Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 303
Filter
1.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38760174

ABSTRACT

Amyotrophic lateral sclerosis (ALS) leads to death within 2-5 yr. Currently, available drugs only slightly prolong survival. We present novel insights into the pathophysiology of Superoxide Dismutase 1 (SOD1)- and in particular Fused In Sarcoma (FUS)-ALS by revealing a supposedly central role of glycolic acid (GA) and D-lactic acid (DL)-both putative products of the Parkinson's disease associated glyoxylase DJ-1. Combined, not single, treatment with GA/DL restored axonal organelle phenotypes of mitochondria and lysosomes in FUS- and SOD1-ALS patient-derived motoneurons (MNs). This was not only accompanied by restoration of mitochondrial membrane potential but even dependent on it. Despite presenting an axonal transport deficiency as well, TDP43 patient-derived MNs did not share mitochondrial depolarization and did not respond to GA/DL treatment. GA and DL also restored cytoplasmic mislocalization of FUS and FUS recruitment to DNA damage sites, recently reported being upstream of the mitochondrial phenotypes in FUS-ALS. Whereas these data point towards the necessity of individualized (gene-) specific therapy stratification, it also suggests common therapeutic targets across different neurodegenerative diseases characterized by mitochondrial depolarization.


Subject(s)
Amyotrophic Lateral Sclerosis , Glycolates , Lactic Acid , Mitochondria , Protein Deglycase DJ-1 , RNA-Binding Protein FUS , Superoxide Dismutase-1 , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Glycolates/metabolism , Glycolates/pharmacology , Mitochondria/metabolism , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , Lactic Acid/metabolism , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Membrane Potential, Mitochondrial , Motor Neurons/metabolism , Lysosomes/metabolism
2.
Cell Commun Signal ; 22(1): 252, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698453

ABSTRACT

BACKGROUND: Ischemic postconditioning (IPostC) has been reported as a promising method for protecting against myocardial ischemia-reperfusion (MI/R) injury. Our previous study found that the infarct-limiting effect of IPostC is abolished in the heart of diabetes whose cardiac expression of DJ-1 (also called PARK7, Parkinsonism associated deglycase) is reduced. However, the role and in particular the underlying mechanism of DJ-1 in the loss of sensitivity to IPostC-induced cardioprotection in diabetic hearts remains unclear. METHODS: Streptozotocin-induced type 1 diabetic rats were subjected to MI/R injury by occluding the left anterior descending artery (LAD) and followed by reperfusion. IPostC was induced by three cycles of 10s of reperfusion and ischemia at the onset of reperfusion. AAV9-CMV-DJ-1, AAV9-CMV-C106S-DJ-1 or AAV9-DJ-1 siRNA were injected via tail vein to either over-express or knock-down DJ-1 three weeks before inducing MI/R. RESULTS: Diabetic rats subjected to MI/R exhibited larger infarct area, more severe oxidative injury concomitant with significantly reduced cardiac DJ-1 expression and increased PTEN expression as compared to non-diabetic rats. AAV9-mediated cardiac DJ-1 overexpression, but not the cardiac overexpression of DJ-1 mutant C106S, restored IPostC-induced cardioprotection and this effect was accompanied by increased cytoplasmic DJ-1 translocation toward nuclear and mitochondrial, reduced PTEN expression, and increased Nrf-2/HO-1 transcription. Our further study showed that AAV9-mediated targeted DJ-1 gene knockdown aggravated MI/R injury in diabetic hearts, and this exacerbation of MI/R injury was partially reversed by IPostC in the presence of PTEN inhibition or Nrf-2 activation. CONCLUSIONS: These findings suggest that DJ-1 preserves the cardioprotective effect of IPostC against MI/R injury in diabetic rats through nuclear and mitochondrial DJ-1 translocation and that inhibition of cardiac PTEN and activation of Nrf-2/HO-1 may represent the major downstream mechanisms whereby DJ-1 preserves the cardioprotective effect of IPostC in diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Ischemic Postconditioning , Myocardial Reperfusion Injury , PTEN Phosphohydrolase , Protein Deglycase DJ-1 , Rats, Sprague-Dawley , Animals , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Diabetes Mellitus, Experimental/metabolism , Male , Rats , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/complications , Protein Transport , Streptozocin , Myocardial Infarction/metabolism , Myocardial Infarction/pathology
3.
J Med Chem ; 67(10): 7935-7953, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38713163

