Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.737
Filter
1.
Chem Biol Interact ; 396: 111040, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38735453

ABSTRACT

Global warming and climate change have made dengue disease a global health issue. More than 50 % of the world's population is at danger of dengue virus (DENV) infection, according to the World Health Organization (WHO). Therefore, a clinically approved dengue fever vaccination and effective treatment are needed. Peptide medication development is new pharmaceutical research. Here we intend to recognize the structural features inhibiting the DENV NS2B/NS3 serine protease for a series of peptide-hybrid inhibitors (R1-R2-Lys-R3-NH2) by the 3D-QSAR technique. Comparative molecular field analysis (q2 = 0.613, r2 = 0.938, r2pred = 0.820) and comparative molecular similarity indices analysis (q2 = 0.640, r2 = 0.928, r2pred = 0.693) were established, revealing minor, electropositive, H-bond acceptor groups at the R1 position, minor, electropositive, H-bond donor groups at the R2 position, and bulky, hydrophobic groups at the R3 position for higher inhibitory activity. Docking studies revealed extensive H-bond and hydrophobic interactions in the binding of tripeptide analogues to the NS2B/NS3 protease. This study provides an insight into the key structural features for the design of peptide-based inhibitors of DENV NS2B/NS3 protease.


Subject(s)
Dengue Virus , Molecular Docking Simulation , Peptides , Quantitative Structure-Activity Relationship , Serine Endopeptidases , Viral Nonstructural Proteins , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Dengue Virus/drug effects , Dengue Virus/enzymology , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry , Peptides/chemistry , Peptides/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Binding Sites , Hydrogen Bonding , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hydrophobic and Hydrophilic Interactions , Viral Proteases
2.
Front Cell Infect Microbiol ; 14: 1391758, 2024.
Article in English | MEDLINE | ID: mdl-38716194

ABSTRACT

Campylobacter jejuni, a Gram-negative bacterium, is one of the most common causes of foodborne illness worldwide. Its adhesion mechanism is mediated by several bacterial factors, including flagellum, protein adhesins, lipooligosaccharides, proteases, and host factors, such as surface glycans on epithelial cells and mucins. Fungal lectins, specialized carbohydrate-binding proteins, can bind to specific glycans on host and bacterial cells and thus influence pathogenesis. In this study, we investigated the effects of fungal lectins and protease inhibitors on the adhesion of C. jejuni to model biotic surfaces (mucin, fibronectin, and collagen) and Caco-2 cells as well as the invasion of Caco-2 cells. The lectins Marasmius oreades agglutinin (MOA) and Laccaria bicolor tectonin 2 (Tec2) showed remarkable efficacy in all experiments. In addition, different pre-incubations of lectins with C. jejuni or Caco-2 cells significantly inhibited the ability of C. jejuni to adhere to and invade Caco-2 cells, but to varying degrees. Pre-incubation of Caco-2 cells with selected lectins reduced the number of invasive C. jejuni cells the most, while simultaneous incubation showed the greatest reduction in adherent C. jejuni cells. These results suggest that fungal lectins are a promising tool for the prevention and treatment of C. jejuni infections. Furthermore, this study highlights the potential of fungi as a rich reservoir for novel anti-adhesive agents.


Subject(s)
Bacterial Adhesion , Campylobacter jejuni , Lectins , Protease Inhibitors , Campylobacter jejuni/drug effects , Campylobacter jejuni/physiology , Campylobacter jejuni/metabolism , Humans , Caco-2 Cells , Bacterial Adhesion/drug effects , Lectins/metabolism , Lectins/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Fungi/drug effects , Mucins/metabolism , Epithelial Cells/microbiology , Fibronectins/metabolism
3.
J Med Chem ; 67(9): 7048-7067, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38630165

ABSTRACT

Emerging RNA viruses, including SARS-CoV-2, continue to be a major threat. Cell entry of SARS-CoV-2 particles via the endosomal pathway involves cysteine cathepsins. Due to ubiquitous expression, cathepsin L (CatL) is considered a promising drug target in the context of different viral and lysosome-related diseases. We characterized the anti-SARS-CoV-2 activity of a set of carbonyl- and succinyl epoxide-based inhibitors, which were previously identified as inhibitors of cathepsins or related cysteine proteases. Calpain inhibitor XII, MG-101, and CatL inhibitor IV possess antiviral activity in the very low nanomolar EC50 range in Vero E6 cells and inhibit CatL in the picomolar Ki range. We show a relevant off-target effect of CatL inhibition by the coronavirus main protease α-ketoamide inhibitor 13b. Crystal structures of CatL in complex with 14 compounds at resolutions better than 2 Å present a solid basis for structure-guided understanding and optimization of CatL inhibitors toward protease drug development.


