Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 447-454, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38790101

ABSTRACT

Objective To prepare monoclonal antibodies against the envelope protein extracellular domain (Eecto) of Zika virus (ZIKV) in mice. Methods A prokaryotic expression plasmid, pET28a-ZIKV-Eecto of ZIKV Eecto, was constructed, transformed into Escherichia coli BL21 and induced by isopropyl ß-D-thiogalactoside (IPTG). The recombinant Eecto protein was expressed in the form of inclusion bodies, and purified proteins were obtained through denaturation, renaturation and ultrafiltration. After three rounds of immunization with the Eecto protein, the serum of BALB/c mice was obtained and the titer of polyclonal antibodies in serum was determined. The reactivity of polyclonal antibodies was analyzed with Western blotting and immunofluorescence assay in HEK293T cells expressing the ZIKV prME. Spleen cells from mice with higher antibody titers were prepared and fused with SP2/0 myeloma cells. The hybridoma cells secreting antibodies were screened through the limited dilution method, and the ascites containing antibody were harvested for titer measurement and subclass analysis. The Eecto from the envelope proteins of Japanese encephalitis virus (JEV), Yellow fever virus (YFV), Dengue virus (DENV1-4), and Tick borne encephalitis virus (TBEV) were coated and used to analyze the cross-reactivity of ZIKV monoclonal antibodies by ELISA. Further specificity analysis was conducted on antibodies with high titers and strong specificity. Results The plasmid pET28a-ZIKV-Eecto was successfully constructed. The purified Eecto protein was obtained with good immunogenicity. Four monoclonal antibodies were prepared and screened, namely 1D6, 4F11, 4H7, and 4F8. Among them, 1D6, 4H7, and 4F8 are IgG (K) type antibodies, and 4F11 is an IgM (K) antibody. The ascitic fluid titer of 1D6 was higher than 1:108. Antibodies 1D6 and 4H7 are ZIKV-specific and showed no cross-reactivity with other Flaviviruses. Conclusion The mice monoclonal antibodies against ZIKV-Eecto are produced successfully, which will provide experimental materials for the establishment of ZIKV detection methods and the study of its pathogenesis.


Subject(s)
Antibodies, Monoclonal , Mice, Inbred BALB C , Viral Envelope Proteins , Zika Virus , Animals , Zika Virus/immunology , Zika Virus/genetics , Antibodies, Monoclonal/immunology , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Mice , Humans , HEK293 Cells , Female , Antibodies, Viral/immunology , Protein Domains/immunology , Enzyme-Linked Immunosorbent Assay
2.
ACS Nano ; 18(19): 12235-12260, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696217

ABSTRACT

Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.


Subject(s)
Nanoparticles , Porcine epidemic diarrhea virus , Viral Vaccines , Porcine epidemic diarrhea virus/immunology , Animals , Nanoparticles/chemistry , Swine , Mice , Viral Vaccines/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Mice, Inbred BALB C , Antigens, Viral/immunology , Antigens, Viral/chemistry , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Protein Domains/immunology , Female , Nanovaccines
3.
J Biol Chem ; 299(12): 105372, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865314

ABSTRACT

Notch regulates the immune and inflammatory response and has been associated with the pathogenesis of osteoarthritis in humans and preclinical models of the disease. Notch2tm1.1Ecan mice harbor a NOTCH2 gain-of-function and are sensitized to osteoarthritis, but the mechanisms have not been explored. We examined the effects of tumor necrosis factor α (TNFα) in chondrocytes from Notch2tm1.1Ecan mice and found that NOTCH2 enhanced the effect of TNFα on Il6 and Il1b expression. Similar results were obtained in cells from a conditional model of NOTCH2 gain-of-function, Notch22.1Ecan mice, and following the expression of the NOTCH2 intracellular domain in vitro. Recombination signal-binding protein for immunoglobulin Kappa J region partners with the NOTCH2 intracellular domain to activate transcription; in the absence of Notch signaling it inhibits transcription, and Rbpj inactivation in chondrocytes resulted in Il6 induction. Although TNFα induced IL6 to a greater extent in the context of NOTCH2 activation, there was a concomitant inhibition of Notch target genes Hes1, Hey1, Hey2, and Heyl. Electrophoretic mobility shift assay demonstrated displacement of recombination signal-binding protein for immunoglobulin Kappa J region from DNA binding sites by TNFα explaining the increased Il6 expression and the concomitant decrease in Notch target genes. NOTCH2 enhanced the effect of TNFα on NF-κB signaling, and RNA-Seq revealed increased expression of pathways associated with inflammation and the phagosome in NOTCH2 overexpressing cells in the absence and presence of TNFα. Collectively, NOTCH2 has important interactions with TNFα resulting in the enhanced expression of Il6 and inflammatory pathways in chondrocytes.