ABSTRACT

The integration of diverse chemical tools like small-molecule inhibitors, activity-based probes (ABPs), and proteolysis targeting chimeras (PROTACs) advances clinical drug discovery and facilitates the exploration of various biological facets of targeted proteins. Here, we report the development of such a chemical toolbox for the human Parkinson disease protein 7 (PARK7/DJ-1) implicated in Parkinson's disease and cancers. By combining structure-guided design, miniaturized library synthesis, and high-throughput screening, we identified two potent compounds, JYQ-164 and JYQ-173, inhibiting PARK7 in vitro and in cells by covalently and selectively targeting its critical residue, Cys106. Leveraging JYQ-173, we further developed a cell-permeable Bodipy probe, JYQ-196, for covalent labeling of PARK7 in living cells and a first-in-class PARK7 degrader JYQ-194 that selectively induces its proteasomal degradation in human cells. Our study provides a valuable toolbox to enhance the understanding of PARK7 biology in cellular contexts and opens new opportunities for therapeutic interventions.


Subject(s)
Protein Deglycase DJ-1 , Proteolysis , Boron Compounds/pharmacology , Boron Compounds/chemistry , Boron Compounds/chemical synthesis , Protein Deglycase DJ-1/metabolism , Proteolysis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship
4.
Redox Biol ; 72: 103156, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640584

ABSTRACT

Regulation of the oxidative stress response is crucial for the management and prognosis of traumatic brain injury (TBI). The copper chaperone Antioxidant 1 (Atox1) plays a crucial role in regulating intracellular copper ion balance and impacting the antioxidant capacity of mitochondria, as well as the oxidative stress state of cells. However, it remains unknown whether Atox1 is involved in modulating oxidative stress following TBI. Here, we investigated the regulatory role of Atox1 in oxidative stress on neurons both in vivo and in vitro, and elucidated the underlying mechanism through culturing hippocampal HT-22 cells with Atox1 mutation. The expression of Atox1 was significantly diminished following TBI, while mice with overexpressed Atox1 exhibited a more preserved hippocampal structure and reduced levels of oxidative stress post-TBI. Furthermore, the mice displayed notable impairments in learning and memory functions after TBI, which were ameliorated by the overexpression of Atox1. In the stretch injury model of HT-22 cells, overexpression of Atox1 mitigated oxidative stress by preserving the normal morphology and network connectivity of mitochondria, as well as facilitating the elimination of damaged mitochondria. Mechanistically, co-immunoprecipitation and mass spectrometry revealed the binding of Atox1 to DJ-1. Knockdown of DJ-1 in HT-22 cells significantly impaired the antioxidant capacity of Atox1. Mutations in the copper-binding motif or sequestration of free copper led to a substantial decrease in the interaction between Atox1 and DJ-1, with overexpression of DJ-1 failing to restore the antioxidant capacity of Atox1 mutants. The findings suggest that DJ-1 mediates the ability of Atox1 to withstand oxidative stress. And targeting Atox1 could be a potential therapeutic approach for addressing post-traumatic neurological dysfunction.


Subject(s)
Brain Injuries, Traumatic , Copper Transport Proteins , Hippocampus , Mitophagy , Neurons , Oxidative Stress , Protein Deglycase DJ-1 , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/genetics , Mice , Hippocampus/metabolism , Hippocampus/pathology , Neurons/metabolism , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , Copper Transport Proteins/metabolism , Copper Transport Proteins/genetics , Mitochondria/metabolism , Disease Models, Animal , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Male , Antioxidants/metabolism , Cell Line , Humans
5.
Exp Mol Med ; 56(3): 747-759, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531963

