Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59.655
Filter
1.
Oncoimmunology ; 13(1): 2373526, 2024.
Article in English | MEDLINE | ID: mdl-38948931

ABSTRACT

Prostate cancer (PCa) is characterized as a "cold tumor" with limited immune responses, rendering the tumor resistant to immune checkpoint inhibitors (ICI). Therapeutic messenger RNA (mRNA) vaccines have emerged as a promising strategy to overcome this challenge by enhancing immune reactivity and significantly boosting anti-tumor efficacy. In our study, we synthesized Tetra, an mRNA vaccine mixed with multiple tumor-associated antigens, and ImmunER, an immune-enhancing adjuvant, aiming to induce potent anti-tumor immunity. ImmunER exhibited the capacity to promote dendritic cells (DCs) maturation, enhance DCs migration, and improve antigen presentation at both cellular and animal levels. Moreover, Tetra, in combination with ImmunER, induced a transformation of bone marrow-derived dendritic cells (BMDCs) to cDC1-CCL22 and up-regulated the JAK-STAT1 pathway, promoting the release of IL-12, TNF-α, and other cytokines. This cascade led to enhanced proliferation and activation of T cells, resulting in effective killing of tumor cells. In vivo experiments further revealed that Tetra + ImmunER increased CD8+T cell infiltration and activation in RM-1-PSMA tumor tissues. In summary, our findings underscore the promising potential of the integrated Tetra and ImmunER mRNA-LNP therapy for robust anti-tumor immunity in PCa.


Subject(s)
Adjuvants, Immunologic , Antigens, Neoplasm , Cancer Vaccines , Dendritic Cells , Prostatic Neoplasms , RNA, Messenger , Animals , Male , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Antigens, Neoplasm/immunology , Mice , Dendritic Cells/immunology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger/administration & dosage , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Humans , Mice, Inbred C57BL , Cell Line, Tumor , mRNA Vaccines , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Immunotherapy/methods , Lymphocyte Activation/drug effects
2.
Front Immunol ; 15: 1372956, 2024.
Article in English | MEDLINE | ID: mdl-38953033

ABSTRACT

Our study aimed to elucidate the role of Galectin-1 (Gal-1) role in the immunosuppressive tumor microenvironment (TME) of prostate cancer (PCa). Our previous findings demonstrated a correlation between elevated Gal-1 expression and advanced PCa stages. In this study, we also observed that Gal-1 is expressed around the tumor stroma and its expression level is associated with PCa progression. We identified that Gal-1 could be secreted by PCa cells, and secreted Gal-1 has the potential to induce T cell apoptosis. Gal-1 knockdown or inhibition of Gal-1 function by LLS30 suppresses T cell apoptosis resulting in increased intratumoral T cell infiltration. Importantly, LLS30 treatment significantly improved the antitumor efficacy of anti-PD-1 in vivo. Mechanistically, LLS30 binds to the carbohydrate recognition domain (CRD) of Gal-1, disrupting its binding to CD45 leading to the suppression of T cell apoptosis. In addition, RNA-seq analysis revealed a novel mechanism of action for LLS30, linking its tumor-intrinsic oncogenic effects to anti-tumor immunity. These findings suggested that tumor-derived Gal-1 contributes to the immunosuppressive TME in PCa by inducing apoptosis in effector T cells. Targeting Gal-1 with LLS30 may offer a strategy to enhance anti-tumor immunity and improve immunotherapy.


Subject(s)
Apoptosis , Galectin 1 , Immunotherapy , Prostatic Neoplasms , T-Lymphocytes , Tumor Microenvironment , Male , Galectin 1/genetics , Galectin 1/metabolism , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Humans , Animals , Tumor Microenvironment/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice , Immunotherapy/methods , Cell Line, Tumor , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism
3.
Front Immunol ; 15: 1384111, 2024.
Article in English | MEDLINE | ID: mdl-38947327

ABSTRACT

Epithelioid hemangioendothelioma is a rare vascular malignancy, and currently, there is no standard treatment regimen for this disease and existing treatment options have limited efficacy. In this case report, we present a patient with lung and lymph node metastases from prostate epithelioid hemangioendothelioma who achieved a significant partial response. This was accomplished through alternating nivolumab therapy with ipilimumab and liposomal doxorubicin, resulting in a progression-free-survival more than 6 months to date. The treatment was well-tolerated throughout. Our report suggests that dual immunotherapy alternating with anti-PD-1antibody plus doxorubicin may be a potential treatment modality for epithelioid hemangioendothelioma. However, larger sample studies are necessary to ascertain the effectiveness of this treatment strategy and it is essential to continue monitoring this patient to sustain progression-free survival and overall survival.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Doxorubicin , Hemangioendothelioma, Epithelioid , Nivolumab , Programmed Cell Death 1 Receptor , Prostatic Neoplasms , Humans , Male , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Doxorubicin/analogs & derivatives , Hemangioendothelioma, Epithelioid/drug therapy , Hemangioendothelioma, Epithelioid/therapy , Nivolumab/administration & dosage , Nivolumab/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , Ipilimumab/administration & dosage , Ipilimumab/therapeutic use , Treatment Outcome , Polyethylene Glycols/administration & dosage , Middle Aged
4.
Sci Transl Med ; 16(754): eadn7982, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959326

