Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 23780, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893664

ABSTRACT

New Caledonian endemic Mn-hyperaccumulator Grevillea meisneri is useful species for the preparation of ecocatalysts, which contain Mn-Ca oxides that are very difficult to synthesize under laboratory conditions. Mechanisms leading to their formation in the ecocatalysts are unknown. Comparing tissue-level microdistribution of these two elements could provide clues. We studied tissue-level distribution of Mn, Ca, and other elements in different tissues of G. meisneri using micro-X-Ray Fluorescence-spectroscopy (µXRF), and the speciation of Mn by micro-X-ray Absorption Near Edge Structure (µXANES), comparing nursery-grown plants transplanted into the site, and similar-sized plants growing naturally on the site. Mirroring patterns in other Grevillea species, Mn concentrations were highest in leaf epidermal tissues, in cortex and vascular tissues of stems and primary roots, and in phloem and pericycle-endodermis of parent cluster roots. Strong positive Mn/Ca correlations were observed in every tissue of G. meisneri where Mn was the most concentrated. Mn foliar speciation confirmed what was already reported for G. exul, with strong evidence for carboxylate counter-ions. The co-localization of Ca and Mn in the same tissues of G. meisneri might in some way facilitate the formation of mixed Ca-Mn oxides upon preparation of Eco-CaMnOx ecocatalysts from this plant. Grevillea meisneri has been successfully used in rehabilitation of degraded mining sites in New Caledonia, and in supplying biomass for production of ecocatalysts. We showed that transplanted nursery-grown seedlings accumulate as much Mn as do spontaneous plants, and sequester Mn in the same tissues, demonstrating the feasibility of large-scale transplantation programs for generating Mn-rich biomass.


Subject(s)
Manganese/metabolism , Proteaceae/metabolism , Biodegradation, Environmental , Biotransformation , Environmental Pollution , Metals, Heavy/metabolism , New Caledonia , Organ Specificity , Proteaceae/cytology , Soil Pollutants
2.
Plant Cell Environ ; 44(4): 1257-1267, 2021 04.
Article in English | MEDLINE | ID: mdl-33386607

ABSTRACT

Nutrient-poor ecosystems globally exhibit high plant diversity. One mechanism enabling the co-existence of species in such ecosystems is facilitation among plants with contrasting nutrient-acquisition strategies. The ecophysiological processes underlying these interactions remain poorly understood. We hypothesized that root positioning plays a role between sympatric species in nutrient-poor vegetation. We investigated how the growth traits of the focal mycorrhizal non-cluster-rooted Hibbertia racemosa change when grown in proximity of non-mycorrhizal Banksia attenuata, which produces cluster roots that increase nutrient availability, compared with growth with conspecifics. Focal plants were placed in the centre of rhizoboxes, and biomass allocation, root system architecture, specific root length (SRL), and leaf nutrient concentration were assessed. When grown with B. attenuata, focal plants decreased root investment, increased root growth towards B. attenuata, and positioned their roots near B. attenuata cluster roots. SRL was greater, and the degree of localized root investment correlated positively with B. attenuata cluster-root biomass. Total nutrient contents in the focal individuals were greater when grown with B. attenuata. Focal plants directed their root growth towards the putatively facilitating neighbour's cluster roots, modifying root traits and investment. Preferential root positioning and root morphological traits play important roles in positive plant-plant interactions.


Subject(s)
Dilleniaceae/physiology , Nutrients/metabolism , Plant Roots/growth & development , Communication , Dilleniaceae/growth & development , Dilleniaceae/metabolism , Ecosystem , Mycorrhizae , Plant Roots/metabolism , Plant Roots/physiology , Proteaceae/growth & development , Proteaceae/metabolism , Proteaceae/physiology
3.
J Agric Food Chem ; 68(45): 12595-12605, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-32936621