Subject(s)
Antiviral Agents , Cathepsin L , SARS-CoV-2 , Cathepsin L/antagonists & inhibitors , Cathepsin L/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Animals , Chlorocebus aethiops , Vero Cells , SARS-CoV-2/drug effects , Humans , Structure-Activity Relationship , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Crystallography, X-Ray , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Models, Molecular
4.
Biosystems ; 238: 105194, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513884

ABSTRACT

•The signaling process during mycorrhiza establishment involves intense molecular communication between symbionts. It has been suggested that a group of protein effectors, the so-called MiSSPs, plays a broader function in the symbiosis metabolism, however, many of these remain uncharacterized structurally and functionally. •Herein we used three-dimensional protein structure modeling methods, ligand analysis, and molecular docking to structurally characterize and describe two protein effectors, MiSSP13 and MiSSP16.5, with enhanced expression during the mycorrhizal process in Laccaria bicolor. •MiSSP13 and MiSSP16.5 show structural homology with the cysteine and aspartate protease inhibitor, cocaprin (CCP1). Through structural analysis, it was observed that MiSSP13 and MiSSP16.5 have an active site similar to that observed in CCP1. The protein-protein docking data showed that MiSSP13 and MiSSP16.5 interact with the papain and pepsin proteases at sites that are near to where CCP1 interacts with these same targets, suggesting a function as inhibitor of cysteine and aspartate proteases. The interaction of MiSSP13 with papain and MiSSP16.5 with pepsin was stronger than the interaction of CCP1 with these proteases, suggesting that the MiSSPs had a greater activity in inhibiting these classes of proteases. Based on the data supplied, a model is proposed for the function of MiSSPs 13 and 16.5 during the symbiosis establishment. Our findings, while derived from in silico analyses, enable us formulate intriguing hypothesis on the function of MiSSPs in ectomycorrhization, which will require experimental validation.


Subject(s)
Laccaria , Mycorrhizae , Mycorrhizae/metabolism , Plant Roots/metabolism , Papain/metabolism , Pepsin A/metabolism , Aspartic Acid/metabolism , Cysteine/metabolism , Molecular Docking Simulation , Symbiosis , Protease Inhibitors/metabolism
5.
J Chem Inf Model ; 64(8): 3047-3058, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38520328

ABSTRACT

Covalent drugs exhibit advantages in that noncovalent drugs cannot match, and covalent docking is an important method for screening covalent lead compounds. However, it is difficult for covalent docking to screen covalent compounds on a large scale because covalent docking requires determination of the covalent reaction type of the compound. Here, we propose to use deep learning of a lateral interactions spiking neural network to construct a covalent lead compound screening model to quickly screen covalent lead compounds. We used the 3CL protease (3CL Pro) of SARS-CoV-2 as the screen target and constructed two classification models based on LISNN to predict the covalent binding and inhibitory activity of compounds. The two classification models were trained on the covalent complex data set targeting cysteine (Cys) and the compound inhibitory activity data set targeting 3CL Pro, respected, with good prediction accuracy (ACC > 0.9). We then screened the screening compound library with 6 covalent binding screening models and 12 inhibitory activity screening models. We tested the inhibitory activity of the 32 compounds, and the best compound inhibited SARS-CoV-2 3CL Pro with an IC50 value of 369.5 nM. Further assay implied that dithiothreitol can affect the inhibitory activity of the compound to 3CL Pro, indicating that the compound may covalently bind 3CL Pro. The selectivity test showed that the compound had good target selectivity to 3CL Pro over cathepsin L. These correlation assays can prove the rationality of the covalent lead compound screening model. Finally, covalent docking was performed to demonstrate the binding conformation of the compound with 3CL Pro. The source code can be obtained from the GitHub repository (https://github.com/guzh970630/Screen_Covalent_Compound_by_LISNN).