ABSTRACT

Benign prostatic hyperplasia and prostate cancer are often associated with lower urinary tract symptoms, which can severely affect patient quality of life. To address this challenge, we developed and optimized an injectable compound, prostate ablation and drug delivery agent (PADA), for percutaneous prostate tissue ablation and concurrently delivered therapeutic agents. PADA is an ionic liquid composed of choline and geranic acid mixed with anticancer therapeutics and a contrast agent. The PADA formulation was optimized for mechanical properties compatible with hand injection, diffusion capability, cytotoxicity against prostate cells, and visibility of an x-ray contrast agent. PADA also exhibited antibacterial properties against highly resistant clinically isolated bacteria in vitro. Ultrasound-guided injection, dispersion of PADA in the tissue, and tissue ablation were tested ex vivo in healthy porcine, canine, and human prostates and in freshly resected human tumors. In vivo testing was conducted in a murine subcutaneous tumor model and in the canine prostate. In all models, PADA decreased the number of viable cells in the region of dispersion and supported the delivery of nivolumab throughout a portion of the tissue. In canine survival experiments, there were no adverse events and no impact on urination. The injection approach was easy to perform under ultrasound guidance and produced a localized effect with a favorable safety profile. These findings suggest that PADA is a promising therapeutic prostate ablation strategy to treat lower urinary tract symptoms.


Subject(s)
Drug Delivery Systems , Ionic Liquids , Prostate , Animals , Male , Dogs , Humans , Prostate/drug effects , Prostate/pathology , Ionic Liquids/chemistry , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Swine , Injections , Cell Line, Tumor , Ablation Techniques/methods
5.
Sci Rep ; 14(1): 15112, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956203

ABSTRACT

Cancer mice models are critical for immune-oncology research; they provide conditions to explore tumor immunoenviroment aiming to advance knowledge and treatment development. Often, research groups breed their own mice colonies. To assess the effect of C57BL/6 mice breeding nuclei in prostate cancer development and intratumoral macrophage populations, an isotransplantation experiment was performed. C57BL/6J mice from two breeding nuclei (nA and nB) were employed for prostate adenocarcinoma TRAMP-C1 cell implantation; tumor growth period and intratumoral macrophage profile were measured. BL/6nB mice (54%) showed tumor implantation after 69-day growth period while BL/6nA implantation reached 100% across tumor growth period (28 days). No difference in total macrophage populations was observed between groups within several tumoral regions; significantly higher M2 macrophage profile was observed in tumor microenvironments from both mice groups. Nevertheless, BL/6nB tumors showed around twice the population of M1 profile (11-27%) than BL6nA (4-15%) and less non-polarized macrophages. The M1:M2 average ratio was 1:8 for group A and 1:4 for B. Our results demonstrate different tumor progression and intratumoral macrophage populations among mice from the same substrain. Data obtained in this study shows the relevance of animal source renewal for better control of murine cancer model variables.


Subject(s)
Disease Models, Animal , Disease Progression , Macrophages , Mice, Inbred C57BL , Prostatic Neoplasms , Tumor Microenvironment , Animals , Prostatic Neoplasms/pathology , Male , Mice , Macrophages/immunology , Cell Line, Tumor
6.
BMC Urol ; 24(1): 137, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956570

ABSTRACT

BACKGROUND: This study delves into the complex interplay among prostate-specific antigen, alkaline phosphatase, and the temporal dynamics of tumor shrinkage in prostate cancer. By investigating the longitudinal trajectories and time-to-prostate cancer tumor shrinkage, we aim to untangle the intricate patterns of these biomarkers. This understanding is pivotal for gaining profound insights into the multifaceted aspects of prostate cancer progression. The joint model approach serves as a comprehensive framework, facilitating the elucidation of intricate interactions among these pivotal elements within the context of prostate cancer . METHODS: A new joint model under a shared parameters strategy is proposed for mixed bivariate longitudinal biomarkers and event time data, for obtaining accurate estimates in the presence of missing covariate data. The primary innovation of our model resides in its effective management of covariates with missing observations. Built upon established frameworks, our joint model extends its capabilities by integrating mixed longitudinal responses and accounting for missingness in covariates, thus confronting this particular challenge. We posit that these enhancements bolster the model's utility and dependability in real-world contexts characterized by prevalent missing data. The main objective of this research is to provide a model-based approach to get full information from prostate cancer data collected with patients' baseline characteristics ( Age , body mass index ( BMI ), GleasonScore , Grade , and Drug ) and two longitudinal endogenous covariates ( Platelets and Bilirubin ). RESULTS: The results reveal a clear association between prostate-specific antigen and alkaline phosphatase biomarkers in the context of time-to-prostate cancer tumor shrinkage. This underscores the interconnected dynamics of these key indicators in gauging disease progression. CONCLUSIONS: The analysis of the prostate cancer dataset, incorporating a joint evaluation of mixed longitudinal prostate-specific antigen and alkaline phosphatase biomarkers alongside tumor status, has provided valuable insights into disease progression. The results demonstrate the effectiveness of the proposed joint model, as evidenced by accurate estimates. The shared variables associated with both longitudinal biomarkers and event times consistently deviate from zero, highlighting the robustness and reliability of the model in capturing the complex dynamics of prostate cancer progression. This approach holds promise for enhancing our understanding and predictive capabilities in the clinical assessment of prostate cancer.


