study reports on the synthesis of a new alkoxysilane-bearing light-responsive cinnamyl group and its application as a surface functionalization agent for the development of SiO2 nanoparticles (NPs) with photoreversible tails. In detail, cinnamic acid (CINN) was activated with N-hydroxysuccinimide (NHS) to obtain the corresponding NHS-ester (CINN-NHS). Subsequently, the amine group of 3-aminopropyltriethoxysilane (APTES) was acylated with CINN-NHS leading to the generation of a novel organosilane, CINN-APTES, which was then exploited for decorating SiO2 NPs. The covalent bond to the silica surface was confirmed by solid state NMR, whereas thermogravimetric analysis unveiled a functionalization degree much higher compared to that achieved by a conventional double-step post-grafting procedure. In light of these intriguing results, the strategy was successfully extended to naturally occurring sepiolite fibers, widely employed as fillers in technological applications. Finally, a preliminary proof of concept of the photoreversibility of the obtained SiO2@CINN-APTES system has been carried out through UV diffuse reflectance. The overall outcomes prove the consistency and the versatility of the methodological protocol adopted, which appears promising for the design of hybrid NPs to be employed as building blocks for photoresponsive materials with the ability to change their molecular structure and subsequent properties when exposed to different light stimuli.


Subject(s)
Multifunctional Nanoparticles , Nanoparticles , Silicon Dioxide/chemistry , Propylamines/chemistry , Nanoparticles/chemistry
10.
J Org Chem ; 87(21): 14223-14229, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36282953

ABSTRACT

The preparation, structure, physical properties, and reactivities of sodium isopropyl(trimethylsilyl)amide (NaPTA) are described. The solubilities at room temperature range from n-heptane (0.55 M), n-hexane (0.60 M), toluene (0.65 M), MTBE (1.7 M), Et3N (3.2 M), and THF (>6.0 M). The half-life to destruction in neat THF is >1 year at 25 °C and 7 days at 70 °C, which compares favorably to 2.5 months and 1.5 days, respectively, for LDA in neat THF. This study focuses on NaPTA in THF. 29Si NMR spectroscopy shows exclusively a mixture of cis and trans stereoisomeric dimers in 0.10-12 M THF in hexane. Density functional theory (DFT) computations suggest that the pKb is intermediate between dimeric sodium diisopropylamide (NaDA) and dimeric sodium hexamethyldisilazide (NaHMDS). Metalations of arenes, epoxides, ketones, hydrazones, alkenes, and alkyl halides show higher reactivities than LDA (kNaPTA/LDA = 1-30). While the rates of arene metalation are high, the lower pKb of NaPTA limits the substrates. Metalation of pseudoephedrate-based carboxamides to form disodiated Myers enolates solves several challenging technical problems.


Subject(s)
Amides , Sodium , Sodium/chemistry , Propylamines/chemistry , Ions , Lithium/chemistry
11.
J Med Chem ; 65(3): 2208-2224, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35005974

ABSTRACT

Glioma treatment remains a challenge with a low survival rate due to the lack of effective therapeutics. Monoamine oxidase A (MAO A) plays a role in glioma development, and MAO A inhibitors reduce glioma growth. Histone deacetylase (HDAC) inhibition has emerged as a promising therapy for various malignancies including gliomas. We have synthesized and evaluated N-methylpropargylamine-conjugated hydroxamic acids as dual inhibitors of MAO A and HDAC. Compounds display potent MAO A inhibition with IC50 from 0.03 to <0.0001 µM and inhibit HDAC isoforms and cell growth in the micromolar to nanomolar IC50 range. These selective MAO A inhibitors increase histone H3 and α-tubulin acetylation and induce cell death via nonapoptotic mechanisms. Treatment with 15 reduced tumor size, reduced MAO A activity in brain and tumor tissues, and prolonged the survival. This first report on dual inhibitors of MAO A and HDAC establishes the basis of translational research for an improved treatment of glioma.