ABSTRACT

The postharvesting disorder leaf blackening is the main cause of product rejection in Protea during export. In this study, we report an investigation into metabolites associated with leaf blackening in Protea species. Methanol extracts of leaf and involucral bract tissue were analyzed by liquid chromatography hyphenated to photodiode array and high-resolution mass spectrometry (LC-PDA-HRMS), where 116 features were annotated. Analytical data obtained from 37 Protea species, selections, and hybrids were investigated using metabolomics tools, which showed that stems susceptible to leaf blackening cluster together and contained features identified as benzenetriol- and/or hydroquinone-derived metabolites. On the other hand, species, selections, and cultivars not prone to blackening were linked to metabolites with known protective properties against biotic and abiotic stressors. During the browning process, susceptible cultivars also produce these protective metabolites, yet at innately low levels, which may render these species and cultivars more vulnerable to blackening. Metabolites that were found to be correlated to the instigation of the browning process, all comprising benzenetriol- and hydroquinone-glycoside derivatives, are highlighted to provide preliminary insights to guide the development of new Protea cultivars not susceptible to leaf blackening.


Subject(s)
Biomarkers/chemistry , Plant Leaves/chemistry , Proteaceae/metabolism , Color , Metabolomics , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Leaves/metabolism , Proteaceae/chemistry , Proteaceae/growth & development
4.
PLoS One ; 15(1): e0227380, 2020.
Article in English | MEDLINE | ID: mdl-31990922

ABSTRACT

The ever-increasing vehicle counts have resulted in a significant increase in air pollution impacting human and natural ecosystems including trees, and physical properties. Roadside plantations often act as a first defense line against the vehicular emissions to mitigate the impacts of pollutants. However, they are themselves vulnerable to these pollutants with varying levels of tolerance capacity. This demands a scientific investigation to assess the role of roadside plantation for better management and planning for urban sprawl where selected trees could be grown to mitigate the impacts of harmful pollutants. The present study assesses the impacts of vehicular emissions on the adaptation and mitigation potential of two important roadside tree species i.e. Grevillea robusta and Mangifera indica planted along roadsides in the capital city of Uttarakhand. Uttarakhand is one of the Indian Western Himalayan State and its capital city is situated on the foothills of Himalaya. The adaptation and mitigation potential were evaluated by studying the response of pollutants on the functional traits which drive the physiology of the trees. The CO2 assimilation rate, transpiration rate, stomatal conductance, water use efficiency (WUE), air pollution tolerance index (APTI), copper and proline accumulation, dust removal efficiency (DRE), leaf thickness and cooling created by plantation were studied to evaluate the response of trees exposed to roadside traffics. To compare the influence of pollutants, traits of trees grown in a control site with few or absence of vehicular movement were compared with the roadside trees. The control site represented part of a reserve forest where human interference is controlled and human-induced activities are prohibited. The vehicular frequency was found to modulate tree characteristics. The tree characteristics representing WUE, APTI, proline and copper accumulation, leaf thickness, cooling impact, and DRE were enhanced significantly, while the decreased CO2 assimilation rate was observed near roadside trees compared to the control site. We found both of the species to perform well to be used as one of the potential species for roadside and urban greening. However, there is a need to assess the potential of other species in reference to the present study.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Mangifera , Proteaceae , Trees , Vehicle Emissions/analysis , Carbon Dioxide/metabolism , Dust/analysis , Environmental Monitoring/methods , India , Mangifera/growth & development , Mangifera/metabolism , Particulate Matter/analysis , Plant Leaves/growth & development , Plant Leaves/metabolism , Proteaceae/growth & development , Proteaceae/metabolism , Trees/growth & development , Trees/metabolism , Water/metabolism
5.
Environ Pollut ; 252(Pt B): 1399-1405, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31260939

ABSTRACT

Remediation of hexavalent chromium [Cr(VI)] has been widely studied for its high mobility and toxicity. As Cr(VI) migrates in natural environment, both soils and groundwater are contaminated simultaneously. In the present study, a novel reactor combining adsorption and microbial fuel cell (A-MFC) using Platanus acerifolia leaves was developed for removing Cr(VI) from groundwater and soils. When initial Cr(VI) concentration was 50 mg/L, the adsorption efficiency of A-MFC achieved 98% after 16 h. Afterwards, the leaves were used for fabricating an MFC-integrated leaching reactor. The A-MFC significantly improved the overall Cr(VI) removal efficiency through leaching and 40% of Cr(VI) in the soil column was removed. The electrical voltage and current of A-MFC reactor achieved averagely 343 mV and 141 µA to maintain the system operation without extra energy supply. This novel A-MFC reactor is an environmentally friendly technology which achieved efficient Cr(VI) removal from groundwater and soils using natural materials, proving the concept that integrated self-remediation of Cr(VI) in contaminated soil and groundwater with natural material and energy.