Subject(s)
Alkaline Phosphatase , Disease Progression , Prostate-Specific Antigen , Prostatic Neoplasms , Male , Alkaline Phosphatase/blood , Humans , Longitudinal Studies , Prostatic Neoplasms/pathology , Prostatic Neoplasms/blood , Prostate-Specific Antigen/blood , Aged , Time Factors , Middle Aged , Tumor Burden
7.
Radiat Oncol ; 19(1): 85, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956684

ABSTRACT

BACKGROUND: Radiotherapy is essential in the treatment of prostate cancer. An alternative to conventional photon radiotherapy is the application of carbon ions, which provide a superior intratumoral dose distribution and less induced damage to adjacent healthy tissue. A common characteristic of prostate cancer cells is their dependence on androgens which is exploited therapeutically by androgen deprivation therapy in the advanced prostate cancer stage. Here, we aimed to analyze the transcriptomic response of prostate cancer cells to irradiation by photons in comparison to carbon ions, focusing on DNA damage, DNA repair and androgen receptor signaling. METHODS: Prostate cancer cell lines LNCaP (functional TP53 and androgen receptor signaling) and DU145 (dysfunctional TP53 and androgen receptor signaling) were irradiated by photons or carbon ions and the subsequent DNA damage was assessed by immuno-cytofluorescence. Furthermore, the cells were treated with an androgen-receptor agonist. The effects of irradiation and androgen treatment on the gene regulation and the transcriptome were investigated by RT-qPCR and RNA sequencing, followed by bioinformatic analysis. RESULTS: Following photon or carbon ion irradiation, both LNCaP and DU145 cells showed a dose-dependent amount of visible DNA damage that decreased over time, indicating occurring DNA repair. In terms of gene regulation, mRNAs involved in the TP53-dependent DNA damage response were significantly upregulated by photons and carbon ions in LNCaP but not in DU145 cells, which generally showed low levels of gene regulation after irradiation. Both LNCaP and DU145 cells responded to photons and carbon ions by downregulation of genes involved in DNA repair and cell cycle, partially resembling the transcriptome response to the applied androgen receptor agonist. Neither photons nor carbon ions significantly affected canonical androgen receptor-dependent gene regulation. Furthermore, certain genes that were specifically regulated by either photon or carbon ion irradiation were identified. CONCLUSION: Photon and carbon ion irradiation showed a significant congruence in terms of induced signaling pathways and transcriptomic responses. These responses were strongly impacted by the TP53 status. Nevertheless, irradiation mode-dependent distinct gene regulations with undefined implication for radiotherapy outcome were revealed. Androgen receptor signaling and irradiations shared regulation of certain genes with respect to DNA-repair and cell-cycle.


Subject(s)
Photons , Prostatic Neoplasms , Receptors, Androgen , Signal Transduction , Transcriptome , Tumor Suppressor Protein p53 , Humans , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Tumor Suppressor Protein p53/metabolism , Transcriptome/radiation effects , Signal Transduction/radiation effects , DNA Damage/radiation effects , Heavy Ion Radiotherapy , DNA Repair , Gene Expression Regulation, Neoplastic/radiation effects , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Carbon/pharmacology
8.
Cancer Imaging ; 24(1): 81, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956721