Subject(s)
Enzyme Inhibitors/chemistry , Histone Deacetylases/chemistry , Hydroxamic Acids/chemistry , Monoamine Oxidase/chemistry , Acetylation/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Glioma/drug therapy , Glioma/mortality , Histone Deacetylases/metabolism , Histones/metabolism , Humans , Hydroxamic Acids/metabolism , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Kaplan-Meier Estimate , Male , Mice , Mice, Inbred C57BL , Monoamine Oxidase/metabolism , Pargyline/analogs & derivatives , Pargyline/chemistry , Propylamines/chemistry , Structure-Activity Relationship , Transplantation, Heterologous
12.
Carbohydr Polym ; 275: 118701, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34742427

ABSTRACT

Most cellulose products lack water resistance due to the existence of abundant hydroxyl groups. In this work, microfibrillated cellulose (MFC) was modified via 3-aminopropyltriethoxysilane (APTES)-assisted ball milling. Under the synergism between high-energy mechanical force field and APTES-modification, the fibrillation and hydrophobization of MFC were achieved simultaneously. Free-standing translucent cellulose films made of modified MFC were fabricated. The original crystal form of cellulose is maintained. The hydrophobicity of cellulose film markedly increases and the water contact angle goes up to 133.2 ± 3.4°, which might be ascribed to the combined effects of APTES-modification and rough film surface. In addition, the thermostability and mechanical properties of cellulose film are also improved via mechanochemical modification. This work provides a novel one-step fibrillation-hydrophobization method for cellulose.


Subject(s)
Cellulose/chemistry , Propylamines/chemistry , Silanes/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size , Surface Properties , Water/chemistry
13.
Molecules ; 26(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34641270

ABSTRACT

The conjugation of biomolecules to magnetic nanoparticles has emerged as promising approach in biomedicine as the treatment of several diseases, such as cancer. In this study, conjugation of bioactive peptide fractions from germinated soybeans to magnetite nanoparticles was achieved. Different fractions of germinated soybean peptides (>10 kDa and 5-10 kDa) were for the first time conjugated to previously coated magnetite nanoparticles (with 3-aminopropyltriethoxysilane (APTES) and sodium citrate) by the Ugi four-component reaction. The crystallinity of the nanoparticles was corroborated by X-ray diffraction, while the particle size was determined by scanning transmission electron microscopy. The analyses were carried out using infrared and ultraviolet-visible spectroscopy, dynamic light scattering, and thermogravimetry, which confirmed the coating and functionalization of the magnetite nanoparticles and conjugation of different peptide fractions on their surfaces. The antioxidant activity of the conjugates was determined by the reducing power and hydroxyl radical scavenging activity. The nanoparticles synthesized represent promising materials, as they have found applications in bionanotechnology for enhanced treatment of diseases, such as cancer, due to a higher antioxidant capacity than that of fractions without conjugation. The highest antioxidant capacity was observed for a >10 kDa peptide fraction conjugated to the magnetite nanoparticles coated with APTES.


Subject(s)
Antioxidants/pharmacology , Glycine max/chemistry , Magnetite Nanoparticles/chemistry , Peptides/pharmacology , Antioxidants/chemistry , Free Radical Scavengers/chemistry , Germination , Particle Size , Peptides/chemistry , Propylamines/chemistry , Silanes/chemistry , Sodium Citrate/chemistry , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction
14.
Nanotechnology ; 33(3)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34649224

ABSTRACT

In this work, a novel composite carrier system for loading essential oils was developed by using tetraethyl orthosilicate (TEOS) and (3-aminopropyl) triethoxysilane (APTES) as silica precursors and cetyl trimethyl ammonium bromide (CTAB) as a template, and the resultant aminated mesoporous silica was further chemically modified by polyacrylic acid (PAA). The obtained composite carriers exhibited a high loading capability toward tea tree oil (TTO), and they also significantly improved the release behavior of TTO due to the steric hindrance of silica mesopore and the polymer restriction. Besides, it was found that the release behavior followed the First-Order kinetic model, revealing that the release of TTO was driven by the concentration gradient. In addition, these composite carriers with essential oil-loaded demonstrated remarkable antibacterial performance againstE. coliandS. aureus, and they could retain antibacterial performance even after 50 d. Moreover, the antibacterial mechanism was also elucidated with the assistance of nucleic acid and conductivity measurements. Therefore, this work provides a facile and environmentally friendly approach to preparing effective composite carriers for improving the sustained release of essential oils, and the long-term antibacterial performance of these essential oil-loaded composite carriers makes them tremendously potential for practical applications.


