Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.744
Filter
1.
Trends Neurosci ; 47(5): 319-321, 2024 May.
Article in English | MEDLINE | ID: mdl-38614892

ABSTRACT

In a recent study, Oliveira and colleagues revealed how growth arrest and DNA damage-inducible protein 34 (GADD34), an effector of the integrated stress response, initiates the translation of synaptic plasticity-related mRNAs following brain-derived neurotrophic factor (BDNF) stimulation. This work suggests that GADD34 may link transcriptional products with translation control upon neuronal activation, illuminating how protein synthesis is orchestrated in neuronal plasticity.


Subject(s)
Neuronal Plasticity , Neurons , Protein Biosynthesis , Protein Phosphatase 1 , Neurons/metabolism , Neurons/physiology , Animals , Protein Phosphatase 1/metabolism , Humans , Protein Biosynthesis/physiology , Neuronal Plasticity/physiology , Brain-Derived Neurotrophic Factor/metabolism , Stress, Physiological/physiology
2.
Neurochem Int ; 176: 105740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636905

ABSTRACT

The benefits of physical exercise (PE) on memory consolidation have been well-documented in both healthy and memory-impaired animals. However, the underlying mechanisms through which PE exerts these effects are still unclear. In this study, we aimed to investigate the role of hippocampal protein synthesis in memory modulation by acute PE in rats. After novel object recognition (NOR) training, rats were subjected to a 30-min moderate-intensity acute PE on the treadmill, while control animals did not undergo any procedures. Using anisomycin (ANI) and rapamycin (RAPA), compounds that inhibit protein synthesis through different mechanisms, we manipulated protein synthesis in the CA1 region of the hippocampus to examine its contribution to memory consolidation. Memory was assessed on days 1, 7, and 14 post-training. Our results showed that inhibiting protein synthesis by ANI or RAPA impaired NOR memory consolidation in control animals. However, acute PE prevented this impairment without affecting memory persistence. We also evaluated brain-derived neurotrophic factor (BDNF) levels after acute PE at 0.5h, 2h, and 12h afterward and found no differences in levels compared to animals that did not engage in acute PE or were only habituated to the treadmill. Therefore, our findings suggest that acute PE could serve as a non-pharmacological intervention to enhance memory consolidation and prevent memory loss in conditions associated with hippocampal protein synthesis inhibition. This mechanism appears not to depend on BDNF synthesis in the early hours after exercise.


Subject(s)
Amnesia , Anisomycin , Brain-Derived Neurotrophic Factor , Hippocampus , Physical Conditioning, Animal , Rats, Wistar , Animals , Male , Physical Conditioning, Animal/physiology , Rats , Hippocampus/metabolism , Hippocampus/drug effects , Anisomycin/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/biosynthesis , Amnesia/metabolism , Amnesia/prevention & control , Protein Synthesis Inhibitors/pharmacology , Sirolimus/pharmacology , Protein Biosynthesis/drug effects , Protein Biosynthesis/physiology , Memory Consolidation/drug effects , Memory Consolidation/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology
3.
Nat Neurosci ; 27(5): 822-835, 2024 May.
Article in English | MEDLINE | ID: mdl-38589584

ABSTRACT

Learning and memory require activity-induced changes in dendritic translation, but which mRNAs are involved and how they are regulated are unclear. In this study, to monitor how depolarization impacts local dendritic biology, we employed a dendritically targeted proximity labeling approach followed by crosslinking immunoprecipitation, ribosome profiling and mass spectrometry. Depolarization of primary cortical neurons with KCl or the glutamate agonist DHPG caused rapid reprogramming of dendritic protein expression, where changes in dendritic mRNAs and proteins are weakly correlated. For a subset of pre-localized messages, depolarization increased the translation of upstream open reading frames (uORFs) and their downstream coding sequences, enabling localized production of proteins involved in long-term potentiation, cell signaling and energy metabolism. This activity-dependent translation was accompanied by the phosphorylation and recruitment of the non-canonical translation initiation factor eIF4G2, and the translated uORFs were sufficient to confer depolarization-induced, eIF4G2-dependent translational control. These studies uncovered an unanticipated mechanism by which activity-dependent uORF translational control by eIF4G2 couples activity to local dendritic remodeling.