ABSTRACT

BACKGROUND: Numerous studies have shown that magnetic resonance imaging (MRI)-targeted biopsy approaches are superior to traditional systematic transrectal ultrasound guided biopsy (TRUS-Bx). The optimal number of biopsy cores to be obtained per lesion identified on multiparametric MRI (mpMRI) images, however, remains a matter of debate. The aim of this study was to evaluate the incremental value of additional biopsy cores in an MRI-targeted "in-bore"-biopsy (MRI-Bx) setting. PATIENTS AND METHODS: Two hundred and forty-five patients, who underwent MRI-Bx between June 2014 and September 2021, were included in this retrospective single-center analysis. All lesions were biopsied with at least five biopsy cores and cumulative detection rates for any cancer (PCa) as well as detection rates of clinically significant cancers (csPCa) were calculated for each sequentially labeled biopsy core. The cumulative per-core detection rates are presented as whole numbers and as proportion of the maximum detection rate reached, when all biopsy cores were considered. CsPCa was defined as Gleason Score (GS) ≥ 7 (3 + 4). RESULTS: One hundred and thirty-two of 245 Patients (53.9%) were diagnosed with prostate cancer and csPCa was found in 64 (26.1%) patients. The first biopsy core revealed csPCa/ PCa in 76.6% (49/64)/ 81.8% (108/132) of cases. The second, third and fourth core found csPCa/ PCa not detected by previous cores in 10.9% (7/64)/ 8.3% (11/132), 7.8% (5/64)/ 5.3% (7/132) and 3.1% (2/64)/ 3% (4/132) of cases, respectively. Obtaining one or more cores beyond the fourth biopsy core resulted in an increase in detection rate of 1.6% (1/64)/ 1.5% (2/132). CONCLUSION: We found that obtaining five cores per lesion maximized detection rates. If, however, future research should establish a clear link between the incidence of serious complications and the number of biopsy cores obtained, a three-core biopsy might suffice as our results suggest that about 95% of all csPCa are detected by the first three cores.


Subject(s)
Image-Guided Biopsy , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnostic imaging , Retrospective Studies , Aged , Image-Guided Biopsy/methods , Middle Aged , Prostate/pathology , Prostate/diagnostic imaging , Magnetic Resonance Imaging/methods , Biopsy, Large-Core Needle/methods , Neoplasm Grading , Magnetic Resonance Imaging, Interventional/methods , Multiparametric Magnetic Resonance Imaging/methods
9.
Nagoya J Med Sci ; 86(2): 169-180, 2024 May.
Article in English | MEDLINE | ID: mdl-38962407

ABSTRACT

Androgen receptor signaling inhibitors combined with androgen deprivation therapy have become the standard of care for metastatic castration-sensitive prostate cancer (mCSPC), regardless of tumor volume or risk. However, survival of approximately one-third of these patients has not improved, necessitating further treatment escalation. On the other hand, for patients with oligometastatic mCSPC, there is an emerging role for local radiation therapy. Although data remain scarce, it is expected that treatment of both primary tumor as well as metastasis-directed therapy may improve survival outcomes. In these patients, systemic therapy may be de-escalated to intermittent therapy. However, precise risk stratification is necessary for risk-based treatment escalation or de-escalation. In addition to risk stratification based on clinical parameters, research has been conducted to incorporate genomic and/or transcriptomic data into risk stratification. In future, an integrated risk model is expected to precisely stratify patients and guide treatment strategies. Here, we first review the transition of the standard treatment for mCSPC over the last decade and further discuss the newest concept of escalating or de-escalating treatment using a multi-modal approach based on the currently available literature.


Subject(s)
Neoplasm Metastasis , Humans , Male , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/therapy , Androgen Antagonists/therapeutic use , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/therapy , Androgen Receptor Antagonists/therapeutic use
10.
PeerJ ; 12: e17637, 2024.
Article in English | MEDLINE | ID: mdl-38966207

ABSTRACT

Background: Prostate cancer (PCa) is one of the causes of death in men worldwide. Although treatment strategies have been developed, the recurrence of the disease and consequential side effects remain an essential concern. Diospyros rhodocalyx Kurz, a traditional Thai medicine, exhibits diverse therapeutic properties, including anti-cancer activity. However, its anti-cancer activity against prostate cancer has not been thoroughly explored. This study aims to evaluate the anti-cancer activity and underlying mechanisms of the ethyl acetate extract of D. rhodocalyx Kurz (EADR) related to apoptosis induction in the LNCaP human prostate cancer cell line. Methods: Ethyl acetate was employed to extract the dried bark of D. rhodocalyx Kurz. The cytotoxicity of EADR on both LNCaP and WPMY-1 cells (normal human prostatic myofibroblast cell line) was evaluated using MTS assay. The effect of EADR on the cell cycle, apoptosis induction, and alteration in mitochondrial membrane potential (MMP) was assessed by the staining with propidium iodide (PI), Annexin V-FITC/PI, and JC-1 dye, respectively. Subsequent analysis was conducted using flow cytometry. The expression of cleaved caspase-3, BAX, and Bcl-2 was examined by Western blotting. The phytochemical profiling of the EADR was performed using gas chromatography-mass spectrometry (GC-MS). Results: EADR exhibited a dose-dependent manner cytotoxic effect on LNCaP cells, with IC50 values of 15.43 and 12.35 µg/mL after 24 and 48 h, respectively. Although it also exhibited a cytotoxic effect on WPMY-1 cells, the effect was comparatively lower, with the IC50 values of 34.61 and 19.93 µg/mL after 24 and 48 h of exposure, respectively. Cell cycle analysis demonstrated that EADR did not induce cell cycle arrest in either LNCaP or WPMY-1 cells. However, it significantly increased the sub-G1 population in LNCaP cells, indicating a potential induction of apoptosis. The Annexin V-FITC/PI staining indicated that EADR significantly induced apoptosis in LNCaP cells. Subsequent investigation into the underlying mechanism of EADR-induced apoptosis revealed a reduction in MMP as evidenced by JC-1 staining. Moreover, Western blotting demonstrated that EADR treatment resulted in the upregulation of BAX, downregulation of BCL-2, and elevation of caspase-3 cleavage in LNCaP cells. Notably, the epilupeol was a prominent compound in EADR as identified by GC-MS. Conclusion: The EADR exhibits anti-cancer activity against the LNCaP human prostate cancer cell line by inducing cytotoxicity and apoptosis. Our findings suggest that EADR promotes apoptosis by upregulating pro-apoptotic BAX, whereas downregulation of anti-apoptotic Bcl-2 results in the reduction of MMP and the activation of caspase-3. Of particular interest is the presence of epilupeol, a major compound identified in EADR, which may hold promise as a candidate for the development of therapeutic agents for prostate cancer.