Subject(s)
Anti-Bacterial Agents/chemistry , Drug Carriers/chemistry , Nanocomposites/chemistry , Oils, Volatile/chemistry , Silicon Dioxide/chemistry , Acrylic Resins/chemistry , Anti-Bacterial Agents/pharmacology , Cetrimonium/chemistry , Delayed-Action Preparations , Drug Liberation , Escherichia coli/drug effects , Oils, Volatile/pharmacology , Porosity , Propylamines/chemistry , Silanes/chemistry , Staphylococcus aureus/drug effects
15.
Molecules ; 26(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34641509

ABSTRACT

A dual recognition system with a fluorescence quenching of quantum dots (QDs) and specific recognition of molecularly imprinted polymer (MIP) for the detection of chloramphenicol (CAP) was constructed. MIP@SiO2@QDs was prepared by reverse microemulsion method with 3-aminopropyltriethoxysilane (APTS), tetraethyl orthosilicate (TEOS) and QDs being used as the functional monomer, cross-linker and signal sources, respectively. MIP can specifically recognize CAP, and the fluorescence of QDs can be quenched by CAP due to the photo-induced electron transfer reaction between CAP and QDs. Thus, a method for the trace detection of CAP based on MIP@SiO2@QDs fluorescence quenching was established. The fluorescence quenching efficiency of MIP@SiO2@QDs displayed a desirable linear response to the concentration of CAP in the range of 1.00~4.00 × 102 µmol × L-1, and the limit of detection was 0.35 µmol × L-1 (3σ, n = 9). Importantly, MIP@SiO2@QDs presented good detection selectivity owing to specific recognition for CAP, and was successfully applied to quantify CAP in lake water with the recovery ranging 102.0~104.0%, suggesting this method has the promising potential for the on-site detection of CAP in environmental waters.


Subject(s)
Chloramphenicol/analysis , Fluorometry/methods , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Fluorescence , Hydrogen-Ion Concentration , Lakes/analysis , Limit of Detection , Microscopy, Electron, Transmission , Molecular Imprinting , Propylamines/chemistry , Sensitivity and Specificity , Silanes/chemistry , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Tellurium/chemistry , Water Pollutants, Chemical/analysis
16.
Bioorg Chem ; 116: 105301, 2021 11.
Article in English | MEDLINE | ID: mdl-34492558

ABSTRACT

A combination of several pharmacophores in one molecule has been successfully used for multi-target-directed ligands (MTDL) design. New propargylamine substituted derivatives combined with salicylic and cinnamic scaffolds were designed and synthesized as potential cholinesterases and monoamine oxidases (MAOs) inhibitors. They were evaluated invitro for inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE) using Ellman's method. All the compounds act as dual inhibitors. Most of the derivatives are stronger inhibitors of AChE, the best activity showed 5-bromo-N-(prop-2-yn-1-yl)salicylamide 1e (IC50 = 8.05 µM). Carbamates (4-bromo-2-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2d and 2,4-dibromo-6-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2e were selective and the most active for BuChE (25.10 and 26.09 µM). 4-Bromo-2-[(prop-2-yn-1-ylimino)methyl]phenol 4a was the most potent inhibitor of MAOs (IC50 of 3.95 and ≈10 µM for MAO-B and MAO-A, respectively) along with a balanced inhibition of both cholinesterases being a real MTDL. The mechanism of action was proposed, and binding modes of the hits were studied by molecular docking on human enzymes. Some of the derivatives also exhibited antioxidant properties. Insilico prediction of physicochemical parameters affirm that the molecules would be active after oral administration and able to reach brain tissue.


Subject(s)
Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation , Monoamine Oxidase Inhibitors/pharmacology , Pargyline/analogs & derivatives , Propylamines/pharmacology , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Butyrylcholinesterase/metabolism , Cells, Cultured , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterases/metabolism , Dose-Response Relationship, Drug , Electrophorus , Hepatocytes/drug effects , Hepatocytes/metabolism , Horses , Humans , Male , Molecular Structure , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Pargyline/chemical synthesis , Pargyline/chemistry , Pargyline/pharmacology , Propylamines/chemical synthesis , Propylamines/chemistry , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
17.
Carbohydr Polym ; 272: 118450, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34420712

ABSTRACT

One of the well-recognized weaknesses of starch-based materials is their sensitivity to moisture, which limits their expanding applications. Natural materials, soyabean oils have been used as a coating for starch film, but the poor interface between hydrophilic starch and hydrophobic soyabean oil needs to be improved. In this work, (3-Aminopropyl) triethoxysilane (APTES) was used to reinforce the bonding between starch matrix and the coating of bio-based acrylated epoxidized soyabean oil (AESO). Study results show that APTES interacted effectively with both starch films via hydrogen bonding, and chemical bonds with AESO through the Michael addition reaction. Pull adhesion and cross-cutting tests demonstrated that the interfacial adhesion was significantly improved after treating their surface with APTES. The interfacial adhesion strength increased over 4 times after treating with 1.6 wt% APTES. The starch films treated with APTES and AESO coating were intact after soaking in water for more than 2 h.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Propylamines/chemistry , Silanes/chemistry , Soybean Oil/chemistry , Starch/chemistry , Hydrogen Bonding , Microscopy, Electron, Scanning/methods , Permeability , Photoelectron Spectroscopy/methods , Plant Oils/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Water/chemistry
18.
J Am Chem Soc ; 143(33): 13370-13381, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34375095