Subject(s)
Dendrites , Eukaryotic Initiation Factor-4G , Neurons , Open Reading Frames , Protein Biosynthesis , Animals , Dendrites/metabolism , Eukaryotic Initiation Factor-4G/metabolism , Protein Biosynthesis/physiology , Neurons/metabolism , Open Reading Frames/genetics , Rats , Mice , Cells, Cultured , Potassium Chloride/pharmacology
4.
J Appl Physiol (1985) ; 136(6): 1388-1399, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38385186

ABSTRACT

Feeding and resistance exercise stimulate myofibrillar protein synthesis (MPS) rates in healthy adults. This anabolic characterization of "healthy adults" has been namely focused on males. Therefore, the purpose of this study was to examine the temporal responses of MPS and anabolic signaling to resistance exercise alone or combined with the ingestion of protein in postmenopausal females and compare postabsorptive rates with young females. Sixteen females [60 ± 7 yr; body mass index (BMI) = 26 ± 12 kg·m-2] completed an acute bout of unilateral resistance exercise before consuming either: a fortified whey protein supplement (WHEY) or water. Participants received primed continuous infusions of L-[ring-13C6]phenylalanine with bilateral muscle biopsies before and after treatment ingestion at 2 h and 4 h in nonexercised and exercised legs. Resistance exercise transiently increased MPS above baseline at 0-2 h in the water condition (P = 0.007). Feeding after resistance exercise resulted in a late phase (2-4 h) increase in MPS in the WHEY condition (P = 0.005). In both conditions, resistance exercise did not enhance the cumulative (0-4 h) MPS response. In the nonexercised leg, MPS did not differ at 0-2 h, 2-4 h, or 0-4 h of the measurement periods (all, P > 0.05). Likewise, there were no changes in the phosphorylation of p70S6K, AMPKα, or total and phosphorylated yes-associated protein on Ser127. Finally, postabsorptive MPS was lower in premenopausal versus postmenopausal females (P = 0.023). Our results demonstrate that resistance exercise-induced changes in MPS are temporally regulated, but do not result in greater cumulative (0-4 h) MPS in postmenopausal women.NEW & NOTEWORTHY An adequate quality and quantity of skeletal muscle is relevant to support physical performance and metabolic health. Muscle protein synthesis (MPS) is an established remodeling marker, which can be hypertrophic or nonhypertrophic. Importantly, protein ingestion and resistance exercise are two strategies that support healthy muscle by stimulating MPS. Our study shows postmenopause modulates baseline MPS that may diminish the MPS response to the fundamental anabolic stimuli of protein ingestion and resistance exercise in older females.


Subject(s)
Muscle Proteins , Myofibrils , Postmenopause , Postprandial Period , Resistance Training , Whey Proteins , Humans , Female , Postmenopause/physiology , Postmenopause/metabolism , Resistance Training/methods , Middle Aged , Postprandial Period/physiology , Myofibrils/metabolism , Muscle Proteins/biosynthesis , Muscle Proteins/metabolism , Whey Proteins/metabolism , Muscle, Skeletal/metabolism , Rest/physiology , Aged , Phenylalanine/metabolism , Protein Biosynthesis/physiology , Dietary Supplements , Adult , Exercise/physiology , Phosphorylation
5.
Genome Res ; 33(8): 1242-1257, 2023 08.
Article in English | MEDLINE | ID: mdl-37487647

ABSTRACT

A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.