Subject(s)
Apoptosis , Caspase 3 , Diospyros , Plant Extracts , Prostatic Neoplasms , Proto-Oncogene Proteins c-bcl-2 , bcl-2-Associated X Protein , Humans , Male , Apoptosis/drug effects , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism , Caspase 3/metabolism , Diospyros/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Membrane Potential, Mitochondrial/drug effects , Antineoplastic Agents, Phytogenic/pharmacology
11.
PLoS One ; 19(7): e0304847, 2024.
Article in English | MEDLINE | ID: mdl-38968206

ABSTRACT

This paper presents a novel approach to enhance the accuracy of patch-level Gleason grading in prostate histopathology images, a critical task in the diagnosis and prognosis of prostate cancer. This study shows that the Gleason grading accuracy can be improved by addressing the prevalent issue of label inconsistencies in the SICAPv2 prostate dataset, which employs a majority voting scheme for patch-level labels. We propose a multi-label ensemble deep-learning classifier that effectively mitigates these inconsistencies and yields more accurate results than the state-of-the-art works. Specifically, our approach leverages the strengths of three different one-vs-all deep learning models in an ensemble to learn diverse features from the histopathology images to individually indicate the presence of one or more Gleason grades (G3, G4, and G5) in each patch. These deep learning models have been trained using transfer learning to fine-tune a variant of the ResNet18 CNN classifier chosen after an extensive ablation study. Experimental results demonstrate that our multi-label ensemble classifier significantly outperforms traditional single-label classifiers reported in the literature by at least 14% and 4% on accuracy and f1-score metrics respectively. These results underscore the potential of our proposed machine learning approach to improve the accuracy and consistency of prostate cancer grading.


Subject(s)
Deep Learning , Neoplasm Grading , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/pathology , Neural Networks, Computer , Prostate/pathology , Algorithms
12.
Medicine (Baltimore) ; 103(27): e38825, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968485

ABSTRACT

The potential relationship between the gut microbiota and prostate cancer, possibly influenced by immune cells, remains unclear. This study employed the mediation Mendelian randomization (MR) technique to investigate the causal link between the gut microbiota, immune cells, and prostate cancer. Data on immune cell activity were sourced from Valeria Orrù's research, whereas the genome-wide association study outcome dataset was obtained from the Integrative Epidemiology Unit database. The bidirectional MR analysis utilized 5 different methods: inverse variance weighted (IVW), weighted median, MR-Egger regression, weighted mode, and simple mode. In addition, the mediating effect of immune cells on the gut microbiota and prostate cancer was explored using mediation analysis. Eighty-three single nucleotide polymorphisms associated with prostate cancer were screened as instrumental variables. In a positive MR analysis with gut microbiota as the exposure factor, IVW showed an association between 8 gut microbiota and prostate cancer. Additionally, 9 types of immune cells have been found to be associated with prostate cancer using methods such as IVW. MR analysis of the gut microbiota on immune cells (beta1) revealed a negative correlation between Bifidobacterium and CD39+ T regulatory cells (Tregs; odds ratio [OR] = 0.785, 95% confidence interval [CI] = 0.627-0.983, P = .03). Furthermore, MR analysis of immune cells in prostate cancer disease (beta2) showed that CD39+Tregs are a risk factor for prostate cancer (OR = 1.215, 95% CI = 1.027-1.354, P = .04). Moreover, MR analysis of gut microbiota in prostate cancer (total effect) indicated that Bifidobacterium is a protective factor for prostate cancer (OR = 0.905, 95% CI = 0.822-0.977, P = .04). The sensitivity analysis verified the robustness of the above results. Mediation analysis demonstrated that CD39+Tregs partially mediate the causal relationship between Bifidobacterium and prostate cancer. This study demonstrates that Bifidobacterium inhibits prostate cancer progression through CD39+Tregs as mediators, providing new ideas and approaches for the treatment and prevention of prostate cancer.