Subject(s)
Biodegradation, Environmental , Bioelectric Energy Sources/microbiology , Chromium/analysis , Groundwater/chemistry , Plant Leaves/metabolism , Soil/chemistry , Adsorption/physiology , Electricity , Proteaceae/metabolism
6.
J Exp Bot ; 70(15): 3995-4009, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31049573

ABSTRACT

Over 650 Proteaceae occur in south-western Australia, contributing to the region's exceptionally high biodiversity. Most Proteaceae occur exclusively on severely nutrient-impoverished, acidic soils (calcifuge), whilst only few also occur on young, calcareous soils (soil-indifferent), higher in calcium (Ca) and phosphorus (P). The calcifuge habit of Proteaceae is explained by Ca-enhanced P toxicity, putatively linked to the leaf cell-specific allocation of Ca and P. Separation of these elements is essential to avoid the deleterious precipitation of Ca-phosphate. We used quantitative X-ray microanalysis to determine leaf cell-specific nutrient concentrations of two calcifuge and two soil-indifferent Proteaceae grown in hydroponics at a range of Ca and P concentrations. Calcium enhanced the preferential allocation of P to palisade mesophyll (PM) cells under high P conditions, without a significant change in whole leaf [P]. Calcifuges showed a greater PM [P] compared with soil-indifferent species, corresponding to their greater sensitivity. This study advances our mechanistic understanding of Ca-enhanced P toxicity, supporting the proposed model, and demonstrating its role in the calcifuge distribution of Proteaceae. This furthers our understanding of nutrient interactions at the cellular level and highlights its importance to plant functioning.


Subject(s)
Calcium/metabolism , Phosphorus/metabolism , Plant Leaves/metabolism , Proteaceae/metabolism , Electron Probe Microanalysis , Microscopy, Electron, Scanning , Proteaceae/ultrastructure , Western Australia
7.
Tree Physiol ; 39(1): 143-155, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30085232

ABSTRACT

Centrifuge-based techniques to assess xylem vulnerability to embolism are increasingly being used, although we are yet to reach a consensus on the nature and extent of artefactual embolism observed in some angiosperm species. In particular, there is disagreement over whether these artefacts influence both the spin (Cavitron) and static versions of the centrifuge technique equally. We tested two methods for inducing embolism: bench dehydration and centrifugation. We used three methods to measure the resulting loss of conductivity: gravimetric flow measured in bench-dehydrated and centrifuged samples (static centrifuge), in situ flow measured under tension during spinning in the centrifuge (Cavitron) and direct imaging using X-ray computed microtomography (microCT) observations in stems of two species of Hakea that differ in vessel length. Both centrifuge techniques were prone to artefactual embolism in samples with maximum vessel length longer than, or similar to, the centrifuge rotor diameter. Observations with microCT indicated that this artefactual embolism occurred in the outermost portions of samples. The artefact was largely eliminated if flow was measured in an excised central part of the segment in the static centrifuge or starting measurements with the Cavitron at pressures lower than the threshold of embolism formation in open vessels. The simulations of loss of conductivity in centrifuged samples with a new model, CAVITOPEN, confirmed that the impact of open vessels on the vulnerability to embolism curve was higher when vessels were long, samples short and when embolism is formed in open vessels at less negative pressures. This model also offers a robust and quantitative tool to test and correct for artefactual embolism at low xylem tensions.