ABSTRACT

Intervertebral disc degeneration (IDD) is an important pathological basis for degenerative spinal diseases and is involved in mitophagy dysfunction. However, the molecular mechanisms underlying mitophagy regulation in IDD remain unclear. This study aimed to clarify the role of DJ-1 in regulating mitophagy during IDD pathogenesis. Here, we showed that the mitochondrial localization of DJ-1 in nucleus pulposus cells (NPCs) first increased and then decreased in response to oxidative stress. Subsequently, loss- and gain-of-function experiments revealed that overexpression of DJ-1 in NPCs inhibited oxidative stress-induced mitochondrial dysfunction and mitochondria-dependent apoptosis, whereas knockdown of DJ-1 had the opposite effect. Mechanistically, mitochondrial translocation of DJ-1 promoted the recruitment of hexokinase 2 (HK2) to damaged mitochondria by activating Akt and subsequently Parkin-dependent mitophagy to inhibit oxidative stress-induced apoptosis in NPCs. However, silencing Parkin, reducing mitochondrial recruitment of HK2, or inhibiting Akt activation suppressed DJ-1-mediated mitophagy. Furthermore, overexpression of DJ-1 ameliorated IDD in rats through HK2-mediated mitophagy. Taken together, these findings indicate that DJ-1 promotes HK2-mediated mitophagy under oxidative stress conditions to inhibit mitochondria-dependent apoptosis in NPCs and could be a therapeutic target for IDD.


Subject(s)
Intervertebral Disc Degeneration , Mitophagy , Protein Deglycase DJ-1 , Animals , Rats , Apoptosis , Hexokinase/genetics , Hexokinase/pharmacology , Hexokinase/therapeutic use , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Mitophagy/genetics , Mitophagy/physiology , Proto-Oncogene Proteins c-akt , Ubiquitin-Protein Ligases/genetics , Protein Deglycase DJ-1/metabolism
6.
Genes Genomics ; 46(5): 519-529, 2024 May.
Article in English | MEDLINE | ID: mdl-38460098

ABSTRACT

BACKGROUND: GBA1 mutations are the most common genetic risk factor for development of Parkinson's disease (PD). The loss of catalytic activity in GBA1, as well as the reduction of the GBA1 protein in certain cellular compartment, may increase disease progression. However, the mechanisms underlying cellular dysfunction caused by GBA1 deficiency are still mostly unknown. OBJECTIVE: In this study, we focus on the genetic interaction between GBA1 deficiency and PD-causing genes, such as DJ-1, in mitochondrial dysfunction. METHODS: GBA1 knockout (KO) SH-SY5Y cells were used to assess DJ-1 functions against oxidative stress in vitro. The levels of cellular reactive oxygen species were monitored with MitoSOX reagent. The expression of the PARK7 gene was analyzed using the quantitative real-time PCR (qRT-PCR). To understand the mechanism underlying DJ-1 upregulation in GBA1 KO cells, we assess ROS levels, antioxidant protein, and cell viability in GBA1 KO cells with treatment of ROS inhibitor N-acetyl-cysteine or miglustat, which is an inhibitor of glucosylceramide synthase. Dopaminergic degeneration was assessed from Gba1 L444P heterozygous mice mated with Park7 knockout mice. RESULTS: We find that DJ-1 is significantly upregulated in GBA1 KO cells. Elevated levels of DJ-1 are attributed to the transcriptional expression of PARK7 mRNA, but not the inhibition of DJ-1 protein degradation. Because DJ-1 expression is highly linked to oxidative stress, we observe cellular reactive oxygen species (ROS) in GBA1 KO cells. Moreover, several antioxidant gene expressions and protein levels are increased in GBA1 KO cells. To this end, GBA1 KO cells are more susceptible to H2O2-induced cell death. Importantly, there is a significant reduction in dopaminergic neurons in the midbrain from Gba1 L444P heterozygous mice mated with Park7 knockout mice, followed by mild motor dysfunction. CONCLUSION: Taken together, our results suggest that DJ-1 upregulation due to GBA1 deficiency has a protective role against oxidative stress. It may be supposed that mutations or malfunctions in the DJ-1 protein may have disadvantages in the survival of dopaminergic neurons in the brains of patients harboring GBA1 mutations.


Subject(s)
Antioxidants , Neuroblastoma , Parkinson Disease , Humans , Mice , Animals , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Hydrogen Peroxide , Oxidative Stress , Cell Death/physiology , Mice, Knockout , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism
7.
Cells ; 13(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38391909