Subject(s)
Chondrocytes , Osteoarthritis , Receptor, Notch2 , Tumor Necrosis Factor-alpha , Animals , Humans , Mice , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism , Immunoglobulins , Interleukin-6/genetics , Interleukin-6/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Inflammation , Disease Models, Animal , Chondrogenesis , Signal Transduction/drug effects , Protein Domains/immunology , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Gene Deletion , Gene Expression Regulation/drug effects
4.
J Virol ; 97(4): e0009523, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37014223

ABSTRACT

Many RING domain E3 ubiquitin ligases play critical roles in fine-tuning the innate immune response, yet little is known about their regulatory role in flavivirus-induced innate immunity. In previous studies, we found that the suppressor of cytokine signaling 1 (SOCS1) protein mainly undergoes lysine 48 (K48)-linked ubiquitination. However, the E3 ubiquitin ligase that promotes the K48-linked ubiquitination of SOCS1 is unknown. In the present study, we found that RING finger protein 123 (RNF123) binds to the SH2 domain of SOCS1 through its RING domain and facilitates the K48-linked ubiquitination of the K114 and K137 residues of SOCS1. Further studies found that RNF123 promoted the proteasomal degradation of SOCS1 and promoted Toll-like receptor 3 (TLR3)- and interferon (IFN) regulatory factor 7 (IRF7)-mediated type I IFN production during duck Tembusu virus (DTMUV) infection through SOCS1, ultimately inhibiting DTMUV replication. Overall, these findings demonstrate a novel mechanism by which RNF123 regulates type I IFN signaling during DTMUV infection by targeting SOCS1 degradation. IMPORTANCE In recent years, posttranslational modification (PTM) has gradually become a research hot spot in the field of innate immunity regulation, and ubiquitination is one of the critical PTMs. DTMUV has seriously endangered the development of the waterfowl industry in Southeast Asian countries since its outbreak in 2009. Previous studies have shown that SOCS1 is modified by K48-linked ubiquitination during DTMUV infection, but E3 ubiquitin ligase catalyzing the ubiquitination of SOCS1 has not been reported. Here, we identify for the first time that RNF123 acts as an E3 ubiquitin ligase that regulates TLR3- and IRF7-induced type I IFN signaling during DTMUV infection by targeting the K48-linked ubiquitination of the K114 and K137 residues of SOCS1 and the proteasomal degradation of SOCS1.


Subject(s)
Flavivirus Infections , Flavivirus , Interferon Type I , Suppressor of Cytokine Signaling 1 Protein , Animals , Ducks , Flavivirus/physiology , Immunity, Innate/immunology , Interferon Type I/immunology , Toll-Like Receptor 3/metabolism , Ubiquitin-Protein Ligases/immunology , Ubiquitination , Suppressor of Cytokine Signaling 1 Protein/immunology , Flavivirus Infections/immunology , Flavivirus Infections/virology , Protein Binding , Protein Domains/immunology , Virus Replication , HEK293 Cells , Embryo, Mammalian , Humans
5.
Nature ; 614(7948): 521-529, 2023 02.
Article in English | MEDLINE | ID: mdl-36535326

ABSTRACT

Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Evolution, Molecular , Immunity, Humoral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Breakthrough Infections/immunology , Breakthrough Infections/virology , COVID-19/immunology , COVID-19/virology , COVID-19 Serotherapy , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Protein Domains/genetics , Protein Domains/immunology , Antigenic Drift and Shift/immunology , Mutation
6.
Science ; 377(6606): eabq0839, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35857620

ABSTRACT

To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Betacoronavirus , Coronavirus Infections , Epitopes , Nanoparticles , Spike Glycoprotein, Coronavirus , Zoonoses , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Disease Models, Animal , Epitopes/chemistry , Epitopes/immunology , Epitopes/therapeutic use , Macaca , Mice , Nanoparticles/therapeutic use , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Zoonoses/prevention & control , Zoonoses/virology
7.
Sci Rep ; 12(1): 3788, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260713