Subject(s)
Centrifugation , Magnoliopsida/metabolism , Plant Transpiration , Proteaceae/metabolism , Xylem/metabolism , Plant Diseases , Water/metabolism
8.
Trends Plant Sci ; 24(1): 69-82, 2019 01.
Article in English | MEDLINE | ID: mdl-30522809

ABSTRACT

Phosphorus (P) fertilisers, made from rock phosphate, are used to attain high crop yields. However, rock phosphate is a finite resource and excessive P fertilisers pollute our environment, stressing the need for more P-efficient crops. Some Proteaceae have evolved in extremely P-impoverished environments. One of their adaptations is to curtail the abundance of ribosomal RNA, and thus protein, and tightly control the acquisition and assimilation of nitrogen (N) and sulfur. This differs fundamentally from plants that evolved in environments where N limits plant productivity, but is likely common in many species that evolved in P-impoverished landscapes. Here, we scrutinise the relevance of these responses towards developing P-efficient crops, focusing on plant species where 'P is in the driver's seat'.


Subject(s)
Biological Evolution , Nitrogen/metabolism , Phosphorus/deficiency , Proteaceae/metabolism , Sulfur/metabolism , Environment , Proteaceae/genetics , Western Australia
9.
J R Soc Interface ; 15(143)2018 06.
Article in English | MEDLINE | ID: mdl-29925581

ABSTRACT

Many plants in fire-prone regions retain their seeds in woody fruits in the plant canopy until the passage of a fire causes the fruit to open and release the seeds. To enable this function, suitable tissues are required that effectively store and protect seeds until they are released. Here, we show that three different species of the Australian genus Banksia incorporate waxes at the interface of the two valves of the follicle enclosing the seeds, which melt between 45°C and 55°C. Since the melting temperature of the waxes is lower than the opening temperatures of the follicles in all investigated species (B. candolleana, B. serrata, B. attenuata), we propose that melting of these waxes allows the sealing of micro-fissures at the interface of the two valves while they are still closed. Such a self-sealing mechanism likely contributes to the structural integrity of the seed pods, and benefits seed viability and persistence during storage on the plants. Furthermore, we show in a simplified, bioinspired model system that temperature treatments seal artificially applied surface cuts and restore the barrier properties.


Subject(s)
Hot Temperature , Models, Biological , Proteaceae/metabolism , Seeds/metabolism , Waxes/metabolism
10.
New Phytol ; 215(3): 1068-1079, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28656667

ABSTRACT

Hakea prostrata (Proteaceae) has evolved in extremely phosphorus (P)-impoverished habitats. Unlike species that evolved in P-richer environments, it tightly controls its nitrogen (N) acquisition, matching its low protein concentration, and thus limiting its P requirement for ribosomal RNA (rRNA). Protein is a major sink for sulfur (S), but the link between low protein concentrations and S metabolism in H. prostrata is unknown, although this is pivotal for understanding this species' supreme adaptation to P-impoverished soils. Plants were grown at different sulfate supplies for 5 wk and used for nutrient and metabolite analyses. Total S content in H. prostrata was unchanged with increasing S supply, in sharp contrast with species that typically evolved in environments where P is not a major limiting nutrient. Unlike H. prostrata, other plants typically store excess available sulfate in vacuoles. Like other species, S-starved H. prostrata accumulated arginine, lysine and O-acetylserine, indicating S deficiency. Hakea prostrata tightly controls its S acquisition to match its low protein concentration and low demand for rRNA, and thus P, the largest organic P pool in leaves. We conclude that the tight control of S acquisition, like that of N, helps H. prostrata to survive in P-impoverished environments.


Subject(s)
Ecosystem , Phosphorus/deficiency , Proteaceae/metabolism , Sulfur/metabolism , Biomass , Metabolome/drug effects , Molybdenum/metabolism , Phosphates/pharmacology , Pigments, Biological/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Stems/drug effects , Plant Stems/metabolism , Sulfates/pharmacology
11.
Genomics Proteomics Bioinformatics ; 15(1): 49-56, 2017 02.
Article in English | MEDLINE | ID: mdl-28161492