ABSTRACT

Parkinson's disease (PD) is a common movement disorder associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Mutations in the PD-associated gene PARK7 alter the structure and function of the encoded protein DJ-1, and the resulting autosomal recessively inherited disease increases the risk of developing PD. DJ-1 was first discovered in 1997 as an oncogene and was associated with early-onset PD in 2003. Mutations in DJ-1 account for approximately 1% of all recessively inherited early-onset PD occurrences, and the functions of the protein have been studied extensively. In healthy subjects, DJ-1 acts as an antioxidant and oxidative stress sensor in several neuroprotective mechanisms. It is also involved in mitochondrial homeostasis, regulation of apoptosis, chaperone-mediated autophagy (CMA), and dopamine homeostasis by regulating various signaling pathways, transcription factors, and molecular chaperone functions. While DJ-1 protects neurons against damaging reactive oxygen species, neurotoxins, and mutant α-synuclein, mutations in the protein may lead to inefficient neuroprotection and the progression of PD. As current therapies treat only the symptoms of PD, the development of therapies that directly inhibit oxidative stress-induced neuronal cell death is critical. DJ-1 has been proposed as a potential therapeutic target, while oxidized DJ-1 could operate as a biomarker for PD. In this paper, we review the role of DJ-1 in the pathogenesis of PD by highlighting some of its key neuroprotective functions and the consequences of its dysfunction.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , Oxidative Stress/genetics , Antioxidants/metabolism , Dopaminergic Neurons/metabolism , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism
8.
Aging Cell ; 23(5): e14124, 2024 May.
Article in English | MEDLINE | ID: mdl-38380563

ABSTRACT

DJ-1, also known as Parkinson's disease protein 7 (Park7), is a multifunctional protein that regulates oxidative stress and mitochondrial function. Dysfunction of DJ-1 is implicated in the pathogenesis of Parkinson's disease (PD). Hyperhomocysteinemia is associated with an increased risk of PD. Here we show that homocysteine thiolactone (HTL), a reactive thioester of homocysteine (Hcy), covalently modifies DJ-1 on the lysine 182 (K182) residue in an age-dependent manner. The N-homocysteinylation (N-hcy) of DJ-1 abolishes its neuroprotective effect against oxidative stress and mitochondrial dysfunction, exacerbating cell toxicity. Blocking the N-hcy of DJ-1 restores its protective effect. These results indicate that the N-hcy of DJ-1 abolishes its neuroprotective effect and promotes the progression of PD. Inhibiting the N-hcy of DJ-1 may exert neuroprotective effect against PD.


Subject(s)
Homocysteine , Parkinson Disease , Protein Deglycase DJ-1 , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Homocysteine/metabolism , Homocysteine/analogs & derivatives , Humans , Animals , Oxidative Stress/drug effects , Mice , Mitochondria/metabolism
9.
J Gastroenterol ; 59(3): 229-249, 2024 03.
Article in English | MEDLINE | ID: mdl-38310161

ABSTRACT

BACKGROUND: Liver fibrosis can progress to cirrhosis and hepatic carcinoma without treatment. CircDCBLD2 was found to be downregulated in liver fibrosis. However, the precise underlying mechanism requires further investigation. METHODS: qRT-PCR, Western blot, and immunohistochemistry assays were used to detect the related molecule levels. HE, Masson's trichrome, and Sirius Red staining were used to assess the pathological changes in mice's liver tissues. Flow cytometric analysis and commercial kit were used to assess the levels of lipid reactive oxygen species (ROS), malonaldehyde (MDA), glutathione (GSH), and iron. Cell viability was assessed by MTT. Immunoprecipitation was used to study the ubiquitination of PARK7. Mitophagy was determined by immunostaining and confocal imaging. RIP and Co-IP assays were used to assess the interactions of circDCBLD2/HuR, HuR/STUB1, and STUB1/PARK7. Fluorescence in situ hybridization and immunofluorescence staining were used to assess the co-localization of circDCBLD2 and HuR. RESULTS: CircDCBLD2 was downregulated, whereas PARK7 was upregulated in liver fibrosis. Ferroptosis activators increased circDCBLD2 while decreasing PARK7 in hepatic stellate cells (HSCs) and mice with liver fibrosis. CircDCBLD2 overexpression reduced cell viability and GSH, PARK7, and GPX4 expression in erastin-treated HSCs while increasing MDA and iron levels, whereas circDCBLD2 knockdown had the opposite effect. CircDCBLD2 overexpression increased STUB1-mediated PARK7 ubiquitination by promoting HuR-STUB1 binding and thus increasing STUB1 mRNA stability. PARK7 overexpression or HuR knockdown reversed the effects of circDCBLD2 overexpression on HSC activation and ferroptosis. CircDCBLD2 reduced liver fibrosis in mice by inhibiting PARK7. CONCLUSION: CircDCBLD2 overexpression increased PARK7 ubiquitination degradation by upregulating STUB1 through its interaction with HuR, inhibiting HSC activation and promoting HSC ferroptosis, ultimately enhancing liver fibrosis.