Subject(s)
Mitochondria , Mitochondrial Proteins , Molecular Chaperones , Neoplasms , Protein Biosynthesis , Humans , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Biosynthesis/genetics , Protein Biosynthesis/physiology , Ribosomes/genetics , Ribosomes/metabolism , Peptide Chain Elongation, Translational/genetics , Peptide Chain Elongation, Translational/physiology , Mitochondria/genetics , Mitochondria/metabolism
7.
Dev Cell ; 57(10): 1241-1256.e8, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35580611

ABSTRACT

Angiogenesis, the active formation of new blood vessels from pre-existing ones, is a complex and demanding biological process that plays an important role in physiological as well as pathological settings. Recent evidence supports cell metabolism as a critical regulator of angiogenesis. However, whether and how cell metabolism regulates endothelial growth factor receptor levels and nucleotide synthesis remains elusive. We here shown in both human cell lines and mouse models that during developmental and pathological angiogenesis, endothelial cells (ECs) use glutaminolysis-derived glutamate to produce aspartate (Asp) via aspartate aminotransferase (AST/GOT). Asp leads to mTORC1 activation which, in turn, regulates endothelial translation machinery for VEGFR2 and FGFR1 synthesis. Asp-dependent mTORC1 pathway activation also regulates de novo pyrimidine synthesis in angiogenic ECs. These findings identify glutaminolysis-derived Asp as a regulator of mTORC1-dependent endothelial translation and pyrimidine synthesis. Our studies may help overcome anti-VEGF therapy resistance by targeting endothelial growth factor receptor translation.


Subject(s)
Aspartic Acid , Endothelial Cells , Mechanistic Target of Rapamycin Complex 1 , Neovascularization, Pathologic , Neovascularization, Physiologic , Animals , Aspartic Acid/metabolism , Cell Line , Endothelial Cells/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/physiology , Protein Biosynthesis/physiology , Pyrimidines , Receptors, Vascular Endothelial Growth Factor/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
8.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1706-1723, 2022 May 25.
Article in Chinese | MEDLINE | ID: mdl-35611724

ABSTRACT

With the development of high-throughput sequencing technology, circular RNAs (circRNAs) have gradually become a hotspot in the research on non-coding RNA. CircRNAs are produced by the covalent circularization of a downstream 3' splice donor and an upstream 5' splice acceptor through backsplicing, and they are pervasive in eukaryotic cells. CircRNAs used to be considered byproducts of false splicing, whereas an explosion of related studies in recent years has disproved this misconception. Compared with the rich studies of circRNAs in animals, the study of circRNAs in plants is still in its infancy. In this review, we introduced the discovery of plant circRNAs, the discovery of plant circRNAs, the circularization feature, expression specificity, conservation, and stability of plant circRNAs and expounded the identification tools, main types, and biogenesis mechanisms of circRNAs. Furthermore, we summarized the potential roles of plant circRNAs as microRNA (miRNA) sponges and translation templates and in response to biotic/abiotic stress, and briefed the degradation and localization of plant circRNAs. Finally, we discussed the challenges and proposed the future directions in the research on plant circRNAs.


Subject(s)
MicroRNAs , RNA, Circular , RNA, Plant , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Organelle Biogenesis , Plants/genetics , Plants/metabolism , Protein Biosynthesis/physiology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Research/trends , Stress, Physiological/genetics
9.
Int J Mol Sci ; 23(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35054973

ABSTRACT

Among the 20 amino acids needed for protein synthesis, Tryptophan (Trp) is an aromatic amino acid fundamental not only for the synthesis of the major components of living cells (namely, the proteins), but also for the maintenance of cellular homeostasis [...].


Subject(s)
Metabolic Networks and Pathways , Protein Biosynthesis , Tryptophan/metabolism , Disease Susceptibility , Homeostasis , Humans , Protein Biosynthesis/physiology
10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35042799

ABSTRACT

Proteins, as essential biomolecules, account for a large fraction of cell mass, and thus the synthesis of the complete set of proteins (i.e., the proteome) represents a substantial part of the cellular resource budget. Therefore, cells might be under selective pressures to optimize the resource costs for protein synthesis, particularly the biosynthesis of the 20 proteinogenic amino acids. Previous studies showed that less energetically costly amino acids are more abundant in the proteomes of bacteria that survive under energy-limited conditions, but the energy cost of synthesizing amino acids was reported to be weakly associated with the amino acid usage in Saccharomyces cerevisiae Here we present a modeling framework to estimate the protein cost of synthesizing each amino acid (i.e., the protein mass required for supporting one unit of amino acid biosynthetic flux) and the glucose cost (i.e., the glucose consumed per amino acid synthesized). We show that the logarithms of the relative abundances of amino acids in S. cerevisiae's proteome correlate well with the protein costs of synthesizing amino acids (Pearson's r = -0.89), which is better than that with the glucose costs (Pearson's r = -0.5). Therefore, we demonstrate that S. cerevisiae tends to minimize protein resource, rather than glucose or energy, for synthesizing amino acids.