Subject(s)
Disease Progression , Gastrointestinal Microbiome , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Prostatic Neoplasms , Humans , Male , Gastrointestinal Microbiome/immunology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Genome-Wide Association Study , T-Lymphocytes, Regulatory/immunology , Mediation Analysis , Bifidobacterium
13.
Hinyokika Kiyo ; 70(6): 173-177, 2024 Jun.
Article in Japanese | MEDLINE | ID: mdl-38967030

ABSTRACT

A 74-year-old man visited the urology clinic with the chief complaint of urinary retention in December 2014. Serum level of initial prostate specific antigen (PSA) was 50 ng/ml and he was diagnosed with Gleason Score 4+4 prostate adenocarcinoma with regional lymphadenopathy (cT3aN1M0). PSA level had declined after the treatment with combined androgen blockade. In November 2018, he was diagnosed with castration resistant prostate cancer (CRPC) as local progression was detected by computed tomography (CT) while PSA level did not increase. Since local symptoms worsened, resulting in repeated hematuria after the treatment with enzalutamide, palliative radiation therapy to the prostate (45 Gy) was performed. Five months later, follow-up CT showed multiple metastasis in bilateral lung and left testicle. Serum level of neuron-specific enolase (NSE) was 24.4 ng/ml without an elevated in serum PSA level. He received rebiopsy of the prostate, but no malignant findings were observed. Consequently, bilateral orchiectomy was performed for diagnosis of left testicular tumor. Pathological examination revealed metastasis of neuroendocrine prostate cancer (NEPC). Chemotherapy using cisplatin and irinotecan was administered after orchiectomy. Complete response of lung lesions was achieved and serum level of NSE decreased within normal range. No recurrence has been confirmed for 4 years after the completion of chemotherapy.


Subject(s)
Prostatic Neoplasms , Male , Humans , Aged , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/drug therapy , Combined Modality Therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/therapy , Prostatic Neoplasms, Castration-Resistant/drug therapy , Time Factors , Testicular Neoplasms/pathology , Testicular Neoplasms/therapy , Orchiectomy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lung Neoplasms/secondary , Lung Neoplasms/therapy
14.
Cancer Imaging ; 24(1): 86, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965552

ABSTRACT

PURPOSE: To develop a radiomics-based model using [68Ga]Ga-PSMA PET/CT to predict postoperative adverse pathology (AP) in patients with biopsy Gleason Grade Group (GGG) 1-2 prostate cancer (PCa), assisting in the selection of patients for active surveillance (AS). METHODS: A total of 75 men with biopsy GGG 1-2 PCa who underwent radical prostatectomy (RP) were enrolled. The patients were randomly divided into a training group (70%) and a testing group (30%). Radiomics features of entire prostate were extracted from the [68Ga]Ga-PSMA PET scans and selected using the minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression model. Logistic regression analyses were conducted to construct the prediction models. Receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and calibration curve were employed to evaluate the diagnostic value, clinical utility, and predictive accuracy of the models, respectively. RESULTS: Among the 75 patients, 30 had AP confirmed by RP. The clinical model showed an area under the curve (AUC) of 0.821 (0.695-0.947) in the training set and 0.795 (0.603-0.987) in the testing set. The radiomics model achieved AUC values of 0.830 (0.720-0.941) in the training set and 0.829 (0.624-1.000) in the testing set. The combined model, which incorporated the Radiomics score (Radscore) and free prostate-specific antigen (FPSA)/total prostate-specific antigen (TPSA), demonstrated higher diagnostic efficacy than both the clinical and radiomics models, with AUC values of 0.875 (0.780-0.970) in the training set and 0.872 (0.678-1.000) in the testing set. DCA showed that the net benefits of the combined model and radiomics model exceeded those of the clinical model. CONCLUSION: The combined model shows potential in stratifying men with biopsy GGG 1-2 PCa based on the presence of AP at final pathology and outperforms models based solely on clinical or radiomics features. It may be expected to aid urologists in better selecting suitable patients for AS.


