Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.231
Filter
1.
Food Res Int ; 188: 114499, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823844

ABSTRACT

The aim of this study was to evaluate the effect of the enzymatic hydrolysis, performed using Alcalase and Protamex enzymes, on the technological functionalities and the antioxidant capacity of whey protein hydrolysates (WPHs) to identify the conditions allowing to obtain target functionality/ies. Samples were characterized for hydrolysis degree (DH), molecular weight distribution, structural properties, and food-related functionalities. Free sulfhydryl groups and surface hydrophobicity significantly decreased with the increase in DH, regardless of the used enzyme. The foaming and antioxidant properties of Alcalase WPHs were higher as compared to those of WPI, reaching the maximum value at DH = 18-20 %, while higher DH resulted in impaired functionality. Gelling properties were guaranteed when WPI was hydrolysed by Protamex at DH < 15 % while foaming and antioxidant abilities were fostered at 15 < DH < 21 %. These results were well correlated with MW distribution and were rationalized into a road map which represents a useful tool in the selection of proper hydrolysis conditions (time, DH, enzyme type) to obtain WPHs with tailored functionalities. Research outcomes highlighted the possibility to drive protein hydrolysis to optimize the desired functionality/ies.


Subject(s)
Antioxidants , Hydrophobic and Hydrophilic Interactions , Protein Hydrolysates , Whey Proteins , Antioxidants/chemistry , Whey Proteins/chemistry , Hydrolysis , Protein Hydrolysates/chemistry , Subtilisins/metabolism , Subtilisins/chemistry , Molecular Weight , Subtilisin/metabolism , Subtilisin/chemistry
2.
Amino Acids ; 56(1): 40, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847939

ABSTRACT

Pelodiscus sinensis meat is a nutritional food and tonic with angiotensin-converting enzyme (ACE) inhibitory activities. To identify the bioactive substances responsible, several bioinformatics methods were integrated to enable a virtual screening for bioactive peptides in proteins identified within a water-soluble protein fraction of Pelodiscus sinensis meat by Shotgun proteomics. The peptides were generated from the identified proteins by in silico proteolysis using six proteases. A comparison of the numbers of proteins suitable for digestion with each enzyme and the iBAQ (intensity-based absolute quantification) values for these proteins revealed that bromelain and papain were the most suitable proteases for this sample. Next, the water solubility, toxicity, and ADMET (absorption/distribution/metabolism/excretion/toxicity) properties of these peptides were evaluated in silico. Finally, a novel ACE inhibitory peptide IEWEF with an IC50 value of 41.33 µM was identified. The activity of the synthesized peptide was verified in vitro, and it was shown to be a non-competitive ACE inhibitor. Molecular docking revealed that IEWEF could tightly bind to C-ACE, and N-ACE with energies less than 0 kJ mol-1, and the peptide IEWEF can form hydrogen bonds with C-ACE and N-ACE respectively. These results provide evidence that bioactive peptides in the water-soluble protein fraction account for (at least) some of the ACE inhibitory activities observed in Pelodiscus sinensis meat. Furthermore, our research provides a workflow for the efficient identification of novel ACE inhibitory peptides from complex protein mixtures.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Molecular Docking Simulation , Peptides , Protein Hydrolysates , Solubility , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Animals , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Water/chemistry , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Papain/metabolism , Papain/antagonists & inhibitors , Papain/chemistry , Fish Proteins/chemistry , Fish Proteins/metabolism
3.
Food Res Int ; 186: 114365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729700