Subject(s)
Ferroptosis , Liver Neoplasms , Animals , Mice , Hepatic Stellate Cells/metabolism , In Situ Hybridization, Fluorescence , Iron/metabolism , Iron/pharmacology , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/pharmacology , Ubiquitination
10.
Cell Mol Life Sci ; 80(10): 303, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749450

ABSTRACT

Although TrkB may be associated with the pathogenesis of various cancer by upregulation, how upregulation of TrkB led to tumor progression in hepatocellular carcinoma (HCC) and the signaling mechanisms by which TrkB induces motility, invasion, metastasis, drug resistance, and acquisition of self-renewal traits has remained unclear. Here, we demonstrated that TrkB was significantly upregulated in highly metastatic HCC cells and HCC patients. Also, the increased TrkB levels were significantly correlated with tumor stages and poor survival of HCC patients. Furthermore, the upregulated TrkB expression enhances the metastatic ability of HCC cells through reduced anoikis sensitivity, induced migration, and colony formation. Most strikingly, TrkB markedly enhances the activation of STAT3 by preventing DJ-1 degradation through the formation of the TrkB/DJ-1 complex. This signaling mechanism is responsible for triggering cellular traits of highly aggressive HCC. The activation of the EMT program of HCC via increasing DJ-1 stability by TrkB induces the gain of cancer stem cell states and chemoresistance via the upregulation of stem cells cell markers and ABC transporters. Also, TrkB-mediated inhibition of DJ-1 degradation promotes tumor formation and metastasizes to other organs in vivo. Our observations illustrate that TrkB is a prognostic and therapeutic targeting in promoting aggressiveness and metastasis of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Protein Deglycase DJ-1 , Receptor, trkB , Humans , ATP-Binding Cassette Transporters , Neoplastic Stem Cells , Receptor, trkB/metabolism , Protein Deglycase DJ-1/metabolism
11.
Arch Biochem Biophys ; 743: 109672, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37336341

ABSTRACT

Autophagy is a highly conserved biological process that has evolved across evolution. It can be activated by various external stimuli including oxidative stress, amino acid starvation, infection, and hypoxia. Autophagy is the primary mechanism for preserving cellular homeostasis and is implicated in the regulation of metabolism, cell differentiation, tolerance to starvation conditions, and resistance to aging. As a multifunctional protein, DJ-1 is commonly expressed in vivo and is associated with a variety of biological processes. Its most widely studied role is its function as an oxidative stress sensor that inhibits the production of excessive reactive oxygen species (ROS) in the mitochondria and subsequently the cellular damage caused by oxidative stress. In recent years, many studies have identified DJ-1 as another important factor regulating autophagy; it regulates autophagy in various ways, most commonly by regulating the oxidative stress response. In particular, DJ-1-regulated autophagy is involved in cancer progression and plays a key role in alleviating neurodegenerative diseases(NDS) and defective reperfusion diseases. It could serve as a potential target for the regulation of autophagy and participate in disease treatment as a meaningful modality. Therefore, exploring DJ-1-regulated autophagy could provide new avenues for future disease treatment.


Subject(s)
Neoplasms , Oxidative Stress , Humans , Reactive Oxygen Species/metabolism , Oxidative Stress/physiology , Hypoxia/metabolism , Autophagy/physiology , Protein Deglycase DJ-1/metabolism
12.
Acta Pharmacol Sin ; 44(10): 1948-1961, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37225849