Subject(s)
Gallium Isotopes , Gallium Radioisotopes , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Middle Aged , Aged , Prostatectomy/methods , Biopsy/methods , Neoplasm Grading , Oligopeptides , Radiopharmaceuticals , Watchful Waiting/methods , Edetic Acid/analogs & derivatives , Retrospective Studies , Radiomics
15.
Int J Nanomedicine ; 19: 6717-6730, 2024.
Article in English | MEDLINE | ID: mdl-38979530

ABSTRACT

Introduction: Immune regulatory small molecule JQ1 can block its downstream effector PD-L1 pathway and effectively reverse the PD-L1 upregulation induced by doxorubicin (DOX). So the synergistic administration of chemotherapeutic drug DOX and JQ1 is expected to increase the sensitivity of tumors to immune checkpoint therapy and jointly enhance the body's own immunity, thus effectively killing tumor cells. Therefore, a drug delivery system loaded with DOX and JQ1 was devised in this study. Methods: Polydopamine nanoparticles (PDA NPs) were synthesized through spontaneous polymerization. Under appropriate pH conditions, DOX and JQ1 were loaded onto the surface of PDA NPs, and the release of DOX and JQ1 were measured using UV-Vis or high performance liquid chromatography (HPLC). The mechanism of fabricated nanocomplex in vitro was investigated by cell uptake experiment, cell viability assays, apoptosis assays, and Western blot analysis. Finally, the tumor-bearing mouse model was used to evaluate the tumor-inhibiting efficacy and the biosafety in vivo. Results: JQ1 and DOX were successfully loaded onto PDA NPs. PDA-DOX/JQ1 NPs inhibited the growth of prostate cancer cells, reduced the expression of apoptosis related proteins and induced apoptosis in vitro. The in vivo biodistribution indicated that PDA-DOX/JQ1 NPs could accumulated at the tumor sites through the EPR effect. In tumor-bearing mice, JQ1 delivered with PDA-DOX/JQ1 NPs reduced PD-L1 expression at tumor sites, generating significant tumor suppression. Furthermore, PDA-DOX/JQ1 NPs could reduce the side effects, and produce good synergistic treatment effect in vivo. Conclusion: We have successfully prepared a multifunctional platform for synergistic prostate cancer therapy.


Subject(s)
Apoptosis , Azepines , Doxorubicin , Indoles , Nanoparticles , Polymers , Prostatic Neoplasms , Male , Animals , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/pharmacokinetics , Doxorubicin/administration & dosage , Indoles/chemistry , Indoles/pharmacology , Indoles/pharmacokinetics , Polymers/chemistry , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Nanoparticles/chemistry , Humans , Mice , Cell Line, Tumor , Apoptosis/drug effects , Azepines/chemistry , Azepines/pharmacology , Azepines/pharmacokinetics , Drug Synergism , Cell Survival/drug effects , Tissue Distribution , Xenograft Model Antitumor Assays , Drug Liberation , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , B7-H1 Antigen/metabolism , Triazoles
16.
Cancer Cell ; 42(7): 1160-1162, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981437

ABSTRACT

Cancer cells release cell-free DNA (cfDNA) and extracellular vesicles (EVs) into the bloodstream, allowing disease non-invasive monitoring. In this issue of Cancer Cell, Casanova-Salas et al. analyze cfDNA, EV-DNA, and EV-RNA in prostate cancer longitudinal cohorts treated with androgen receptor signaling inhibitors and taxanes, identifying signals reflecting tumor adaptation processes.


Subject(s)
Extracellular Vesicles , Transcriptome , Humans , Liquid Biopsy/methods , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Biomarkers, Tumor/genetics
17.
Cancer Cell ; 42(7): 1301-1312.e7, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981440

ABSTRACT

Extracellular vesicles (EVs) secreted by tumors are abundant in plasma, but their potential for interrogating the molecular features of tumors through multi-omic profiling remains widely unexplored. Genomic and transcriptomic profiling of circulating EV-DNA and EV-RNA isolated from in vitro and in vivo models of metastatic prostate cancer (mPC) reveal a high contribution of tumor material to EV-loaded DNA/RNA, validating the findings in two cohorts of longitudinal plasma samples collected from patients during androgen receptor signaling inhibitor (ARSI) or taxane-based therapy. EV-DNA genomic features recapitulate matched-patient biopsies and circulating tumor DNA (ctDNA) and associate with clinical progression. We develop a novel approach to enable transcriptomic profiling of EV-RNA (RExCuE). We report how the transcriptome of circulating EVs is enriched for tumor-associated transcripts, captures certain patient and tumor features, and reflects on-therapy tumor adaptation changes. Altogether, we show that EV profiling enables longitudinal transcriptomic and genomic profiling of mPC in liquid biopsy.


Subject(s)
Extracellular Vesicles , Genomics , Prostatic Neoplasms , Transcriptome , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/blood , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Genomics/methods , Animals , Gene Expression Profiling/methods , Neoplasm Metastasis , Mice , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Liquid Biopsy/methods , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
18.
Arch Esp Urol ; 77(5): 491-497, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38982777