ABSTRACT

Immunosenescence may impact the functionality and breadth of vaccine-elicited humoral immune responses. The ability of sera to neutralize the SARS-CoV-2 spike protein (S) from Beta, Gamma, Delta, and Epsilon variants of concern (VOCs) relative to the ancestral Wuhan-Hu-1 strain was compared in Comirnaty COVID-19-vaccinated elderly nursing home residents, either SARS-CoV-2 naïve (n = 22) or experienced (n = 8), or SARS-CoV-2 naïve younger individuals (n = 18) and non-vaccinated individuals who recovered from severe COVID-19 (n = 19). In all groups, except that including SARS-CoV-2-experienced nursing home residents, some participants lacked NtAb against one or more VOCs, mainly the Beta variant (15-20%). Serum NtAb titers were lowest against the Beta variant followed by Gamma, Delta and Epsilon variants. Overall, fold change reduction in NtAb titers relative to the ancestral strain was greatest for the Beta variant (6.7-19.4) followed by Gamma (4.8-16.0), Epsilon (2.9-13.4), and Delta (3.5-6.5) variants, although subtle differences were observed for Beta, Epsilon and Delta variants across comparison groups. In summary, older age, frailty, and concurrence of co-morbidities had no major impact on the serum NtAb activity profile against SARS-CoV-2 VOCs.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Female , Humans , Immunity, Humoral , Male , Middle Aged , Neutralization Tests , Nursing Homes , Protein Domains/immunology , Retrospective Studies , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
8.
Nat Commun ; 13(1): 1214, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241675

ABSTRACT

The omicron variant of SARS-CoV-2 has been spreading rapidly across the globe. The virus-surface spike protein plays a critical role in the cell entry and immune evasion of SARS-CoV-2. Here we determined the 3.0 Å cryo-EM structure of the omicron spike protein ectodomain. In contrast to the original strain of SARS-CoV-2 where the receptor-binding domain (RBD) of the spike protein takes a mixture of open ("standing up") and closed ("lying down") conformations, the omicron spike molecules are predominantly in the open conformation, with one upright RBD ready for receptor binding. The open conformation of the omicron spike is stabilized by enhanced inter-domain and inter-subunit packing, which involves new mutations in the omicron strain. Moreover, the omicron spike has undergone extensive mutations in RBD regions where known neutralizing antibodies target, allowing the omicron variant to escape immune surveillance aimed at the original viral strain. The stable open conformation of the omicron spike sheds light on the cell entry and immune evasion mechanisms of the omicron variant.


Subject(s)
COVID-19/virology , SARS-CoV-2/chemistry , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/ultrastructure , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cryoelectron Microscopy , Humans , Immune Evasion/genetics , Models, Molecular , Mutation , Pandemics , Protein Conformation , Protein Domains/genetics , Protein Domains/immunology , Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
9.
Cell Rep Med ; 3(2): 100527, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35233548

ABSTRACT

The Omicron variant features enhanced transmissibility and antibody escape. Here, we describe the Omicron receptor-binding domain (RBD) mutational landscape using amino acid interaction (AAI) networks, which are well suited for interrogating constellations of mutations that function in an epistatic manner. Using AAI, we map Omicron mutations directly and indirectly driving increased escape breadth and depth in class 1-4 antibody epitopes. Further, we present epitope networks for authorized therapeutic antibodies and assess perturbations to each antibody's epitope. Since our initial modeling following the identification of Omicron, these predictions have been realized by experimental findings of Omicron neutralization escape from therapeutic antibodies ADG20, AZD8895, and AZD1061. Importantly, the AAI predicted escape resulting from indirect epitope perturbations was not captured by previous sequence or point mutation analyses. Finally, for several Omicron RBD mutations, we find evidence for a plausible role in enhanced transmissibility via disruption of RBD-down conformational stability at the RBDdown-RBDdown interface.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Mutation , Protein Domains/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , COVID-19/virology , Epitopes/genetics , Epitopes/immunology , Humans , Immune Evasion/genetics , Neutralization Tests , Protein Binding , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
10.
J Immunol ; 208(5): 1232-1247, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35110419