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative motor disorder characterized by a dramatic reduction in pars compacta of substantia nigra dopaminergic neurons and striatal dopamine (DA) levels. Mutations or deletions in the PARK7/DJ-1 gene are associated with an early-onset familial form of PD. DJ-1 protein prevents neurodegeneration via its regulation of oxidative stress and mitochondrial function as well as its roles in transcription and signal transduction. In this study, we investigated how loss of DJ-1 function affected DA degradation, ROS generation and mitochondrial dysfunction in neuronal cells. We showed that loss of DJ-1 significantly increased the expression of monoamine oxidase (MAO)-B but not MAO-A in both neuronal cells and primary astrocytes. In DJ-1-knockout (KO) mice, MAO-B protein levels in the substantia nigra (SN) and striatal regions were significantly increased. We demonstrated that the induction of MAO-B expression by DJ-1 deficiency depended on early growth response 1 (EGR1) in N2a cells. By coimmunoprecipitation omics analysis, we found that DJ-1 interacted with receptor of activated protein C kinase 1 (RACK1), a scaffolding protein, and thus inhibited the activity of the PKC/JNK/AP-1/EGR1 cascade. The PKC inhibitor sotrastaurin or the JNK inhibitor SP600125 completely inhibited DJ-1 deficiency-induced EGR1 and MAO-B expression in N2a cells. Moreover, the MAO-B inhibitor rasagiline inhibited mitochondrial ROS generation and rescued neuronal cell death caused by DJ-1 deficiency, especially in response to MPTP stimulation in vitro and in vivo. These results suggest that DJ-1 exerts neuroprotective effects by inhibiting the expression of MAO-B distributed at the mitochondrial outer membrane, which mediates DA degradation, ROS generation and mitochondrial dysfunction. This study reveals a mechanistic link between DJ-1 and MAO-B expression and contributes to understanding the crosslinks among pathogenic factors, mitochondrial dysfunction and oxidative stress in PD pathogenesis.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Monoamine Oxidase/pharmacology , Up-Regulation , Reactive Oxygen Species/metabolism , Dopaminergic Neurons/metabolism , Signal Transduction , Neurodegenerative Diseases/metabolism , Receptors for Activated C Kinase/genetics , Receptors for Activated C Kinase/metabolism , Receptors for Activated C Kinase/pharmacology , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism
13.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108572

ABSTRACT

DJ-1 (also known as PARK7) is a multifunctional enzyme in human beings that is highly conserved and that has also been discovered in diverse species (ranging from prokaryotes to eukaryotes). Its complex enzymatic and non-enzymatic activities (such as anti-oxidation, anti-glycation, and protein quality control), as well as its role as a transcriptional coactivator, enable DJ-1 to serve as an essential regulator in multiple cellular processes (e.g., epigenetic regulations) and make it a promising therapeutic target for diverse diseases (especially cancer and Parkinson's disease). Due to its nature as a Swiss army knife enzyme with various functions, DJ-1 has attracted a large amount of research interest, from different perspectives. In this review, we give a brief summary of the recent advances with respect to DJ-1 research in biomedicine and psychology, as well as the progress made in attempts to develop DJ-1 into a druggable target for therapy.


Subject(s)
Parkinson Disease , Humans , Protein Deglycase DJ-1/metabolism , Oxidative Stress
14.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108835

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an adult-onset disease which causes the progressive degeneration of cortical and spinal motoneurons, leading to death a few years after the first symptom onset. ALS is mainly a sporadic disorder, and its causative mechanisms are mostly unclear. About 5-10% of cases have a genetic inheritance, and the study of ALS-associated genes has been fundamental in defining the pathological pathways likely also involved in the sporadic forms of the disease. Mutations affecting the DJ-1 gene appear to explain a subset of familial ALS forms. DJ-1 is involved in multiple molecular mechanisms, acting primarily as a protective agent against oxidative stress. Here, we focus on the involvement of DJ-1 in interconnected cellular functions related to mitochondrial homeostasis, reactive oxygen species (ROS) levels, energy metabolism, and hypoxia response, in both physiological and pathological conditions. We discuss the possibility that impairments in one of these pathways may affect the others, contributing to a pathological background in which additional environmental or genetic factors may act in favor of the onset and/or progression of ALS. These pathways may represent potential therapeutic targets to reduce the likelihood of developing ALS and/or slow disease progression.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Adult , Amyotrophic Lateral Sclerosis/metabolism , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Motor Neurons/metabolism , Mutation , Oxidative Stress/physiology
15.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047429