ABSTRACT

BACKGROUND: Existing models for predicting that biochemical recurrence (BCR) will occur in patients after radical prostatectomy (RP) vary in their predictive results from magnetic resonance imaging (MRI). This study aimed to assess the predictive value of preoperative prostate-specific antigen (PSA) levels combined with MRI features in determining BCR following radical prostatectomy. METHODS: A retrospective analysis was conducted on a cohort comprising 102 patients who underwent radical prostatectomy at our hospital between January 2019 and December 2019. On the basis of the outcomes observed during a 4-year follow-up after surgery, the patients were categorised into BCR group (n = 52) and non-BCR group (n = 50). Differences in preoperative PSA levels and MRI characteristics between the two groups were compared, and factors influencing postoperative BCR were analysed. The receiver operating characteristic curve was drawn, and the sensitivity, specificity, area under the curve (AUC) and Youden index were calculated to observe the predictive value of the combination of preoperative PSA level and MRI features for BCR following radical prostatectomy. RESULTS: Logistic regression analysis showed that preoperative PSA level, postoperative Gleason score, data system (Prostate Imaging-Reporting and Data System (PI-RADS)) score and clinical T stage were independent risk factors for BCR in patients following radical prostatectomy, with odds ratio (OR) greater than 1. The AUC value of preoperative PSA level combined with PI-RADS score was 0.921, surpassing the AUC values of 0.783, 0.822, 0.617 and 0.608 predicted by preoperative PSA level, postoperative Gleason score, PI-RADS score and clinical T stage alone, respectively. CONCLUSIONS: Postoperative BCR in patients with prostate cancer undergoing radical prostatectomy is associated with preoperative PSA level, postoperative Gleason score, PI-RADS score and clinical T stage. The combination of preoperative PSA level and MRI features can improve the predictive efficiency for postoperative BCR.


Subject(s)
Magnetic Resonance Imaging , Neoplasm Recurrence, Local , Predictive Value of Tests , Prostate-Specific Antigen , Prostatectomy , Prostatic Neoplasms , Humans , Male , Retrospective Studies , Middle Aged , Prostate-Specific Antigen/blood , Prostatic Neoplasms/surgery , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/blood , Preoperative Period
19.
Arch Esp Urol ; 77(5): 598-604, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38982790

ABSTRACT

OBJECTIVE: This study aimed to analyse the characteristics of biochemical recurrence after radical prostatectomy via bi-parametric magnetic resonance imaging. METHODS: A total of 200 patients with radical prostatectomy admitted to our hospital from January 2016 to January 2021 were retrospectively enrolled as observation objects. According to whether there was biochemical recurrence after surgery, the patients were divided into the abnormal group (n = 62) and normal group (n = 138). Clinical data, encapsulation infiltration, seminal vesicle infiltration and prostate imaging report and data system (PI-RADS) were collected and compared between the two groups. Propensity score matching (PSM) was used to balance the baseline data of the two groups. Student's t-test and Chi-square test were used to analyse the data. RESULTS: PSM was performed in a 1:1 ratio, and a total of 72 patients were included in the abnormal and normal groups. The baseline data of the patients in each group were not statistically significant. The incidence of extraperitoneal invasion and seminal vesicle invasion was higher in the abnormal group than in the normal group, and we observed a significant difference in PI-RADS scores between the two groups (p < 0.05). Extracapsular invasion, seminal vesicle invasion, PI-RADS score and biochemical recurrence were significantly correlated (p < 0.05). The PI-RADS score has a high value for predicting biochemical recurrence, with an area under the curve value of 0.824, sensitivity of 0.667, specificity of 0.861 and Youden index of 0.528. CONCLUSIONS: Bi-parametric magnetic resonance imaging has a high predictive value in biochemical recurrence after radical prostatectomy, which can provide reference for early intervention measures.


Subject(s)
Neoplasm Recurrence, Local , Predictive Value of Tests , Prostatectomy , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/surgery , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Retrospective Studies , Neoplasm Recurrence, Local/diagnostic imaging , Middle Aged , Aged , Magnetic Resonance Imaging , Prostate-Specific Antigen/blood , Multiparametric Magnetic Resonance Imaging
20.
JBJS Case Connect ; 14(3)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38991096

ABSTRACT

CASE: A 71-year-old man with castration-resistant Stage IVB prostate cancer developed symptomatic oligometastatic disease in the lumbar spine and bilateral proximal femurs. He was treated with a single-position L2-L4 kyphoplasty with concomitant prone left-sided femoral prophylactic cephalomedullary nailing. Six months later when he again lost the ability to ambulate, he was treated with a single-position L4-L5 laminectomy for an epidural tumor with prone right-sided femoral prophylactic cephalomedullary nailing. CONCLUSION: Single-position prone surgery of the spine and prone femoral nailing is feasible and improves on traditional multiposition approaches, eliminating the need to reposition or change tables during management.


Subject(s)
Spinal Neoplasms , Humans , Male , Aged , Spinal Neoplasms/secondary , Spinal Neoplasms/surgery , Spinal Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Femoral Neoplasms/surgery , Femoral Neoplasms/secondary , Femoral Neoplasms/diagnostic imaging , Fracture Fixation, Intramedullary/methods , Prone Position , Lumbar Vertebrae/surgery , Lumbar Vertebrae/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...