ABSTRACT

Banksia is a significant element in vegetation of southwestern Australia, a biodiversity hotspot with global significance. In particular, Banksia hookeriana represents a species with significant economic and ecological importance in the region. For better conservation and management, we reported an overview of transcriptome of B. hookeriana using RNA-seq and de novo assembly. We have generated a total of 202.7 million reads (18.91 billion of nucleotides) from four leaf samples in four plants of B. hookeriana, and assembled 59,063 unigenes (average size=1098bp) through de novotranscriptome assembly. Among them, 39,686 unigenes were annotated against the Swiss-Prot, Clusters of Orthologous Groups (COG), and NCBI non-redundant (NR) protein databases. We showed that there was approximately one single nucleotide polymorphism (SNP) per 5.6-7.1kb in the transcriptome, and the ratio of transitional to transversional polymorphisms was approximately 1.82. We compared unigenes of B. hookeriana to those of Arabidopsis thaliana and Nelumbo nucifera through sequence homology, Gene Ontology (GO) annotation, and KEGG pathway analyses. The comparative analysis revealed that unigenes of B. hookeriana were closely related to those of N. nucifera. B. hookeriana, N. nucifera, and A. thaliana shared similar GO annotations but different distributions in KEGG pathways, indicating that B. hookeriana has adapted to dry-Mediterranean type shrublands via regulating expression of specific genes. In total 1927 potential simple sequence repeat (SSR) markers were discovered, which could be used in the genotype and genetic diversity studies of the Banksia genus. Our results provide valuable sequence resource for further study in Banksia.


Subject(s)
Proteaceae/genetics , Transcriptome , Contig Mapping , Databases, Protein , Microsatellite Repeats , Plant Leaves/genetics , Plant Leaves/metabolism , Polymorphism, Single Nucleotide , Proteaceae/metabolism , RNA, Plant/chemistry , RNA, Plant/isolation & purification , RNA, Plant/metabolism , Sequence Analysis, RNA
12.
Plant Cell Environ ; 39(12): 2754-2761, 2016 12.
Article in English | MEDLINE | ID: mdl-27766648

ABSTRACT

Hakea prostrata (Proteaceae) has evolved in an extremely phosphorus (P)-limited environment. This species exhibits an exceptionally low ribosomal RNA (rRNA) and low protein and nitrogen (N) concentration in its leaves. Little is known about the N requirement of this species and its link to P metabolism, despite this being the key to understanding how it functions with a minimal P budget. H. prostrata plants were grown with various N supplies. Metabolite and elemental analyses were performed to determine its N requirement. H. prostrata maintained its organ N content and concentration at a set point, independent of a 25-fold difference nitrate supplies. This is in sharp contrast to plants that are typically studied, which take up and store excess nitrate. Plants grown without nitrate had lower leaf chlorophyll and carotenoid concentrations, indicating N deficiency. However, H. prostrata plants at low or high nitrate availability had the same photosynthetic pigment levels and hence were not physiologically compromised by the treatments. The tight control of nitrate acquisition in H. prostrata retains protein at a very low level, which results in a low demand for rRNA and P. We surmise that the constrained nitrate acquisition is an adaptation to severely P-impoverished soils.


Subject(s)
Nitrates/metabolism , Phosphorus/deficiency , Proteaceae/metabolism , Amino Acids/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism
13.
Sci Rep ; 5: 17132, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26607493

ABSTRACT

Several hypotheses have been proposed to explain the rich floristic diversity in regions characterised by nutrient-impoverished soils; however, none of these hypotheses have been able to explain the rapid diversification over a relatively short evolutionary time period of Grevillea, an Australian plant genus with 452 recognised species/subspecies and only 11 million years of evolutionary history. Here, we hypothesise that the apparent evolutionary success of Grevillea might have been triggered by the highly efficient use of key nutrients. The nutrient content in the seeds and nutrient-use efficiency during early seedling growth of 12 species of Grevillea were compared with those of 24 species of Hakea, a closely related genus. Compared with Hakea, the Grevillea species achieved similar growth rates (root and shoot length) during the early stages of seedling growth but contained only approximately half of the seed nutrient content. We conclude that the high nutrient-use efficiency observed in Grevillea might have provided a selective advantage in nutrient-poor ecosystems during evolution and that this property likely contributed to the evolutionary success in Grevillea.