Subject(s)
Amino Acids/biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Biological Evolution , Energy Metabolism/physiology , Evolution, Molecular , Metabolic Engineering/methods , Protein Biosynthesis/genetics , Protein Biosynthesis/physiology , Proteome/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
11.
Bioengineered ; 13(2): 3070-3081, 2022 02.
Article in English | MEDLINE | ID: mdl-35100096

ABSTRACT

Hydrostatic pressure is known to regulate bovine nucleus pulposus cell metabolism, but its mechanism in human nucleus pulposus cells (HNPCs) remains obscure, which attracts our attention and becomes the focus in this study. Specifically, HNPCs were treated with SKL2001 (an agonist in the Wnt/ß-catenin pathway) or XAV-939 (an inhibitor of the Wnt/ß-catenin pathway), and pressurized under the hydrostatic pressure of 1, 3 and 30 atm. The viability, apoptosis and proteoglycan synthesis of treated HNPC were assessed by CCK-8, flow cytometry and radioisotope incorporation assays. The levels of extracellular matrix, Collagen-II, matrix metalloproteinase 3 (MMP3), Wnt-3a and ß-catenin were measured by toluidine blue staining, immunocytochemistry and Western blot. Appropriate hydrostatic stimulation (3 atm) enhanced the viability and proteoglycan synthesis yet inhibited the apoptosis of HNPCs, which also up-regulated extracellular matrix and Collagen-II levels, and down-regulated MMP3, Wnt-3a and ß-catenin levels in treated HNPCs. Furthermore, high hydrostatic pressure (30 atm) inhibited the viability and proteoglycan synthesis, and promoted the morphological change and apoptosis of HNPCs, which also down-regulated extracellular matrix and Collagen-II levels and up-regulated MMP3, Wnt-3a and ß-catenin levels. Besides, SKL2001 reversed the effects of hydrostatic pressure (3 atm) on inhibiting Wnt-3a, ß-catenin, and MMP3 levels and promoting Collagen-II level in HNPC; whereas, XAV-939 reversed the effects of high hydrostatic pressure (30 atm) on promoting MMP3, Wnt-3a, and ß-catenin levels and inhibiting Collagen-II level and proteoglycan synthesis of HNPCs. Collectively, high hydrostatic pressure promoted the apoptosis and inhibited the viability of HNPCs via activating the Wnt/ß-catenin pathway.


Subject(s)
Extracellular Matrix/metabolism , Nucleus Pulposus/physiology , Proteoglycans/biosynthesis , Apoptosis/physiology , Cells, Cultured , Humans , Hydrostatic Pressure/adverse effects , Intervertebral Disc Degeneration/etiology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/cytology , Nucleus Pulposus/metabolism , Protein Biosynthesis/physiology , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
12.
Int J Biol Macromol ; 199: 252-263, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-34995670

ABSTRACT

Translation of RNA to protein is a key feature of cellular life. The fidelity of this process mainly depends on the availability of correctly charged tRNAs. Different domains of tRNA synthetase (aaRS) maintain translation quality by ensuring the proper attachment of particular amino acid with respective tRNA, thus it establishes the rule of genetic code. However occasional errors by aaRS generate mischarged tRNAs, which can become lethal to the cells. Accurate protein synthesis necessitates hydrolysis of mischarged tRNAs. Various cis and trans-editing proteins are identified which recognize these mischarged products and correct them by hydrolysis. Trans-editing proteins are homologs of cis-editing domains of aaRS. The trans-editing proteins work in close association with aaRS, Ef-Tu, and ribosome to prevent global mistranslation and ensures correct charging of tRNA. In this review, we discuss the major trans-editing proteins and compared them with their cis-editing counterparts. We also discuss their structural features, biochemical activity and role in maintaining cellular protein homeostasis.