Subject(s)
Coronavirus 3C Proteases , Molecular Docking Simulation , Neural Networks, Computer , SARS-CoV-2 , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , Humans , Drug Discovery , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , COVID-19 Drug Treatment , Deep Learning , Protein Binding , COVID-19/virology
6.
Mol Biochem Parasitol ; 258: 111617, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554736

ABSTRACT

Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.


Subject(s)
Antimalarials , Metalloproteases , Plasmodium falciparum , Plasmodium falciparum/enzymology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Metalloproteases/metabolism , Metalloproteases/genetics , Humans , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/drug therapy , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics
7.
J Mol Med (Berl) ; 102(4): 521-536, 2024 04.
Article in English | MEDLINE | ID: mdl-38381158

ABSTRACT

Viruses critically rely on various proteases to ensure host cell entry and replication. In response to viral infection, the host will induce acute tissue inflammation pulled by granulocytes. Upon hyperactivation, neutrophil granulocytes may cause undue tissue damage through proteolytic degradation of the extracellular matrix. Here, we assess the potential of protease inhibitors (PI) derived from potatoes in inhibiting viral infection and reducing tissue damage. The original full spectrum of potato PI was developed into five fractions by means of chromatography and hydrolysis. Individual fractions showed varying inhibitory efficacy towards a panel of proteases including trypsin, chymotrypsin, ACE2, elastase, and cathepsins B and L. The fractions did not interfere with SARS-CoV-2 infection of Vero E6 cells in vitro. Importantly, two of the fractions fully inhibited elastin-degrading activity of complete primary human neutrophil degranulate. These data warrant further development of potato PI fractions for biomedical purposes, including tissue damage crucial to SARS-CoV-2 pathogenesis. KEY MESSAGES: Protease inhibitor fractions from potato differentially inhibit a series of human proteases involved in viral replication and in tissue damage by overshoot inflammation. Protease inhibition of cell surface receptors such as ACE2 does not prevent virus infection of Vero cells in vitro. Protease inhibitors derived from potato can fully inhibit elastin-degrading primary human neutrophil proteases. Protease inhibitor fractions can be produced at high scale (hundreds of thousands of kilograms, i.e., tons) allowing economically feasible application in lower and higher income countries.


Subject(s)
COVID-19 , Solanum tuberosum , Animals , Chlorocebus aethiops , Humans , Solanum tuberosum/metabolism , Peptide Hydrolases , Vero Cells , Angiotensin-Converting Enzyme 2 , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Enzyme Inhibitors , Inflammation , Antiviral Agents , Elastin/metabolism
8.
Sci Rep ; 14(1): 3093, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326523

ABSTRACT

In this study, we have examined the feasibility of using elemental sulfur content of soybean seeds as a proxy for the overall sulfur amino acid content of soybean seeds. Earlier, we have identified by high throughput ionomic phenotyping several high and low sulfur containing soybean lines from the USDA Soybean Germplasm Collection. Here, we measured the cysteine and methionine content of select soybean lines by high-performance liquid chromatography. Our results demonstrate that those soybean lines which had high elemental sulfur content also had a higher cysteine and methionine content when compared to soybean lines with low elemental sulfur. SDS-PAGE and immunoblot analysis revealed that the accumulation of Bowman Birk protease inhibitor and lunasin in soybean seeds may only be marginally correlated with the elemental sulfur levels. However, we found a positive correlation between the levels of trypsin and chymotrypsin inhibitor activities and elemental sulfur and sulfur amino acid content of the seeds. Thus, elemental sulfur content and/or protease inhibitor activity measurement can be utilized as a rapid and cost-effective method to predict the overall sulfur amino acid content of soybean seeds. Our findings will benefit breeders in their endeavors to develop soybean cultivars with enhanced sulfur amino acid content.