Subject(s)
Nitrogen/metabolism , Phosphorus/metabolism , Proteaceae/growth & development , Proteaceae/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seeds/metabolism , Species Specificity
14.
J Photochem Photobiol B ; 145: 19-24, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25752861

ABSTRACT

We investigated the ability to accurately and non-destructively determine the germination of three native Australian tree species, Acacia cowleana Tate (Fabaceae), Banksia prionotes L.F. (Proteaceae), and Corymbia calophylla (Lindl.) K.D. Hill & L.A.S. Johnson (Myrtaceae) based on hyperspectral imaging data. While similar studies have been conducted on agricultural and horticultural seeds, we are unaware of any published studies involving reflectance-based assessments of the germination of tree seeds. Hyperspectral imaging data (110 narrow spectral bands from 423.6nm to 878.9nm) were acquired of individual seeds after 0, 1, 2, 5, 10, 20, 30, and 50days of standardized rapid ageing. At each time point, seeds were subjected to hyperspectral imaging to obtain reflectance profiles from individual seeds. A standard germination test was performed, and we predicted that loss of germination was associated with a significant change in seed coat reflectance profiles. Forward linear discriminant analysis (LDA) was used to select the 10 spectral bands with the highest contribution to classifications of the three species. In all species, germination decreased from over 90% to below 20% in about 10-30days of experimental ageing. P50 values (equal to 50% germination) for each species were 19.3 (A. cowleana), 7.0 (B. prionotes) and 22.9 (C. calophylla) days. Based on independent validation of classifications of hyperspectral imaging data, we found that germination of Acacia and Corymbia seeds could be classified with over 85% accuracy, while it was about 80% for Banksia seeds. The selected spectral bands in each LDA-based classification were located near known pigment peaks involved in photosynthesis and/or near spectral bands used in published indices to predict chlorophyll or nitrogen content in leaves. The results suggested that seed germination may be successfully classified (predicted) based on reflectance in narrow spectral bands associated with the primary metabolism function and performance of plants.


Subject(s)
Fabaceae/chemistry , Myrtaceae/chemistry , Proteaceae/chemistry , Australia , Chlorophyll/chemistry , Chlorophyll/metabolism , Discriminant Analysis , Fabaceae/metabolism , Germination , Myrtaceae/metabolism , Nitrogen/chemistry , Nitrogen/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Proteaceae/metabolism , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Spectrophotometry , Time Factors
15.
Am J Bot ; 102(2): 208-16, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25667073

ABSTRACT

PREMISE OF THE STUDY: Southern South American (SA) Proteaceae species growing in volcanic soils have been proposed as potential ecosystem engineers by tapping phosphorus (P) from soil through their cluster roots and shedding nutrient-rich litter to the soil, making it available for other species. We tested whether Embothrium coccineum (Proteaceae) has effectively lower P nutrient resorption efficiency and higher litter P concentrations than co-occurring, non-Proteaceae species. METHODS: In southern Chile, we assessed the P and nitrogen (N) resorption efficiency of senescent leaves and fresh litter of E. coccineum and co-occurring tree species in a soil fertility and moisture gradient (600-3000 mm of annual precipitation) in Patagonia, Chile. We determined P and N concentrations, leaf mass per area (LMA), and ratios of N/P and C/N in mature and senescent leaf cohorts and fresh litter. KEY RESULTS: Embothrium coccineum showed significantly higher P and N resorption efficiency than co-occurring species; in fact, E. coccineum fresh litter had the lowest P-content. While E. coccineum showed significantly lower fresh litter P concentrations than the rest of the species, it showed significantly higher N concentrations. Embothrium coccineum also had lower LMA and similar N/P and C/N ratios when compared with co-occurring tree species. CONCLUSIONS: We found that E. coccineum efficiently mobilized P and, to a lesser extent, N before leaf shedding. We did not find support for the ecosystem engineering hypothesis via shedding P-rich litter. We suggest that southern South American Proteaceae may be taking up other nutrients besides P, probably N, from the young, volcanic soils of this region.