Subject(s)
Amino Acyl-tRNA Synthetases , Protein Biosynthesis , Amino Acyl-tRNA Synthetases/chemistry , Protein Biosynthesis/physiology , Protein Modification, Translational/physiology , RNA, Transfer/chemistry
13.
Cell Rep ; 38(2): 110208, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021090

ABSTRACT

Midbrain dopaminergic (mDA) neurons exhibit extensive dendritic and axonal arborizations, but local protein synthesis is not characterized in these neurons. Here, we investigate messenger RNA (mRNA) localization and translation in mDA neuronal axons and dendrites, both of which release dopamine (DA). Using highly sensitive ribosome-bound RNA sequencing and imaging approaches, we find no evidence for mRNA translation in mDA axons. In contrast, mDA neuronal dendrites in the substantia nigra pars reticulata (SNr) contain ribosomes and mRNAs encoding the major components of DA synthesis, release, and reuptake machinery. Surprisingly, we also observe dendritic localization of mRNAs encoding synaptic vesicle-related proteins, including those involved in exocytic fusion. Our results are consistent with a role for local translation in the regulation of DA release from dendrites, but not from axons. Our translatome data define a molecular signature of sparse mDA neurons in the SNr, including the enrichment of Atp2a3/SERCA3, an atypical ER calcium pump.


Subject(s)
Dopaminergic Neurons/metabolism , Protein Biosynthesis/physiology , RNA, Messenger/metabolism , Animals , Axons/metabolism , Dendrites/metabolism , Dopamine/metabolism , Female , Male , Mesencephalon/physiology , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Protein Biosynthesis/genetics , RNA, Messenger/genetics , Ribosomes/metabolism , Sequence Analysis, RNA/methods , Substantia Nigra/metabolism
14.
Mol Cell Biol ; 42(1): e0024421, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34723653

ABSTRACT

Ded1 is a conserved RNA helicase that promotes translation initiation in steady-state conditions. Ded1 has also been shown to regulate translation during cellular stress and affect the dynamics of stress granules (SGs), accumulations of RNA and protein linked to translation repression. To better understand its role in stress responses, we examined Ded1 function in two different models: DED1 overexpression and oxidative stress. DED1 overexpression inhibits growth and promotes the formation of SGs. A ded1 mutant lacking the low-complexity C-terminal region (ded1-ΔCT), which mediates Ded1 oligomerization and interaction with the translation factor eIF4G1, suppressed these phenotypes, consistent with other stresses. During oxidative stress, a ded1-ΔCT mutant was defective in growth and in SG formation compared to wild-type cells, although SGs were increased rather than decreased in these conditions. Unlike stress induced by direct TOR inhibition, the phenotypes in both models were only partially dependent on eIF4G1 interaction, suggesting an additional contribution from Ded1 oligomerization. Furthermore, examination of the growth defects and translational changes during oxidative stress suggested that Ded1 plays a role during recovery from stress. Integrating these disparate results, we propose that Ded1 controls multiple aspects of translation and RNP dynamics in both initial stress responses and during recovery.


Subject(s)
DEAD-box RNA Helicases/metabolism , RNA Helicases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Cytoplasmic Granules/metabolism , DEAD-box RNA Helicases/genetics , Gene Expression Regulation, Fungal/genetics , Protein Biosynthesis/physiology , RNA, Messenger/genetics , Saccharomyces cerevisiae/metabolism , Stress, Physiological/physiology
15.
Chinese Journal of Biotechnology ; (12): 1706-1723, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-927813

ABSTRACT

With the development of high-throughput sequencing technology, circular RNAs (circRNAs) have gradually become a hotspot in the research on non-coding RNA. CircRNAs are produced by the covalent circularization of a downstream 3' splice donor and an upstream 5' splice acceptor through backsplicing, and they are pervasive in eukaryotic cells. CircRNAs used to be considered byproducts of false splicing, whereas an explosion of related studies in recent years has disproved this misconception. Compared with the rich studies of circRNAs in animals, the study of circRNAs in plants is still in its infancy. In this review, we introduced the discovery of plant circRNAs, the discovery of plant circRNAs, the circularization feature, expression specificity, conservation, and stability of plant circRNAs and expounded the identification tools, main types, and biogenesis mechanisms of circRNAs. Furthermore, we summarized the potential roles of plant circRNAs as microRNA (miRNA) sponges and translation templates and in response to biotic/abiotic stress, and briefed the degradation and localization of plant circRNAs. Finally, we discussed the challenges and proposed the future directions in the research on plant circRNAs.