Subject(s)
Amino Acids, Sulfur , Trypsin Inhibitor, Bowman-Birk Soybean , Glycine max , Cysteine/metabolism , Trypsin Inhibitor, Bowman-Birk Soybean/chemistry , Cost-Benefit Analysis , Amino Acids, Sulfur/metabolism , Methionine/metabolism , Seeds/metabolism , Protease Inhibitors/metabolism
9.
ACS Synth Biol ; 13(2): 509-520, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38316139

ABSTRACT

The COVID-19 endemic remains a global concern. The search for effective antiviral candidates is still needed to reduce disease risk. However, the availability of high biosafety level laboratory facilities for drug screening is limited in number. To address this issue, a screening system that could be utilized at lower biosafety levels remains essential. This study aimed to develop a novel SARS-CoV-2 main protease (Mpro) dimer-based screening system (DBSS) utilizing synthetic biology in Escherichia coli BL21(DE3). We linked the SARS-CoV-2 Mpro with the DNA-binding domain of AraC regulatory protein, which regulates the reporter gene expression. Protein modeling and molecular docking showed that saquinavir could bind to AraC-Mpro both in its monomer and dimer forms. The constructed DBSS assay indicated the screening system could detect saquinavir inhibitory activity at a concentration range of 4-10 µg/mL compared to the untreated control (P ≤ 0.05). The Vero E6 cell assay validated the DBSS result that saquinavir at 4-10 µg/mL exhibited antiviral activity against SARS-CoV-2. Our DBSS could be used for preliminary screening of numerous drug candidates that possess a dimerization inhibitor activity of SARS-CoV-2 Mpro and also minimize the use of a high biosafety level laboratory.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Saquinavir/pharmacology , Molecular Docking Simulation , Dimerization , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Synthetic Biology , Molecular Dynamics Simulation
10.
ACS Chem Biol ; 19(2): 563-574, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38232960

ABSTRACT

The main protease Mpro, nsp5, of SARS-CoV-2 (SCoV2) is one of its most attractive drug targets. Here, we report primary screening data using nuclear magnetic resonance spectroscopy (NMR) of four different libraries and detailed follow-up synthesis on the promising uracil-containing fragment Z604 derived from these libraries. Z604 shows time-dependent binding. Its inhibitory effect is sensitive to reducing conditions. Starting with Z604, we synthesized and characterized 13 compounds designed by fragment growth strategies. Each compound was characterized by NMR and/or activity assays to investigate their interaction with Mpro. These investigations resulted in the four-armed compound 35b that binds directly to Mpro. 35b could be cocrystallized with Mpro revealing its noncovalent binding mode, which fills all four active site subpockets. Herein, we describe the NMR-derived fragment-to-hit pipeline and its application for the development of promising starting points for inhibitors of the main protease of SCoV2.


Subject(s)
Drug Discovery , SARS-CoV-2 , Drug Discovery/methods , SARS-CoV-2/metabolism , Catalytic Domain , Magnetic Resonance Spectroscopy , Peptide Hydrolases/metabolism , Protease Inhibitors/metabolism , Antiviral Agents/pharmacology , Molecular Docking Simulation
11.
Chem Biol Drug Des ; 103(1): e14425, 2024 01.
Article in English | MEDLINE | ID: mdl-38082476

ABSTRACT

The pneumonia outbreak caused by Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) infection poses a serious threat to people worldwide. Although vaccines have been developed, antiviral drugs are still needed to combat SARS-CoV-2 infection due to the high mutability of the virus. SARS-CoV-2 main protein (Mpro ) is a special cysteine protease that is a key enzyme for SARS-CoV-2 replication. It is encoded by peptides and is responsible for processing peptides into functional proteins, making it an important drug target. The paper reviews the structure and peptide-like inhibitors of SARS-CoV-2 Mpro , also the binding mode and structure-activity relationship between the inhibitors and Mpro are introduced in detail. It is hoped that this review can provide ideas and help for the development of anti-coronavirus drugs such as COVID-19, and help to develop broad-spectrum antiviral drug for the treatment of coronavirus diseases as soon as possible.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Humans , SARS-CoV-2/metabolism , Viral Nonstructural Proteins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Peptides/pharmacology , Protease Inhibitors/metabolism , Molecular Docking Simulation
12.
ACS Chem Biol ; 19(1): 22-36, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38150587

ABSTRACT

The papain-like protease of SARS-COV-2 is essential for viral replication and pathogenesis. Its location within a much larger multifunctional protein, NSP3, makes it an ideal candidate for a targeted degradation approach capable of eliminating multiple functions with a single-molecule treatment. In this work, we have developed a HiBiT-based cellular model to study NSP3 degradation and used this platform for the discovery of monovalent NSP3 degraders. We present previously unreported degradation activity of published papain-like protease inhibitors. Follow-up exploration of structure-activity relationships and mechanism-of-action studies points to the recruitment of the ubiquitin-proteasome machinery that is solely driven by site occupancy, regardless of molecular features of the ligand. Supported by HDX data, we hypothesize that binding-induced structural changes in NSP3 trigger the recruitment of an E3 ligase and lead to proteasomal degradation.