ABSTRACT

This study aimed to investigate the interaction, structure, antioxidant, and emulsification properties of quinoa protein hydrolysate (QPH) complexes formed with (-)-epigallocatechin gallate (EGCG) at pH 3.0 and 7.0. Additionally, the effect of pH conditions and EGCG complexation on protein hydrolysate-lipid co-oxidation in QPH emulsions was explored. The results indicated that QPH primarily interacted with EGCG through hydrophobic interactions and hydrogen bonds. This interaction led to alterations in the secondary structure of QPH, as well as a decrease in surface hydrophobicity and free SH content. Notably, the binding affinity between QPH and EGCG was observed to be higher at pH 7.0 compared to pH 3.0. Consequently, QPH-EGCG complexes exhibited more significant enhancement in antioxidant and emulsification properties at pH 7.0 than pH 3.0. The pH level also influenced the droplet size, ζ-potential, and interfacial composition of emulsions formed by QPH and QPH-EGCG complexes. Compared to QPH stabilized emulsions, QPH-EGCG stabilized emulsions were more capable of mitigating destabilization during storage and displayed fewer lipid oxidation products, carbonyl generation, and sulfhydryl groups and fluorescence loss, which implied better oxidative stability of the emulsions. Furthermore, the QPH-EGCG complexes formed at pH 7.0 exhibited better inhibition of protein hydrolysate-lipid co-oxidation. Overall, these findings provide valuable insights into the potential application of QPH and its complexes with EGCG in food processing systems.


Subject(s)
Antioxidants , Catechin , Chenopodium quinoa , Emulsions , Hydrophobic and Hydrophilic Interactions , Oxidation-Reduction , Protein Hydrolysates , Chenopodium quinoa/chemistry , Hydrogen-Ion Concentration , Emulsions/chemistry , Protein Hydrolysates/chemistry , Catechin/chemistry , Catechin/analogs & derivatives , Antioxidants/chemistry , Hydrogen Bonding , Plant Proteins/chemistry , Lipids/chemistry
4.
Food Funct ; 15(10): 5566-5578, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38712886

ABSTRACT

Free radical damage and oxidative stress are thought to play a crucial role in the development of neurodegenerative diseases. Walnut peptides, especially walnut oligopeptides, have been shown to protect nerve cells from oxidative stress and inflammatory damage, as well as improve memory function. In this study, walnut peptides were obtained from walnut meal through enzymatic hydrolysis, ultrafiltration, and gel filtration chromatography. A novel oligopeptide called AQ was successfully isolated and its chemical structure was identified as AASCDQ using ESI-MS/MS. AQ demonstrated remarkable scavenging activity against O2- free radicals (81.00%), DPPH free radicals (79.40%), and ABTS free radicals (67.09%) at a concentration of 1 mg mL-1. Furthermore, AQ exhibited strong neuroprotective effects against hydrogen peroxide-induced damage in SH-SY5Y cells, reducing cell injury and apoptosis. AQ also effectively inhibited the secretion of pro-inflammatory factors NO (IC50 = 46.03 ± 0.32 µM) and suppressed the expression of IL-6 and TNF-α in RAW264.7 cells stimulated by LPS. In vivo experiments demonstrated that AQ promoted angiogenesis in the quail chick chorioallantoic membrane assay and reduced ROS accumulation in Caenorhabditis elegans, thereby extending its lifespan. The anti-inflammatory mechanism of AQ was further confirmed by western blotting. In summary, the novel oligopeptide AQ possesses potential neuroprotective effects, including antioxidant, anti-inflammatory, angiogenic, and anti-aging properties, making it a promising candidate for the development of functional foods and pharmaceutical products.


Subject(s)
Caenorhabditis elegans , Juglans , Neuroprotective Agents , Oligopeptides , Animals , Juglans/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Mice , Caenorhabditis elegans/drug effects , RAW 264.7 Cells , Humans , Oligopeptides/pharmacology , Oligopeptides/chemistry , Oxidative Stress/drug effects , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Reactive Oxygen Species/metabolism , Nuts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry
5.
Mar Drugs ; 22(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38786592

ABSTRACT

Malnutrition is one of the major factors of bone and cartilage disorders. Pacific cod (Gadus macrocephalus) processing waste is a cheap and highly promising source of bioactive substances, including collagen-derived peptides and amino acids, for bone and cartilage structure stabilization. The addition of these substances to a functional drink is one of the ways to achieve their fast intestinal absorption. Collagen hydrolysate was obtained via enzymatic hydrolysis, ultrafiltration, freeze-drying, and grinding to powder. The lyophilized hydrolysate was a light gray powder with high protein content (>90%), including collagen (about 85% of total protein) and a complete set of essential and non-essential amino acids. The hydrolysate had no observed adverse effect on human mesenchymal stem cell morphology, viability, or proliferation. The hydrolysate was applicable as a protein food supply or a structure-forming food component due to the presence of collagen fiber fragments. An isotonic fitness drink (osmolality 298.1 ± 2.1 mOsm/L) containing hydrolysate and vitamin C as a cofactor in collagen biosynthesis was prepared. The addition of the hydrolysate did not adversely affect its organoleptic parameters. The production of such functional foods and drinks is one of the beneficial ways of fish processing waste utilization.