ABSTRACT

The ß protein from group B Streptococcus (GBS) is a ∼132-kDa, cell-surface exposed molecule that binds to multiple host-derived ligands, including complement factor H (FH). Many details regarding this interaction and its significance to immune evasion by GBS remain unclear. In this study, we identified a three-helix bundle domain within the C-terminal half of the B75KN region of ß as the major FH-binding determinant and determined its crystal structure at 2.5 Å resolution. Analysis of this structure suggested a role in FH binding for a loop region connecting helices α1 and α2, which we confirmed by mutagenesis and direct binding studies. Using a combination of protein cross-linking and mass spectrometry, we observed that B75KN bound to complement control protein (CCP)3 and CCP4 domains of FH. Although this binding site lies within a complement regulatory region of FH, we determined that FH bound by ß retained its decay acceleration and cofactor activities. Heterologous expression of ß by Lactococcus lactis resulted in recruitment of FH to the bacterial surface and a significant reduction of C3b deposition following exposure to human serum. Surprisingly, we found that FH binding by ß was not required for bacterial resistance to phagocytosis by neutrophils or killing of bacteria by whole human blood. However, loss of the B75KN region significantly diminished bacterial survival in both assays. Although our results show that FH recruited to the bacterial surface through a high-affinity interaction maintains key complement-regulatory functions, they raise questions about the importance of FH binding to immune evasion by GBS as a whole.


Subject(s)
Bacterial Proteins/metabolism , Immune Evasion/immunology , Membrane Proteins/metabolism , Streptococcus agalactiae/immunology , Binding Sites/physiology , Complement C3b/metabolism , Complement Factor H/metabolism , Humans , Neutrophils/immunology , Opsonization/immunology , Protein Binding/immunology , Protein Domains/genetics , Protein Domains/immunology , Streptococcal Infections/immunology , Streptococcal Infections/pathology
11.
J Immunol ; 208(5): 1139-1145, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35101893

ABSTRACT

Despite measures taken world-wide, the coronavirus disease 2019 (COVID-19) pandemic continues. Because efficient antiviral drugs are not yet widely available, vaccination is the best option to control the infection rate. Although this option is obvious in the case of COVID-19-naive individuals, it is still unclear when individuals who have recovered from a previous SARS-CoV-2 infection should be vaccinated and whether the vaccination raises immune responses against the coronavirus and its novel variants. In this study, we collected peripheral blood from 84 healthy human donors of different COVID-19 status who were vaccinated with the Sputnik Light vaccine and measured the dynamics of the Ab and T cell responses, as well as the virus-neutralizing activity (VNA) in serum, against two SARS-CoV-2 variants, B.1.1.1 and B.1.617.2. We showed that vaccination of individuals previously exposed to the virus considerably boosts the existing immune response. In these individuals, receptor-binding domain (RBD)-specific IgG titers and VNA in serum were already elevated on the 7th day after vaccination, whereas COVID-19-naive individuals developed the Ab response and VNA mainly 21 d postvaccination. Additionally, we found a strong correlation between RBD-specific IgG titers and VNA in serum, and according to these data vaccination may be recommended when the RBD-specific IgG titers drop to 142.7 binding Ab units/ml or below. In summary, the results of the study demonstrate that vaccination is beneficial for both COVID-19-naive and recovered individuals, especially since it raises serum VNA against the B.1.617.2 variant, one of the five SARS-CoV-2 variants of concern.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Protein Domains/immunology , Russia , T-Lymphocytes/immunology , Vaccination
12.
Front Immunol ; 13: 830710, 2022.
Article in English | MEDLINE | ID: mdl-35173741