Subject(s)
COVID-19 , Coronavirus Papain-Like Proteases , Papain , Humans , Papain/metabolism , Viral Nonstructural Proteins/metabolism , SARS-CoV-2/chemistry , Protease Inhibitors/metabolism
13.
Exp Biol Med (Maywood) ; 248(21): 1927-1936, 2023 11.
Article in English | MEDLINE | ID: mdl-37997891

ABSTRACT

The coronavirus disease 2019 (COVID-19) global pandemic resulted in millions of people becoming infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and close to seven million deaths worldwide. It is essential to further explore and design effective COVID-19 treatment drugs that target the main protease of SARS-CoV-2, a major target for COVID-19 drugs. In this study, machine learning was applied for predicting the SARS-CoV-2 main protease binding of Food and Drug Administration (FDA)-approved drugs to assist in the identification of potential repurposing candidates for COVID-19 treatment. Ligands bound to the SARS-CoV-2 main protease in the Protein Data Bank and compounds experimentally tested in SARS-CoV-2 main protease binding assays in the literature were curated. These chemicals were divided into training (516 chemicals) and testing (360 chemicals) data sets. To identify SARS-CoV-2 main protease binders as potential candidates for repurposing to treat COVID-19, 1188 FDA-approved drugs from the Liver Toxicity Knowledge Base were obtained. A random forest algorithm was used for constructing predictive models based on molecular descriptors calculated using Mold2 software. Model performance was evaluated using 100 iterations of fivefold cross-validations which resulted in 78.8% balanced accuracy. The random forest model that was constructed from the whole training dataset was used to predict SARS-CoV-2 main protease binding on the testing set and the FDA-approved drugs. Model applicability domain and prediction confidence on drugs predicted as the main protease binders discovered 10 FDA-approved drugs as potential candidates for repurposing to treat COVID-19. Our results demonstrate that machine learning is an efficient method for drug repurposing and, thus, may accelerate drug development targeting SARS-CoV-2.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Drug Repositioning/methods , Random Forest , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Molecular Docking Simulation , Coronavirus 3C Proteases , Protease Inhibitors/therapeutic use , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism
14.
J Stroke Cerebrovasc Dis ; 32(12): 107403, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804782

ABSTRACT

OBJECTIVES: Protein Z (PZ) /Protein Z-dependent protease inhibitor (ZPI) (PZ/ZPI) system is a new anticoagulant system discovered in recent years, which plays an important role in many diseases. We aimed to compare the plasma PZ/ZPI levels of acute ischemic stroke (AIS) patients and non-stroke control participants and the role of PZ/ZPI in the development of stroke was preliminarily analyzed. MATERIALS AND METHODS: Enzyme linked immunosorbent assay (ELISA) was used to detect and compare plasma PZ levels of 86 patients with acute AIS and 85 non-stroke control patients. Multivariable Logistic regression was used to analyze whether PZ was an independent risk factor for AIS. RESULTS: In the present study, plasma PZ is closely related to inflammatory response, coagulation process and platelet activation, and may participate in the development of AIS by inducing inflammatory responses and interfering with the coagulation process. CONCLUSIONS: Our results suggested that plasma PZ level is one of the independent risk factors of AIS, and plasma ZPI was closely related to coagulation and platelet parameter and may play a role in the coagulation process during AIS.