Subject(s)
Bone and Bones , Cartilage , Collagen , Gadiformes , Protein Hydrolysates , Animals , Collagen/metabolism , Humans , Cartilage/drug effects , Cartilage/metabolism , Bone and Bones/drug effects , Bone and Bones/metabolism , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Mesenchymal Stem Cells/drug effects , Beverages , Functional Food , Hydrolysis
6.
Food Chem ; 452: 139466, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735106

ABSTRACT

γ-Glutamylation of beef protein hydrolysate (BPH) by L-glutaminase was carried out to improve the taste, as well as enhance the stimulating effect of gastrointestinal hormone (CCK and GLP-1) secretion and the anti-inflammatory property. Results of sensory evaluation showed that the kokumi taste, umaminess, saltiness of the γ-glutamylated product (γ-GBPH) were significantly higher (p < 0.05), whilst the bitterness was remarkably decreased (p < 0.05) than that of BPH. γ-GBPH had a better promoting effect (p < 0.05) on CCK and GLP-1 secretion and a higher inhibition (p < 0.05) on TNF-α and IL-8 production than BPH in vitro cell experiments. In γ-GBPH, 15 γ-Glutamylated amino acids (γ-[Glu](n =1/2)-AAs) and 10 γ-Glutamyl-tripeptide (γ-Glu-AA-AAs) were synthesized from the bitter amino acids and bitter peptides, respectively, and their total production yield was 140.01-170.46 mg/g and 149.06 mg/g, respectively. The synthesized γ-Glu-AA-AAs entered the binding pocket of the calcium-sensitive receptor (CaSR), and they all interacted with three reported amino acid residues (Ser147, Ala168, and Ser170) of CaSR.


Subject(s)
Anti-Inflammatory Agents , Glucagon-Like Peptide 1 , Protein Hydrolysates , Taste , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Protein Hydrolysates/pharmacology , Animals , Humans , Cattle , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Cholecystokinin/metabolism , Cholecystokinin/chemistry
7.
Food Chem ; 452: 139550, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735108

ABSTRACT

A green strategy employing water as solvent has been adopted to obtain protein hydrolysates from fish meal (FM), its water-soluble fraction (WSP), and its non-water-soluble fraction (NSP). The techno-functional properties of the hydrolysates have been investigated and compared to hydrolysates obtained with Alcalase®. In general, SWH hydrolysates presented higher content of free amino acids and higher degree of hydrolysis, which reflected on the molecular size distribution. However, Alcalase® hydrolysates presented better solubility (from 74 ± 4% for NSP at pH = 2 up to 99 ± 1% for WSP at pH = 4-7). According to fluorescence experiments, FM and NSP hydrolysates showed the highest surface hydrophobicity, which has been related to better emulsifying properties and higher emulsion stability. The emulsions stabilized with 2%wt. of SWH-treated NSP showed the smallest particle sizes, with D[4,3] = 155 nm at day 0, and good stability, with D[4,3] = 220 nm at day 7, proving that water fractionation followed by SWH treatment is a good method to improve the techno-functional properties of the hydrolysates.


Subject(s)
Fish Products , Hydrophobic and Hydrophilic Interactions , Particle Size , Protein Hydrolysates , Hydrolysis , Protein Hydrolysates/chemistry , Animals , Fish Products/analysis , Fishes , Solubility , Emulsions/chemistry , Green Chemistry Technology , Chemical Fractionation , Amino Acids/chemistry , Subtilisins/chemistry , Subtilisins/metabolism
8.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731887