Subject(s)
Animals , MicroRNAs/metabolism , Organelle Biogenesis , Plants/metabolism , Protein Biosynthesis/physiology , RNA, Circular/metabolism , RNA, Plant/metabolism , Research/trends , Stress, Physiological/genetics
16.
Nat Struct Mol Biol ; 28(12): 1029-1037, 2021 12.
Article in English | MEDLINE | ID: mdl-34887561

ABSTRACT

Close coordination between chaperones is essential for protein biosynthesis, including the delivery of tail-anchored (TA) proteins containing a single C-terminal transmembrane domain to the endoplasmic reticulum (ER) by the conserved GET pathway. For successful targeting, nascent TA proteins must be promptly chaperoned and loaded onto the cytosolic ATPase Get3 through a transfer reaction involving the chaperone SGTA and bridging factors Get4, Ubl4a and Bag6. Here, we report cryo-electron microscopy structures of metazoan pretargeting GET complexes at 3.3-3.6 Å. The structures reveal that Get3 helix 8 and the Get4 C terminus form a composite lid over the Get3 substrate-binding chamber that is opened by SGTA. Another interaction with Get4 prevents formation of Get3 helix 4, which links the substrate chamber and ATPase domain. Both interactions facilitate TA protein transfer from SGTA to Get3. Our findings show how the pretargeting complex primes Get3 for coordinated client loading and ER targeting.


Subject(s)
Arsenite Transporting ATPases/metabolism , Molecular Chaperones/metabolism , Protein Biosynthesis/physiology , Zebrafish Proteins/metabolism , Animals , Cryoelectron Microscopy , Endoplasmic Reticulum/metabolism , Humans , Models, Molecular , Protein Conformation , Ubiquitins/metabolism , Zebrafish
17.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948282

ABSTRACT

Protein uL5 (formerly called L11) is an integral component of the large (60S) subunit of the human ribosome, and its deficiency in cells leads to the impaired biogenesis of 60S subunits. Using RNA interference, we reduced the level of uL5 in HEK293T cells by three times, which caused an almost proportional decrease in the content of the fraction corresponding to 80S ribosomes, without a noticeable diminution in the level of polysomes. By RNA sequencing of uL5-deficient and control cell samples, which were those of total mRNA and mRNA from the polysome fraction, we identified hundreds of differentially expressed genes (DEGs) at the transcriptome and translatome levels and revealed dozens of genes with altered translational efficiency (GATEs). Transcriptionally up-regulated DEGs were mainly associated with rRNA processing, pre-mRNA splicing, translation and DNA repair, while down-regulated DEGs were genes of membrane proteins; the type of regulation depended on the GC content in the 3' untranslated regions of DEG mRNAs. The belonging of GATEs to up-regulated and down-regulated ones was determined by the coding sequence length of their mRNAs. Our findings suggest that the effects observed in uL5-deficient cells result from an insufficiency of translationally active ribosomes caused by a deficiency of 60S subunits.


Subject(s)
Gene Expression Regulation/genetics , Ribosomal Proteins/deficiency , Ribosomal Proteins/metabolism , Gene Expression/genetics , Gene Expression Profiling/methods , HEK293 Cells , Humans , Protein Biosynthesis/physiology , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , Ribosomal Proteins/genetics , Ribosomes/metabolism , Transcription, Genetic/physiology , Transcriptome/genetics
18.
Elife ; 102021 11 17.
Article in English | MEDLINE | ID: mdl-34787081

ABSTRACT

De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.