Subject(s)
Ecosystem , Nitrogen/metabolism , Phosphorus/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Proteaceae/metabolism , Soil , Chile , Trees/metabolism
16.
Environ Sci Pollut Res Int ; 22(8): 5686-98, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25226830

ABSTRACT

We propose for the first time using metal hyperaccumulating plants for the construction of a repertoire of protection and deprotection conditions in a concept of orthogonal sets. Protection of alcohol, carbonyl, carboxyl, and amino groups are considered. The ecocatalysts derived from metal-rich plants allow selective, mild, eco-friendly, and efficient protection or deprotection reactions. The selectivity is controlled by the choice of the metal, which is hyperaccumulated by the metallophyte.


Subject(s)
Brassicaceae/metabolism , Chemistry Techniques, Synthetic/methods , Green Chemistry Technology/methods , Plantago/metabolism , Proteaceae/metabolism , Zinc/pharmacokinetics , Acetylation , Alcohols/chemistry , Carbon Dioxide/chemistry , Catalysis , Chromatography, Thin Layer , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Plant Leaves/metabolism , Zinc/metabolism
17.
Plant Physiol ; 166(4): 1891-911, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25315604

ABSTRACT

Hakea prostrata (Proteaceae) is adapted to severely phosphorus-impoverished soils and extensively replaces phospholipids during leaf development. We investigated how polar lipid profiles change during leaf development and in response to external phosphate supply. Leaf size was unaffected by a moderate increase in phosphate supply. However, leaf protein concentration increased by more than 2-fold in young and mature leaves, indicating that phosphate stimulates protein synthesis. Orthologs of known lipid-remodeling genes in Arabidopsis (Arabidopsis thaliana) were identified in the H. prostrata transcriptome. Their transcript profiles in young and mature leaves were analyzed in response to phosphate supply alongside changes in polar lipid fractions. In young leaves of phosphate-limited plants, phosphatidylcholine/phosphatidylethanolamine and associated transcript levels were higher, while phosphatidylglycerol and sulfolipid levels were lower than in mature leaves, consistent with low photosynthetic rates and delayed chloroplast development. Phosphate reduced galactolipid and increased phospholipid concentrations in mature leaves, with concomitant changes in the expression of only four H. prostrata genes, GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE1, N-METHYLTRANSFERASE2, NONSPECIFIC PHOSPHOLIPASE C4, and MONOGALACTOSYLDIACYLGLYCEROL3. Remarkably, phosphatidylglycerol levels decreased with increasing phosphate supply and were associated with lower photosynthetic rates. Levels of polar lipids with highly unsaturated 32:x (x = number of double bonds in hydrocarbon chain) and 34:x acyl chains increased. We conclude that a regulatory network with a small number of central hubs underpins extensive phospholipid replacement during leaf development in H. prostrata. This hard-wired regulatory framework allows increased photosynthetic phosphorus use efficiency and growth in a low-phosphate environment. This may have rendered H. prostrata lipid metabolism unable to adjust to higher internal phosphate concentrations.


Subject(s)
Lipid Metabolism , Phosphates/metabolism , Phosphorus/metabolism , Plant Leaves/metabolism , Proteaceae/metabolism , Chloroplasts/metabolism , Lipids , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , Phosphatidylglycerols/metabolism , Phospholipids/metabolism , Photosynthesis , Plant Leaves/genetics , Plant Leaves/growth & development , Proteaceae/genetics , Proteaceae/growth & development , Protein Biosynthesis
18.
Plant Cell Environ ; 37(6): 1276-98, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24895754

ABSTRACT

Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The results were compared with those for Arabidopsis thaliana. Compared with A. thaliana, immature leaves of Proteaceae species contained very low levels of rRNA, especially plastidic rRNA. Proteaceae species showed slow development of the photosynthetic apparatus ('delayed greening'), with young leaves having very low levels of chlorophyll and Calvin-Benson cycle enzymes. In mature leaves, soluble protein and Calvin-Benson cycle enzyme activities were low, but Glc6P levels were similar to those in A. thaliana. We propose that low ribosome abundance contributes to the high P efficiency of these Proteaceae species in three ways: (1) less P is invested in ribosomes; (2) the rate of growth and, hence, demand for P is low; and (3) the especially low plastidic ribosome abundance in young leaves delays formation of the photosynthetic machinery, spreading investment of P in rRNA. Although Calvin-Benson cycle enzyme activities are low, Glc6P levels are maintained, allowing their effective use.