Subject(s)
Ischemic Stroke , Serpins , Humans , Protease Inhibitors/metabolism , Serpins/metabolism , Serpins/pharmacology , Ischemic Stroke/diagnosis , Prospective Studies , Blood Proteins/metabolism
15.
Biochemistry (Mosc) ; 88(9): 1356-1367, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37770402

ABSTRACT

Entomopathogenic bacteria of the genus Photorhabdus secrete protease S (PrtS), which is considered a virulence factor. We found that in the Photorhabdus genomes, immediately after the prtS genes, there are genes that encode small hypothetical proteins homologous to emfourin, a recently discovered protein inhibitor of metalloproteases. The gene of emfourin-like inhibitor from Photorhabdus laumondii subsp. laumondii TT01 was cloned and expressed in Escherichia coli cells. The recombinant protein, named photorin (Phin), was purified by metal-chelate affinity and gel permeation chromatography and characterized. It has been established that Phin is a monomer and inhibits activity of protealysin and thermolysin, which, similar to PrtS, belong to the M4 peptidase family. Inhibition constants were 1.0 ± 0.3 and 10 ± 2 µM, respectively. It was also demonstrated that Phin is able to suppress proteolytic activity of P. laumondii culture fluid (half-maximal inhibition concentration 3.9 ± 0.3 nM). Polyclonal antibodies to Phin were obtained, and it was shown by immunoblotting that P. laumondii cells produce Phin. Thus, the prtS genes in entomopathogenic bacteria of the genus Photorhabdus are colocalized with the genes of emfourin-like inhibitors, which probably regulate activity of the enzyme during infection. Strict regulation of the activity of proteolytic enzymes is essential for functioning of all living systems. At the same time, the principles of regulation of protease activity by protein inhibitors remain poorly understood. Bacterial protease-inhibitor pairs, such as the PrtS and Phin pair, are promising models for in vivo studies of these principles. Bacteria of the genus Photorhabdus have a complex life cycle with multiple hosts, being both nematode symbionts and powerful insect pathogens. This provides a unique opportunity to use the PrtS and Phin pair as a model for studying the principles of protease activity regulation by proteinaceous inhibitors in the context of bacterial interactions with different types of hosts.


Subject(s)
Anti-Infective Agents , Photorhabdus , Animals , Photorhabdus/genetics , Photorhabdus/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Insecta , Antiviral Agents/metabolism
16.
Nat Immunol ; 24(10): 1654-1670, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37667051

ABSTRACT

Glioblastoma (GBM) tumors consist of multiple cell populations, including self-renewing glioblastoma stem cells (GSCs) and immunosuppressive microglia. Here we identified Kunitz-type protease inhibitor TFPI2 as a critical factor connecting these cell populations and their associated GBM hallmarks of stemness and immunosuppression. TFPI2 promotes GSC self-renewal and tumor growth via activation of the c-Jun N-terminal kinase-signal transducer and activator of transcription (STAT)3 pathway. Secreted TFPI2 interacts with its functional receptor CD51 on microglia to trigger the infiltration and immunosuppressive polarization of microglia through activation of STAT6 signaling. Inhibition of the TFPI2-CD51-STAT6 signaling axis activates T cells and synergizes with anti-PD1 therapy in GBM mouse models. In human GBM, TFPI2 correlates positively with stemness, microglia abundance, immunosuppression and poor prognosis. Our study identifies a function for TFPI2 and supports therapeutic targeting of TFPI2 as an effective strategy for GBM.


Subject(s)
Glioblastoma , Animals , Mice , Humans , Glioblastoma/metabolism , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Tumor Microenvironment , Signal Transduction , Carrier Proteins/metabolism , Immunosuppressive Agents/pharmacology , Cell Line, Tumor , Neoplastic Stem Cells/metabolism
17.
Toxicol In Vitro ; 93: 105689, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37660998

ABSTRACT

Bilirubin is excreted into the bile from hepatocytes, mainly as monoglucuronosyl and bisglucuronosyl conjugates, reflecting bilirubin glucuronidation activity. However, there is limited information on the in vitro evaluation of liver cell lines or primary hepatocytes. This study aimed to investigate variations in the bilirubin metabolic function of canine and human hepatocyte spheroids formed in a three-dimensional (3D) culture system indicated by the formation of bilirubin glucuronides when protease inhibitors such as atazanavir, indinavir, ritonavir, and nelfinavir were treated with bilirubin. The culture supernatant was collected for bilirubin glucuronidation assessment and the cells were used to evaluate viability. On day 8 of culture, both canine and human hepatocyte spheroids showed high albumin secretion and distinct spheroid formation, and their bilirubin glucuronidation activities were evaluated considering cell viability. Treatment with atazanavir and ritonavir remarkably inhibited bilirubin glucuronide formation, wherein atazanavir showed the highest inhibition, particularly in human hepatocyte spheroids. These results may reflect the effects on cellular uptake of bilirubin and its intracellular metabolic function. Thus, primary hepatocytes cultured in a 3D culture system may be a useful in vitro system for the comprehensive evaluation of bilirubin metabolic function and risk assessment in bilirubin metabolic disorders for drug development.