ABSTRACT

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) caused outbreaks of the pandemic starting from the end of 2019 and, despite ongoing vaccination campaigns, still influences health services and economic factors globally. Understanding immune protection elicited by natural infection is of critical importance for public health policy. This knowledge is instrumental to set scientific parameters for the release of "immunity pass" adopted with different criteria across Europe and other countries and to provide guidelines for the vaccination of COVID-19 recovered patients. Here, we characterized the humoral response triggered by SARS-CoV-2 natural infection by analyzing serum samples from 94 COVID-19 convalescent patients with three serological platforms, including live virus neutralization, pseudovirus neutralization, and ELISA. We found that neutralization potency varies greatly across individuals, is significantly higher in severe patients compared with mild ones, and correlates with both Spike and receptor-binding domain (RBD) recognition. We also show that RBD-targeting antibodies consistently represent only a modest proportion of Spike-specific IgG, suggesting broad specificity of the humoral response in naturally infected individuals. Collectively, this study contributes to the characterization of the humoral immune response in the context of natural SARS-CoV-2 infection, highlighting its variability in terms of neutralization activity, with implications for immune protection in COVID-19 recovered patients.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Protein Domains/immunology , SARS-CoV-2/immunology , Adult , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , Cell Line , Chlorocebus aethiops , Convalescence , Enzyme-Linked Immunosorbent Assay , Europe , Female , HEK293 Cells , Humans , Immunity, Humoral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Young Adult
13.
Front Immunol ; 13: 811952, 2022.
Article in English | MEDLINE | ID: mdl-35126396

ABSTRACT

Numerous studies have suggested that the titers of antibodies against SARS-CoV-2 are associated with the COVID-19 severity, however, the types of antibodies associated with the disease maximum severity and the timing at which the associations are best observed, especially within one week after symptom onset, remain controversial. We attempted to elucidate the antibody responses against SARS-CoV-2 that are associated with the maximum severity of COVID-19 in the early phase of the disease, and to investigate whether antibody testing might contribute to prediction of the disease maximum severity in COVID-19 patients. We classified the patients into four groups according to the disease maximum severity (severity group 1 (did not require oxygen supplementation), severity group 2a (required oxygen supplementation at low flow rates), severity group 2b (required oxygen supplementation at relatively high flow rates), and severity group 3 (required mechanical ventilatory support)), and serially measured the titers of IgM, IgG, and IgA against the nucleocapsid protein, spike protein, and receptor-binding domain of SARS-CoV-2 until day 12 after symptom onset. The titers of all the measured antibody responses were higher in severity group 2b and 3, especially severity group 2b, as early as at one week after symptom onset. Addition of data obtained from antibody testing improved the ability of analysis models constructed using a machine learning technique to distinguish severity group 2b and 3 from severity group 1 and 2a. These models constructed with non-vaccinated COVID-19 patients could not be applied to the cases of breakthrough infections. These results suggest that antibody testing might help physicians identify non-vaccinated COVID-19 patients who are likely to require admission to an intensive care unit.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/blood , COVID-19/blood , SARS-CoV-2/immunology , Severity of Illness Index , Vaccination Hesitancy , Antibody Formation/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19 Vaccines/immunology , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Machine Learning , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Vaccination
14.
Cell ; 185(5): 860-871.e13, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35120603

ABSTRACT

The SARS-CoV-2 Omicron variant with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the spike (S) from Omicron reveals amino acid substitutions forging interactions that stably maintain an active conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of the viral fusion step. Alterations in local conformation, charge, and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Structure of the Omicron S bound with human ACE2, together with the analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members, as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies, sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.


Subject(s)
Immune Evasion/physiology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Binding Sites , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Humans , Mutagenesis, Site-Directed , Neutralization Tests , Protein Binding , Protein Domains/immunology , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance , Virus Attachment
15.
Sci Rep ; 12(1): 692, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027583

ABSTRACT

The receptor binding domain (RBD) of the Spike protein from SARS-CoV-2 is a promising candidate to develop effective COVID-19 vaccines since it can induce potent neutralizing antibodies. We have previously reported the highly efficient production of RBD in Pichia pastoris, which is structurally similar to the same protein produced in mammalian HEK-293T cells. In this work we designed an RBD multimer with the purpose of increasing its immunogenicity. We produced multimeric particles by a transpeptidation reaction between RBD expressed in P. pastoris and Lumazine Synthase from Brucella abortus (BLS), which is a highly immunogenic and very stable decameric 170 kDa protein. Such particles were used to vaccinate mice with two doses 30 days apart. When the particles ratio of RBD to BLS units was high (6-7 RBD molecules per BLS decamer in average), the humoral immune response was significantly higher than that elicited by RBD alone or by RBD-BLS particles with a lower RBD to BLS ratio (1-2 RBD molecules per BLS decamer). Remarkably, multimeric particles with a high number of RBD copies elicited a high titer of neutralizing IgGs. These results indicate that multimeric particles composed of RBD covalent coupled to BLS possess an advantageous architecture for antigen presentation to the immune system, and therefore enhancing RBD immunogenicity. Thus, multimeric RBD-BLS particles are promising candidates for a protein-based vaccine.