Subject(s)
Phosphorus/metabolism , Proteaceae/physiology , RNA, Plant/metabolism , RNA, Ribosomal/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Chlorophyll/metabolism , Glucose-6-Phosphate/metabolism , Photosynthesis , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Proteins/metabolism , Proteaceae/genetics , Proteaceae/metabolism , Ribosomal Proteins/metabolism , Starch/metabolism
19.
Am J Bot ; 100(12): 2328-38, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24249789

ABSTRACT

PREMISE OF THE STUDY: Cluster roots are a characteristic root adaptation of Proteaceae species. In South African and Australian species, cluster roots promote phosphorus (P) acquisition from poor soils. In a South American Proteaceae species, where cluster roots have been scarcely studied and their function is unknown, we tested whether cluster-root formation is stimulated by low soil nutrition, in particular low P-availability. METHODS: Small and large seedlings (< 6- and > 6-months old, respectively) of Embothrium coccineum and soil were collected across four different sites in Patagonia (Chile). We determined cluster-root number and relative mass, and leaf Pi concentration per mass (Pimass) and per area (Piarea) for each seedling, and tested relationships with Olsen-P (OP), sorbed-P (sP) and total nitrogen (N) using generalized linear mixed-effects models and model selection to assess the relative strength of soil and plant drivers. KEY RESULTS: Best-fit models showed a negative logarithmic relationship between cluster-root number and soil nitrogen (N), and between cluster-root relative mass and both leaf Piarea and soil N, and a positive logarithmic relationship between cluster-root number and leaf Piarea. Cluster-root relative mass was higher in small than in large seedlings. CONCLUSIONS: Contrary to that found in South African and Australian Proteaceae, cluster roots of E. coccineum do not appear to be driven by soil P, but rather by soil N and leaf Piarea. We suggest that cluster roots are a constitutive and functional trait that allows plants to prevail in poor N soils.


Subject(s)
Adaptation, Physiological , Nitrogen/metabolism , Phosphorus/metabolism , Plant Roots/growth & development , Proteaceae/growth & development , Seedlings/growth & development , Soil/chemistry , Chile , Plant Leaves/metabolism , Plant Roots/metabolism , Proteaceae/metabolism , Seedlings/metabolism
20.
Int J Phytoremediation ; 15(7): 615-32, 2013.
Article in English | MEDLINE | ID: mdl-23819263

ABSTRACT

Selecting native plant species with characteristics suitable for extraction of heavy metals may have multiple advantages over non-native plants. Six Australian perennial woody plant species and one willow were grown in a pot trial in heavy metal-contaminated biosolids and a potting mix. The plants were harvested after fourteen months and above-ground parts were analysed for heavy metal concentrations and total metal contents. All native species were capable of growing in biosolids and extracted heavy metals to varying degrees. No single species was able to accumulate heavy metals at particularly high levels and metal extraction depended upon the bioavailability of the metal in the substrate. Metal extraction efficiency was driven by biomass accumulation, with the species extracting the most metals also having the greatest biomass yield. The study demonstrated that Grevillea robusta, Acacia mearnsii, Eucalyptus polybractea, and E. cladocalyx have the greatest potential as phytoextractor species in the remediation of heavy metal-contaminated biosolids. Species survival and growth were the main determinants of metal extraction efficiency and these traits will be important for future screening of native species.


Subject(s)
Magnoliopsida/metabolism , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Acacia/growth & development , Acacia/metabolism , Acacia/physiology , Australia , Biodegradation, Environmental , Biomass , Eucalyptus/growth & development , Eucalyptus/metabolism , Eucalyptus/physiology , Magnoliopsida/growth & development , Magnoliopsida/physiology , Metals, Heavy/analysis , Plant Components, Aerial/growth & development , Plant Components, Aerial/metabolism , Proteaceae/growth & development , Proteaceae/metabolism , Proteaceae/physiology , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...