ABSTRACT

This study explores olive flounder by-product Prozyme2000P (OFBP) hydrolysate as a potential treatment for age-related kidney decline. Ferroptosis, a form of cell death linked to iron overload and oxidative stress, is increasingly implicated in aging kidneys. We investigated whether OFBP could inhibit ferroptosis and improve kidney health. Using TCMK-1 cells, we found that OFBP treatment protected cells from ferroptosis induced by sodium iodate (SI). OFBP also preserved the mitochondria health and influenced molecules involved in ferroptosis regulation. In aging mice, oral administration of OFBP significantly improved kidney health markers. Microscopic examination revealed reduced thickening and scarring in the kidney's filtering units, a hallmark of aging. These findings suggest that OFBP hydrolysate may be a promising therapeutic candidate for age-related kidney decline. By inhibiting ferroptosis, OFBP treatment appears to improve both cellular and structural markers of kidney health. Further research is needed to understand how OFBP works fully and test its effectiveness in more complex models.


Subject(s)
Ferroptosis , Kidney , Animals , Ferroptosis/drug effects , Mice , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Aging/drug effects , Flounder/metabolism , Oxidative Stress/drug effects , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Male , Cell Line , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/pathology
9.
Food Chem ; 452: 139559, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744134

ABSTRACT

Fish protein hydrolysates (FPH) are inherently unstable in their liquid form, necessitating either freezing or dewatering for stabilization. Gentle methods such as freeze concentration can be used to remove water, this can be achieved by freezing water in solution by decreasing the bulk temperature below freezing point and separating pure ice crystals from concentrated solution. This approach serves as an alternative to techniques like evaporation and reverse osmosis for concentrating solutions that have high water content, significant nutritional value, and thermolabile compounds. This is crucial as many bioactive compounds degrade when exposed to elevated temperatures. Another notable advantage of this technology is its potential to reduce energy consumption by up to 40% when integrated into the FPH drying process. Although this technology is currently industrialized primarily for juices, it can achieve concentrations of up to 60°Brix and manage viscosities up to 400 mPa.s. Numerous studies have been dedicated to enhancing design and processes, leading to a 35% reduction in the system's capital cost and a 20% reduction in energy consumption. Moreover, freeze concentration can synergize with other concentration techniques, creating more efficient hybrid processes. This review aims to introduce freeze concentration as a superior option for preserving fish protein hydrolysates, enhancing their stability, and maintaining their nutritional and bioactive qualities.


Subject(s)
Fish Proteins , Fishes , Freezing , Protein Hydrolysates , Protein Hydrolysates/chemistry , Fish Proteins/chemistry , Animals , Protein Stability , Food Handling
10.
J Microbiol Biotechnol ; 34(5): 1082-1091, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38719776

ABSTRACT

The antioxidant capacity and protective effect of peptides from protein hydrolysate of Cordyceps militaris cultivated with tussah pupa (ECPs) on H2O2-injured HepG2 cells were studied. Results indicated ECP1 (<3 kDa) presented the strongest antioxidant activity compared with other molecular weight peptides. Pretreated with ECPs observably enhanced survival rates and reduced apoptosis rates of HepG2 cells. ECPs treatment decreased the ROS level, MDA content and increased CAT and GSH-Px activities of HepG2 cells. Besides, the morphologies of natural peptides from C. militaris cultivated with tussah pupa (NCP1) and ECP1 were observed by scanning electron microscopy (SEM). Characterization results suggested the structure of NCP1 was changed by enzymatic hydrolysis treatment. Most of hydrophobic and acidic amino acids contents (ACC) in ECP1 were also observably improved by enzymatic hydrolysis. In conclusion, low molecular weight peptides had potential value in the development of cosmetics and health food.


Subject(s)
Antioxidants , Apoptosis , Cordyceps , Oxidative Stress , Peptides , Reactive Oxygen Species , Cordyceps/chemistry , Cordyceps/metabolism , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Hep G2 Cells , Peptides/pharmacology , Peptides/chemistry , Peptides/metabolism , Oxidative Stress/drug effects , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Hydrolysis , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Protective Agents/pharmacology , Molecular Weight , Fungal Proteins/metabolism , Fungal Proteins/pharmacology
11.
J Agric Food Chem ; 72(22): 12529-12540, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38764367