Subject(s)
COVID-19/immunology , Immunity, Humoral/immunology , Protein Binding/immunology , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19 Vaccines/immunology , Cell Line , Female , HEK293 Cells , Humans , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C
16.
Int J Biol Macromol ; 200: 438-448, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35063482

ABSTRACT

As SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) continues to inflict chaos globally, a new variant officially known as B.1.1.529 was reported in South Africa and was found to harbor 30 mutations in the spike protein. It is too early to speculate on transmission and hospitalizations. Hence, more analyses are required, particularly to connect the genomic patterns to the phenotypic attributes to reveal the binding differences and antibody response for this variant, which can then be used for therapeutic interventions. Given the urgency of the required analysis and data on the B.1.1.529 variant, we have performed a detailed investigation to provide an understanding of the impact of these novel mutations on the structure, function, and binding of RBD to hACE2 and mAb to the NTD of the spike protein. The differences in the binding pattern between the wild type and B.1.1.529 variant complexes revealed that the key substitutions Asn417, Ser446, Arg493, and Arg498 in the B.1.1.529 RBD caused additional interactions with hACE2 and the loss of key residues in the B.1.1.529 NTD resulted in decreased interactions with three CDR regions (1-3) in the mAb. Further investigation revealed that B.1.1.529 displayed a stable dynamic that follows a global stability trend. In addition, the dissociation constant (KD), hydrogen bonding analysis, and binding free energy calculations further validated the findings. Hydrogen bonding analysis demonstrated that significant hydrogen bonding reprogramming took place, which revealed key differences in the binding. The total binding free energy using MM/GBSA and MM/PBSA further validated the docking results and demonstrated significant variations in the binding. This study is the first to provide a basis for the higher infectivity of the new SARS-CoV-2 variants and provides a strong impetus for the development of novel drugs against them.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies/chemistry , Antibodies/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Humans , Hydrogen Bonding , Immune Evasion , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding/immunology , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
17.
Chem Commun (Camb) ; 58(13): 2120-2123, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35040862

ABSTRACT

The coronavirus 2019 (COVID-19) pandemic is causing serious impacts in the world, and safe and effective vaccines and medicines are the best methods to combat the disease. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in interacting with the angiotensin-converting enzyme 2 (ACE2) receptor, and is regarded as an important target of vaccines. Herein, we constructed the adjuvant-protein conjugate Pam3CSK4-RBD as a vaccine candidate, in which the N-terminal of the RBD was site-selectively oxidized by transamination and conjugated with the TLR1/2 agonist Pam3CSK4. This demonstrated that the conjugation of Pam3CSK4 significantly enhanced the anti-RBD antibody response and cellular response. In addition, sera from the Pam3CSK4-RBD immunized group efficiently inhibited the binding of the RBD to ACE2 and protected cells from SARS-CoV-2 and four variants of concern (alpha, beta, gamma and delta), indicating that this adjuvant strategy could be one of the effective means for protein vaccine development.


Subject(s)
COVID-19/prevention & control , Lipopeptides/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Conjugate/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibody Formation , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/virology , Female , HEK293 Cells , Humans , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Protein Binding , Protein Domains/immunology , RAW 264.7 Cells , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/chemistry
18.
J Immunol Methods ; 502: 113216, 2022 03.
Article in English | MEDLINE | ID: mdl-35007561

ABSTRACT

Coronavirus Disease 2019 (COVID-19) represents a new global threat demanding a multidisciplinary effort to fight its etiological agent-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this regard, immunoinformatics may aid to predict prominent immunogenic regions from critical SARS-CoV-2 structural proteins, such as the spike (S) glycoprotein, for their use in prophylactic or therapeutic interventions against this highly pathogenic betacoronavirus. Accordingly, in this study, an integrated immunoinformatics approach was applied to identify cytotoxic T cell (CTC), T helper cell (THC), and Linear B cell (BC) epitopes from the S glycoprotein in an attempt to design a high-quality multi-epitope vaccine. The best CTC, THC, and BC epitopes showed high viral antigenicity and lack of allergenic or toxic residues, as well as CTC and THC epitopes showed suitable interactions with HLA class I (HLA-I) and HLA class II (HLA-II) molecules, respectively. Remarkably, SARS-CoV-2 receptor-binding domain (RBD) and its receptor-binding motif (RBM) harbour several potential epitopes. The structure prediction, refinement, and validation data indicate that the multi-epitope vaccine has an appropriate conformation and stability. Four conformational epitopes and an efficient binding between Toll-like receptor 4 (TLR4) and the vaccine model were observed. Importantly, the population coverage analysis showed that the multi-epitope vaccine could be used globally. Notably, computer-based simulations suggest that the vaccine model has a robust potential to evoke and maximize both immune effector responses and immunological memory to SARS-CoV-2. Further research is needed to accomplish with the mandatory international guidelines for human vaccine formulations.