Subject(s)
Hepatocytes , Protease Inhibitors , Humans , Animals , Dogs , Atazanavir Sulfate/metabolism , Atazanavir Sulfate/pharmacology , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Bilirubin/metabolism , Bilirubin/pharmacology , Liver/metabolism , Ritonavir/pharmacology , Ritonavir/metabolism , Spheroids, Cellular/metabolism
18.
Curr Opin Struct Biol ; 82: 102667, 2023 10.
Article in English | MEDLINE | ID: mdl-37544112

ABSTRACT

Since its outbreak in late 2019, the COVID-19 pandemic has drawn enormous attention worldwide as a consequence of being the most disastrous infectious disease in the past century. As one of the most immediately druggable targets of SARS-CoV-2, the main protease (Mpro) has been studied thoroughly. In this review, we provide a comprehensive summary of recent advances in structural studies of Mpro, which provide new knowledge about Mpro in terms of its biological function, structural characteristics, substrate specificity, and autocleavage process. We examine the remarkable strides made in targeting Mpro for drug discovery during the pandemic. We summarize insights into the current understanding of the structural features of Mpro and the discovery of existing Mpro-targeting drugs, illuminating pathways for the future development of anti-SARS-CoV-2 therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Drug Discovery , Biology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Molecular Docking Simulation
19.
Plant Physiol Biochem ; 202: 107915, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37536218

ABSTRACT

Kunitz-like protease inhibitors (KTIs) have been identified to play critical roles in insect defense, but evidence for their involvement in drought stress is sparse. The aim of this study was to identify and functionally characterize a Kunitz-like protease inhibitor, GsKTI, from the wild soybean (Glycine soja) variety ED059. Expression patterns suggest that drought stress and insect herbivory may induce GsKTI transcript levels. Transgenic Arabidopsis lines overexpressing GsKTI have been shown to exhibit enhanced drought tolerance by regulating the ABA signaling pathway and increasing xylem cell number. Transgenic Arabidopsis leaves overexpressing GsKTI interfered with insect digestion and thus had a negative effect on the growth of Helicoverpa armigera. It is concluded that GsKTI increases resistance to drought stress and insect attack in transgenic Arabidopsis lines.


Subject(s)
Arabidopsis , Fabaceae , Moths , Animals , Arabidopsis/metabolism , Glycine max/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Droughts , Plant Proteins/genetics , Fabaceae/metabolism , Moths/metabolism , Glycine/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
20.
Transgenic Res ; 32(5): 351-381, 2023 10.
Article in English | MEDLINE | ID: mdl-37573273

ABSTRACT

Insecticidal transgenes, when incorporated and expressed in plants, confer resistance against insects by producing several products having insecticidal properties. Protease inhibitors, lectins, amylase inhibitors, and chitinase genes are associated with the natural defenses developed by plants to counter insect attacks. Several toxin genes are also derived from spiders and scorpions for protection against insects. Bacillus thuringiensis Berliner is a microbial source of insecticidal toxins. Several methods have facilitated the large-scale production of transgenic plants. Bt-derived cry, cyt, vip, and sip genes, plant-derived genes such as lectins, protease inhibitors, and alpha-amylase inhibitors, insect cell wall-degrading enzymes like chitinase and some proteins like arcelins, plant defensins, and ribosome-inactivating proteins have been successfully utilized to impart resistance to insects. Besides, transgenic plants expressing double-stranded RNA have been developed with enhanced resistance. However, the long-term effects of transgenes on insect resistance, the environment, and human health must be thoroughly investigated before they are made available for commercial planting. In this chapter, the present status, prospects, and future scope of transgenes for insect pest management have been summarized and discussed.


Subject(s)
Bacillus thuringiensis , Chitinases , Insecticides , Animals , Humans , Insecta/genetics , Insecticides/metabolism , Transgenes , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Lectins/genetics , Chitinases/genetics , Bacterial Proteins/metabolism , Endotoxins/pharmacology , Hemolysin Proteins/genetics , Pest Control, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...