ABSTRACT

In this study, edible bird's nest (EBN) was proven to be a suitable source of bioactive peptides via enzymatic hydrolysis. The ultrafiltration component of the EBN peptides (EBNPs, Mw < 3 000 Da) could be responsible for moderate moisture retention and filaggrin synthesis. It was found that EBNP had a great capacity to protect HaCaT keratinocytes from DNA damage caused by UVB-irradiation and enhance wound healing by increasing the migratory and proliferative potential of cells. Furthermore, the external application of EBNP could effectively repair high glycolic acid concentration-induced skin burns in mice. A total of 1 188 peptides, predominantly the hydrophobic amino acids (e.g., Leu, Val, Tyr, Phe), were identified in the EBNP by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Molecular docking showed that hydrophobic tripeptides from EBNP had a good binding affinity to proton-dependent oligopeptide transporter PepT1. Our data indicated that the hydrophobic amino acid-rich EBNP plays an important role in skin wound healing.


Subject(s)
Birds , Filaggrin Proteins , Peptides , Protein Hydrolysates , Skin , Wound Healing , Animals , Wound Healing/drug effects , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Mice , Skin/chemistry , Skin/metabolism , Humans , Peptides/chemistry , Peptides/metabolism , Birds/metabolism , Molecular Docking Simulation , Keratinocytes/metabolism , Keratinocytes/drug effects , Tandem Mass Spectrometry , Male , Avian Proteins/chemistry , Avian Proteins/metabolism , Biological Transport , HaCaT Cells , Skin Absorption
12.
J Agric Food Chem ; 72(22): 12738-12751, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788151

ABSTRACT

Phytosterol (PS) is a steroid, and its bioavailability can be enhanced by interacting with protein in the C-24 hydroxyl group. The interaction between sterols and amino acid residues in proteins can be enhanced by enzymatic hydrolysis. Phytosterol and whey insulation hydrolysates (WPH1-4) fabricated by the Alcalase enzyme at different enzymatic hydrolysis times were selected as delivery systems to simulate sterol C-24 hydroxyl group interaction with protein. Increasing hydrolysis time can promote the production of ß-Lg, which raises the ratio of ß-turn in the secondary structure and promotes the formation of interaction between WPH and PS. The correlation coefficient between hydrogen bonds and encapsulation efficiency (EE) and bioaccessibility is 0.91 and 0.88 (P < 0.05), respectively, indicating that hydrogen bonds of two components significantly influenced the combination by concealing the hydrophobic amino acids and some residues, which improved PS EE and bioavailability by 3.03 and 2.84 times after PS was combined with the WPI hydrolysate. These findings are expected to enhance the absorption of PS and other macromolecules by protein enzymatic hydrolysis to broaden their applications for food.


Subject(s)
Digestion , Phytosterols , Protein Hydrolysates , Whey Proteins , Phytosterols/chemistry , Phytosterols/metabolism , Whey Proteins/chemistry , Whey Proteins/metabolism , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Hydrolysis , Biological Availability , Hydrogen Bonding , Subtilisins/chemistry , Subtilisins/metabolism , Humans , Animals
13.
Food Funct ; 15(11): 6082-6094, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38757389

ABSTRACT

Flammulina velutipes protein hydrolysates are known for their abundant amino acids and excellent developmental values. This study aimed to identify and screen neuroprotective peptides from F. velutipes protein hydrolysates in vitro and validate the protective effects of YVYAETY on memory impairment in scopolamine-induced mice. The F. velutipes protein was hydrolyzed by simulated gastrointestinal digestion, followed by purification through ultrafiltration and gel chromatography. The fraction exhibiting the strongest neuroprotective activity was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The main identified peptides (SDLKPADF, WNDHYY, YVYAETY, and WFHPLF) effectively mitigated excessive ROS production by increasing SOD and GSH-px activities while inhibiting cell apoptosis and mitochondrial membrane potential (MMP) collapse against oxidative stress in Aß25-35-induced HT22 cells. By molecular docking, the interaction between peptides and the active site of the Keap1-Kelch domain reveals their capacity to regulate the Keap1/Nrf2/HO-1 pathway. In vitro, the peptide YVYAETY had the best effect and can be further validated in vivo. The behavioral tests showed that YVYAETY improved scopolamine-induced cognitive impairment in mice. YVYAETY also alleviated neuron damage including neuron vacuolation and pyknotic nuclei in the hippocampus. Furthermore, it significantly inhibited oxidative stress and suppressed the activation of the Nrf2 pathway. Therefore, this study revealed that YVYAETY had the potential to serve as a novel neuroprotective agent.