ABSTRACT

DJ-1 is a redox sensitive protein with a wide range of functions related to oxidative stress protection. Mutations in the park7 gene, which codes for DJ-1 are associated with early onset familial Parkinson's disease and increased astrocytic DJ-1 levels are found in pathologic tissues from idiopathic Parkinson's disease. We have previously established a DJ-1 knockout zebrafish line that developed normally, but with aging the DJ-1 null fish had a lowered level of tyrosine hydroxylase, respiratory mitochondrial failure and a lower body mass. Here we have examined the DJ-1 knockout from the early adult stage and show that loss of DJ-1 results in a progressive, age-dependent increase in both motoric and non-motoric symptoms associated to Parkinson's disease. These changes coincide with changes in mitochondrial and mitochondrial associated proteins. Recent studies have suggested that a decline in NAD+ can contribute to Parkinson's disease and that supplementation of NAD+ precursors may delay disease progression. We found that the brain NAD+/NADH ratio decreased in aging zebrafish but did not correlate with DJ-1 induced altered behavior. Differences were first observed at the late adult stage in which NAD+ and NADPH levels were decreased in DJ-1 knockouts. Considering the experimental power of zebrafish and the development of Parkinson's disease-related symptoms in the DJ-1 null fish, this model can serve as a useful tool both to understand the progression of the disease and the effect of suggested treatments.


Subject(s)
Parkinson Disease , Animals , Parkinson Disease/metabolism , Zebrafish/genetics , Zebrafish/metabolism , NAD/metabolism , Brain/metabolism , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism
16.
J Neuroinflammation ; 20(1): 95, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072827

ABSTRACT

Microglia are the immune effector cells of the brain playing critical roles in immune surveillance and neuroprotection in healthy conditions, while they can sustain neuroinflammatory and neurotoxic processes in neurodegenerative diseases, including Parkinson's disease (PD). Although the precise triggers of PD remain obscure, causative genetic mutations, which aid in the identification of molecular pathways underlying the pathogenesis of idiopathic forms, represent 10% of the patients. Among the inherited forms, loss of function of PARK7, which encodes the protein DJ-1, results in autosomal recessive early-onset PD. Yet, although protection against oxidative stress is the most prominent task ascribed to DJ-1, the underlying mechanisms linking DJ-1 deficiency to the onset of PD are a current matter of investigation. This review provides an overview of the role of DJ-1 in neuroinflammation, with a special focus on its functions in microglia genetic programs and immunological traits. Furthermore, it discusses the relevance of targeting dysregulated pathways in microglia under DJ-1 deficiency and their importance as therapeutic targets in PD. Lastly, it addresses the prospect to consider DJ-1, detected in its oxidized form in idiopathic PD, as a biomarker and to take into account DJ-1-enhancing compounds as therapeutics dampening oxidative stress and neuroinflammation.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/pathology , Microglia/metabolism , Neuroinflammatory Diseases , Neurodegenerative Diseases/metabolism , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Oxidative Stress/genetics
17.
Protein Sci ; 32(5): e4641, 2023 05.
Article in English | MEDLINE | ID: mdl-37060572

ABSTRACT

DJ-1, a protein encoded by PARK7 plays a protective role against neurodegeneration. Since its glyoxalase III activity catalyzing methylglyoxal (MG) to lactate was discovered, DJ-1 has been re-established as a deglycase decomposing the MG-intermediates with amino acids and nucleotides (hemithioacetal and hemiaminal) rather than MG itself, but it is still debatable. Here, we have clarified that human DJ-1 directly recognizes MG, and not MG-intermediates, by monitoring the detailed catalytic processes and enantiomeric lactate products. The hemithioacetal intermediate between C106 of 15 N-labeled DJ-1 (15N DJ-1) and MG was also monitored by NMR. TRIS molecule formed stable diastereotopic complexes with MG (Kd , 1.57 ± 0.27 mM) by utilizing its three OH groups, which likely disturbed the assay of deglycase activity. The low kcat of DJ-1 for MG and its MG-induced structural perturbation may suggest that DJ-1 has a regulatory function as an in vivo sensor of reactive carbonyl stress.


Subject(s)
Parkinson Disease , Humans , Aldehyde Oxidoreductases , Lactic Acid/metabolism , Parkinson Disease/metabolism , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Pyruvaldehyde/chemistry , Pyruvaldehyde/metabolism
18.
Adv Sci (Weinh) ; 10(15): e2206007, 2023 05.
Article in English | MEDLINE | ID: mdl-36967569