Subject(s)
Memory/physiology , Protein Biosynthesis/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Female , Male , Mechanistic Target of Rapamycin Complex 1 , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction
19.
Nat Commun ; 12(1): 6604, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34782646

ABSTRACT

The fidelity of start codon recognition by ribosomes is paramount during protein synthesis. The current knowledge of eukaryotic translation initiation implies unidirectional 5'→3' migration of the pre-initiation complex (PIC) along the 5' UTR. In probing translation initiation from ultra-short 5' UTR, we report that an AUG triplet near the 5' end can be selected via PIC backsliding. Bi-directional ribosome scanning is supported by competitive selection of closely spaced AUG codons and recognition of two initiation sites flanking an internal ribosome entry site. Transcriptome-wide PIC profiling reveals footprints with an oscillation pattern near the 5' end and start codons. Depleting the RNA helicase eIF4A leads to reduced PIC oscillations and impaired selection of 5' end start codons. Enhancing the ATPase activity of eIF4A promotes nonlinear PIC scanning and stimulates upstream translation initiation. The helicase-mediated PIC conformational switch may provide an operational mechanism that unifies ribosome recruitment, scanning, and start codon selection.


Subject(s)
Codon, Initiator/metabolism , Peptide Chain Initiation, Translational/physiology , Protein Biosynthesis/physiology , Ribosomes/metabolism , 5' Untranslated Regions , Adenosine Triphosphatases/metabolism , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , HEK293 Cells , Humans , Internal Ribosome Entry Sites , RNA Helicases/metabolism , RNA, Messenger/metabolism , Sequence Alignment , Yeasts/genetics , Yeasts/metabolism
20.
PLoS Genet ; 17(11): e1009599, 2021 11.
Article in English | MEDLINE | ID: mdl-34807903

ABSTRACT

microRNAs (miRNAs) are potent regulators of gene expression that function in a variety of developmental and physiological processes by dampening the expression of their target genes at a post-transcriptional level. In many gene regulatory networks (GRNs), miRNAs function in a switch-like manner whereby their expression and activity elicit a transition from one stable pattern of gene expression to a distinct, equally stable pattern required to define a nascent cell fate. While the importance of miRNAs that function in this capacity are clear, we have less of an understanding of the cellular factors and mechanisms that ensure the robustness of this form of regulatory bistability. In a screen to identify suppressors of temporal patterning phenotypes that result from ineffective miRNA-mediated target repression, we identified pqn-59, an ortholog of human UBAP2L, as a novel factor that antagonizes the activities of multiple heterochronic miRNAs. Specifically, we find that depletion of pqn-59 can restore normal development in animals with reduced lin-4 and let-7-family miRNA activity. Importantly, inactivation of pqn-59 is not sufficient to bypass the requirement of these regulatory RNAs within the heterochronic GRN. The pqn-59 gene encodes an abundant, cytoplasmically-localized, unstructured protein that harbors three essential "prion-like" domains. These domains exhibit LLPS properties in vitro and normally function to limit PQN-59 diffusion in the cytoplasm in vivo. Like human UBAP2L, PQN-59's localization becomes highly dynamic during stress conditions where it re-distributes to cytoplasmic stress granules and is important for their formation. Proteomic analysis of PQN-59 complexes from embryonic extracts indicates that PQN-59 and human UBAP2L interact with orthologous cellular components involved in RNA metabolism and promoting protein translation and that PQN-59 additionally interacts with proteins involved in transcription and intracellular transport. Finally, we demonstrate that pqn-59 depletion reduces protein translation and also results in the stabilization of several mature miRNAs (including those involved in temporal patterning). These data suggest that PQN-59 may ensure the bistability of some GRNs that require miRNA functions by promoting miRNA turnover and, like UBAP2L, enhancing protein translation.


Subject(s)
Body Patterning/physiology , Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/metabolism , Intracellular Signaling Peptides and Proteins/physiology , MicroRNAs/physiology , Protein Biosynthesis/physiology , Stress Granules/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/metabolism , Gene Deletion , Gene Expression Regulation , Intracellular Signaling Peptides and Proteins/genetics , RNA Processing, Post-Transcriptional
SELECTION OF CITATIONS
SEARCH DETAIL
...