Subject(s)
Cognitive Dysfunction , Flammulina , Neuroprotective Agents , Protein Hydrolysates , Scopolamine , Animals , Mice , Scopolamine/adverse effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/chemically induced , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Flammulina/chemistry , Male , Oxidative Stress/drug effects , Peptides/pharmacology , Peptides/chemistry , Molecular Docking Simulation , Hippocampus/drug effects , Hippocampus/metabolism , Apoptosis/drug effects
14.
Appl Microbiol Biotechnol ; 108(1): 354, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819482

ABSTRACT

Whey is a byproduct of dairy industries, the aqueous portion which separates from cheese during the coagulation of milk. It represents approximately 85-95% of milk's volume and retains much of its nutrients, including functional proteins and peptides, lipids, lactose, minerals, and vitamins. Due to its composition, mainly proteins and lactose, it can be considered a raw material for value-added products. Whey-derived products are often used to supplement food, as they have shown several physiological effects on the body. Whey protein hydrolysates are reported to have different activities, including antihypertensive, antioxidant, antithrombotic, opioid, antimicrobial, cytomodulatory, and immuno-modulatory. On the other hand, galactooligosaccharides obtained from lactose can be used as prebiotic for beneficial microorganisms for the human gastrointestinal tract. All these compounds can be obtained through physicochemical, microbial, or enzymatic treatments. Particularly, enzymatic processes have the advantage of being highly selective, more stable than chemical transformations, and less polluting, making that the global enzyme market grow at accelerated rates. The sources and different products associated with the most used enzymes are particularly highlighted in this review. Moreover, we discuss metagenomics as a tool to identify novel proteolytic enzymes, from both cultivable and uncultivable microorganisms, which are expected to have new interesting activities. Finally enzymes for the transformation of whey sugar are reviewed. In this sense, carbozymes with ß-galactosidase activity are capable of lactose hydrolysis, to obtain free monomers, and transgalactosylation for prebiotics production. KEY POINTS: • Whey can be used to obtain value-added products efficiently through enzymatic treatments • Proteases transform whey proteins into biopeptides with physiological activities • Lactose can be transformed into prebiotic compounds using ß-galactosidases.


Subject(s)
Protein Hydrolysates , Whey Proteins , Whey Proteins/metabolism , Protein Hydrolysates/metabolism , Protein Hydrolysates/chemistry , Prebiotics , Humans , Whey/chemistry , Whey/metabolism , Lactose/metabolism , beta-Galactosidase/metabolism , beta-Galactosidase/genetics
15.
J Agric Food Chem ; 72(19): 10909-10922, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38689562

ABSTRACT

Pumpkin (Cucurbita moschata) seed meal (PSM), the major byproduct of pumpkin seed oil industry, was used to prepare angiotensin-converting enzyme (ACE) inhibitory and angiotensin-converting enzyme 2 (ACE2) upregulating peptides. These peptides were isolated and purified from the PSM hydrolysate prepared using Neutrase 5.0 BG by ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography. Two peptides with significant ACE inhibition activity were identified as SNHANQLDFHP and PVQVLASAYR with IC50 values of 172.07 and 90.69 µM, respectively. The C-terminal tripeptides of the two peptides contained Pro, Phe, and Tyr, respectively, and PVQVLASAYR also had Val in its N-terminal tripeptide, which was a favorable structure for ACE inhibition. Molecular docking results declared that the two peptides could interact with ACE through hydrogen bonds and hydrophobic interactions. Furthermore, the two peptides performed protective function on EA.hy926 cells by decreasing the secretion of endothelin-1, increasing the release of nitric oxide, and regulating the ACE2 activity. In vitro simulated gastrointestinal digestion showed the two peptides exhibited good stability against gastrointestinal enzyme digestion. In conclusion, PSM is a promising material for preparing antihypertensive peptides.