ABSTRACT

Doxorubicin (DOX)-induced cardiotoxicity (DoIC) is a major side effect for cancer patients. Recently, ferroptosis, triggered by iron overload, is demonstrated to play a role in DoIC. How iron homeostasis is dysregulated in DoIC remains to be elucidated. Here, the authors demonstrate that DOX challenge exhibits reduced contractile function and induction of ferroptosis-related phenotype in cardiomyocytes, evidenced by iron overload, lipid peroxide accumulation, and mitochondrial dysfunction. Compared to Ferric ammonium citrate (FAC) induced secondary iron overload, DOX-challenged cardiomyocytes show a dysfunction of iron homeostasis, with decreased cytoplasmic and mitochondrial iron-sulfur (FeS) cluster-mediated aconitase activity and abnormal expression of iron homeostasis-related proteins. Mechanistically, mass spectrometry analysis identified DOX-treatment induces p53-dependent degradation of Parkinsonism associated deglycase (Park7) which results in iron homeostasis dysregulation. Park7 counteracts iron overload by regulating iron regulatory protein family transcription while blocking mitochondrial iron uptake. Knockout of p53 or overexpression of Park7 in cardiomyocytes remarkably restores the activity of FeS cluster and iron homeostasis, inhibits ferroptosis, and rescues cardiac function in DOX treated animals. These results demonstrate that the iron homeostasis plays a key role in DoIC ferroptosis. Targeting of the newly identified p53-Park7 signaling axis may provide a new approach to prevent DoIC.


Subject(s)
Iron Overload , Myocytes, Cardiac , Animals , Tumor Suppressor Protein p53/metabolism , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/pharmacology , Doxorubicin/adverse effects , Iron/metabolism , Homeostasis
19.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902085

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder in human and loss-of-functions DJ-1 mutations are associated with a familial form of early onset PD. Functionally, DJ-1 (PARK7), a neuroprotective protein, is known to support mitochondria and protect cells from oxidative stress. Mechanisms and agents by which the level of DJ-1 could be increased in the CNS are poorly described. RNS60 is a bioactive aqueous solution created by exposing normal saline to Taylor-Couette-Poiseuille flow under high oxygen pressure. Recently we have described neuroprotective, immunomodulatory and promyelinogenic properties of RNS60. Here we delineate that RNS60 is also capable of increasing the level of DJ-1 in mouse MN9D neuronal cells and primary dopaminergic neurons, highlighting another new neuroprotective effect of RNS60. While investigating the mechanism we found the presence of cAMP response element (CRE) in DJ-1 gene promoter and stimulation of CREB activation in neuronal cells by RNS60. Accordingly, RNS60 treatment increased the recruitment of CREB to the DJ-1 gene promoter in neuronal cells. Interestingly, RNS60 treatment also induced the enrollment of CREB-binding protein (CBP), but not the other histone acetyl transferase p300, to the promoter of DJ-1 gene. Moreover, knockdown of CREB by siRNA led to the inhibition of RNS60-mediated DJ-1 upregulation, indicating an important role of CREB in DJ-1 upregulation by RNS60. Together, these results indicate that RNS60 upregulates DJ-1 in neuronal cells via CREB-CBP pathway. It may be of benefit for PD and other neurodegenerative disorders.


Subject(s)
Dopaminergic Neurons , Parkinson Disease , Protein Deglycase DJ-1 , Animals , Humans , Mice , Dopaminergic Neurons/metabolism , Oxidative Stress , Parkinson Disease/metabolism , Protein Deglycase DJ-1/metabolism , Saline Solution , Up-Regulation
20.
Toxicology ; 487: 153467, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36842454

ABSTRACT

Parkinson's disease is a severe neurodegenerative disease. Several environmental contaminants such as pesticides have been suspected to favor the appearance of this pathology. The protein DJ-1 (or Park7) protects against the development of Parkinson's disease. Thus, the possible inhibitory effects of about a hundred pesticides on human DJ-1 have been studied. We identified fifteen of them as strong inhibitors of DJ-1 with IC50 values between 0.02 and 30 µM. Thiocarbamates are particularly good inhibitors, as shown by thiram that acts as an irreversible inhibitor of an esterase activity of DJ-1 with an IC50 value of 0.02 µM. Thiram was also found as a good inhibitor of the protective activity of DJ-1 against glycation. Such inhibitory effects could be one of the various biological effects of these pesticides that may explain their involvement in the development of Parkinson's disease.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Pesticides , Humans , Parkinson Disease/pathology , Pesticides/toxicity , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Thiram
SELECTION OF CITATIONS
SEARCH DETAIL
...