Subject(s)
Antigens, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Antigens, Viral/genetics , Antigens, Viral/metabolism , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/therapeutic use , Computational Biology , Computer Simulation , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Immunogenicity, Vaccine/genetics , Immunologic Memory , Protein Domains/genetics , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes, Cytotoxic , Toll-Like Receptor 4/metabolism , Vaccine Development/methods , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/therapeutic use
19.
Nat Immunol ; 23(1): 33-39, 2022 01.
Article in English | MEDLINE | ID: mdl-34848871

ABSTRACT

The first ever US Food and Drug Administration-approved messenger RNA vaccines are highly protective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1-3. However, the contribution of each dose to the generation of antibodies against SARS-CoV-2 spike (S) protein and the degree of protection against novel variants warrant further study. Here, we investigated the B cell response to the BNT162b2 vaccine by integrating B cell repertoire analysis with single-cell transcriptomics pre- and post-vaccination. The first vaccine dose elicits a recall response of IgA+ plasmablasts targeting the S subunit S2. Three weeks after the first dose, we observed an influx of minimally mutated IgG+ memory B cells that targeted the receptor binding domain on the S subunit S1 and likely developed from the naive B cell pool. This response was strongly boosted by the second dose and delivers potently neutralizing antibodies against SARS-CoV-2 and several of its variants.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Memory T Cells/immunology , Protein Domains/immunology , Vaccine Efficacy
20.
EBioMedicine ; 74: 103748, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34902788

ABSTRACT

BACKGROUND: Limited knowledge exists regarding antibody affinity maturation following mRNA vaccination in naïve vs. COVID-19 recovered individuals and potential sex differences. METHODS: We elucidated post-vaccination antibody profiles of 69 naïve and 17 COVID-19 convalescent adults using pseudovirus neutralization assay (PsVNA) covering SARS-CoV-2 WA-1, variants of concern (VOCs) and variants of interest (VOIs). Surface Plasmon Resonance (SPR) was used to measure antibody affinity against prefusion spike and receptor binding domain (RBD) and RBD mutants. FINDINGS: Higher neutralizing antibodies were observed in convalescent vs. naïve adults against, WA-1, VOCs, and VOIs. Antibody binding to RBD and RBD mutants showed lower binding of post-vaccination sera from naïve compared with convalescent individuals. Moreover, we observed early antibody affinity maturation in convalescent individuals after one vaccine dose and higher antibody affinity after two doses compared with the naïve group. Among the naïve participants, antibody affinity against the SARS-CoV-2 prefusion spike was significantly higher for males than females even though there were no difference in neutralization titers between sexes. INTERPRETATION: This study demonstrates the impact of prior infection on vaccine-induced antibody affinity maturation and difference in antibody affinity between males and females. Further studies are needed to determine whether antibody affinity may contribute to correlates of protection against SARS-CoV-2 and its variants. FUNDING: The antibody characterization work described in this manuscript was supported by FDA's Medical Countermeasures Initiative (MCMi) grant #OCET 2021-1565 to S.K and intramural FDA-CBER COVID-19 supplemental funds. The SPARTA program was supported by the National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Department of Health and Human Services contract 75N93019C00052, and the University of Georgia (US) grant UGA-001. T.M.R is also supported by the Georgia Research Alliance (US) grant GRA-001. The CTRU was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR002378.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Neutralizing/blood , Antibody Affinity/immunology , BNT162 Vaccine/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , COVID-19/immunology , Cell Line , Female , Humans , Male , Neutralization Tests , Protein Domains/immunology , Surface Plasmon Resonance , Vaccination , mRNA Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...