ABSTRACT

Sodium diisopropylamide (NaDA) in N,N-dimethylethylamine (DMEA) and DMEA-hydrocarbon mixtures with added N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDTA) reacts with alkyl halides, epoxides, hydrazones, arenes, alkenes, and allyl ethers. Comparisons of PMDTA with N,N,N',N'-tetramethylethylenediamine (TMEDA) accompanied by detailed rate and computational studies reveal the importance of the trifunctionality and κ2-κ3 hemilability. Rate studies show exclusively monomer-based reactions of 2-bromooctane, cyclooctene oxide, and dimethylresorcinol. Catalysis with 10 mol % PMDTA shows up to >30-fold accelerations (kcat > 300) with no evidence of inhibition over 10 turnovers. Solid-liquid phase-transfer catalysis (SLPTC) is explored as a means to optimize the catalysis as well as explore the merits of heterogeneous reaction conditions.


Subject(s)
Polyamines/chemistry , Propylamines/chemistry , Sodium/chemistry , Catalysis , Molecular Structure
19.
ACS Chem Biol ; 16(9): 1615-1621, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34403242

ABSTRACT

Ubiquitin activity-based probes have proven invaluable in elucidating structural mechanisms in the ubiquitin system by stabilizing transient macromolecular complexes of deubiquitinases, ubiquitin-activating enzymes, and the assemblies of ubiquitin-conjugating enzymes with ubiquitin ligases of the RING-Between-RING and RING-Cysteine-Relay families. Here, we demonstrate that an activity-based probe, ubiquitin-propargylamine, allows for the preparative reconstitution and structural analysis of the interactions between ubiquitin and certain HECT ligases. We present a crystal structure of the ubiquitin-linked HECT domain of HUWE1 that defines a catalytically critical conformation of the C-terminal tail of the ligase for the transfer of ubiquitin to an acceptor protein. Moreover, we observe that ubiquitin-propargylamine displays selectivity among HECT domains, thus corroborating the notion that activity-based probes may provide entry points for the development of specific, active site-directed inhibitors and reporters of HECT ligase activities.


Subject(s)
Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitin/chemistry , Amino Acid Sequence , Catalysis , Catalytic Domain , Cysteine/chemistry , Humans , Models, Molecular , Pargyline/analogs & derivatives , Pargyline/chemistry , Propylamines/chemistry , Protein Conformation , Structure-Activity Relationship , Substrate Specificity , Ubiquitination
20.
Mikrochim Acta ; 188(8): 257, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34268634

ABSTRACT

A label-free chemical bonding strategy mediated by reduced graphene oxide (rGO) basal plane functional groups has been developed for cardiac Troponin I (cTnI) detection. Four different chemical strategies on respective electrode sensing surface were precedingly examined using electrochemical impedance spectroscopy. The impedimetric assessment was carried out by sweeping frequency at the range 0.1-500 kHz perturbated at a small amplitude of AC voltage (25 mV). The chemical strategy-4 denoted as S-4 shows a significant analytical performance on cTnI detection in spiked buffer and human serum, whereby the pre-mixture of rGO and (3-Aminopropyl)triethoxysilane (APTES) creates a large number of amine sites (-NH2), which significantly enhanced the antibody immobilization without excessive functionalization. The as-fabricated immunosensor exhibited an ultra-low limit of detection of 6.3 ag mL-1 and the lowest antigen concentration measured was at 10 ag mL-1. The immunosensor showed a linear and wide range of cTnI detection (10 ag mL-1-100 ng mL-1) in human serum with a regression coefficient of 0.9716, rapid detection (5 min of binding time), and stable and highly reproducible bioelectrode response with RSD < 5%. Hence, the demonstrated S-4 strategy is highly recommended for other downstream biosensors applications.


Subject(s)
Biomarkers/blood , Gold/chemistry , Graphite/chemistry , Troponin I/blood , Biosensing Techniques , Dielectric Spectroscopy , Epoxy Compounds/chemistry , Humans , Hydroxides/chemistry , Immunoassay , Kinetics , Limit of Detection , Microelectrodes , Nanostructures , Propylamines/chemistry , Silanes/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...