Subject(s)
Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors , Cucurbita , Molecular Docking Simulation , Peptides , Peptidyl-Dipeptidase A , Seeds , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Cucurbita/chemistry , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Seeds/chemistry , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Up-Regulation/drug effects , Cell Line , Plant Proteins/chemistry , Plant Proteins/metabolism
16.
Mar Drugs ; 22(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667768

ABSTRACT

Metabolic disorders are increasingly prevalent conditions that manifest pathophysiologically along a continuum. Among reported metabolic risk factors, elevated fasting serum glucose (FSG) levels have shown the most substantial increase in risk exposure. Ultimately leading to insulin resistance (IR), this condition is associated with notable deteriorations in the prognostic outlook for major diseases, including neurodegenerative diseases, cancer risk, and mortality related to cardiovascular disease. Tackling metabolic dysfunction, with a focus on prevention, is a critically important aspect for human health. In this study, an investigation into the potential antidiabetic properties of a salmon protein hydrolysate (SPH) was conducted, focusing on its potential dipeptidyl peptidase-IV (DPP-IV) inhibition and direct glucose uptake in vitro. Characterization of the SPH utilized a bioassay-guided fractionation approach to identify potent glucoregulatory peptide fractions. Low-molecular-weight (MW) fractions prepared by membrane filtration (MWCO = 3 kDa) showed significant DPP-IV inhibition (IC50 = 1.01 ± 0.12 mg/mL) and glucose uptake in vitro (p ≤ 0.0001 at 1 mg/mL). Further fractionation of the lowest MW fractions (<3 kDa) derived from the permeate resulted in three peptide subfractions. The subfraction with the lowest molecular weight demonstrated the most significant glucose uptake activity (p ≤ 0.0001), maintaining its potency even at a dilution of 1:500 (p ≤ 0.01).


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Glucose , Protein Hydrolysates , Salmo salar , Animals , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/isolation & purification , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Glucose/metabolism , Humans , Dipeptidyl Peptidase 4/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Fish Proteins/pharmacology
17.
Food Chem ; 449: 139302, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608610

ABSTRACT

In this study, the effects of the thermal ultrasonic enzyme inactivation process on flavor enhancement in sea cucumber hydrolysates (SCHs) and its impact on the inactivation of neutral proteases (NPs) were investigated. The body wall of the sea cucumber was enzymatically hydrolyzed with NPs. On the one hand, the structure of NPs subjected to different enzyme inactivation methods was analyzed using ζ-potential, particle size, and Fourier transform infrared (FT-IR) spectroscopy. On the other hand, the microstructure and flavor changes of SCHs were examined through scanning electron microscopy, E-nose, and gas chromatography-ion mobility spectrometry (GC-IMS). The results indicated that thermal ultrasound treatment at 60 °C could greatly affect the structure of NPs, thereby achieving enzyme inactivation. Furthermore, this treatment generated more pleasant flavor compounds, such as pentanal and (E)-2-nonenal. Hence, thermal ultrasound treatment could serve as an alternative process to traditional heat inactivation of enzymes for improving the flavor of SCHs.


Subject(s)
Hot Temperature , Sea Cucumbers , Animals , Sea Cucumbers/chemistry , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Protein Hydrolysates/chemistry , Taste , Hydrolysis , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Ultrasonic Waves
18.
Mar Biotechnol (NY) ; 26(2): 404-420, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558367

ABSTRACT

Optimization of antioxidants and angiotensin-converting enzyme (ACE) inhibitory potential gelatin hydrolysate production from Labeo rohita (rohu) swim bladder (SBGH) by alcalase using central composite design (CCD) of response surface methodology (RSM) was investigated. The maximum degree of hydrolysis (DH), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), total antioxidants (TAO), and ACE inhibitory activity were achieved at 0.1:1.0 (w/w) enzyme to substrate ratio, 61 °C hydrolysis temperature, and 94-min hydrolysis time. The resulting SBGH obtained at 19.92% DH exhibited the DPPH (24.28 µM TE/mg protein), ABTS (34.47 µM TE/mg protein), TAO (12.01 µg AAE/mg protein), and ACE inhibitory (4.91 µg/mg protein) activity. Furthermore, SBGH at 100 µg/ml displayed osteogenic property without any toxic effects on MC3T3-E1 cells. Besides, the protein content of rohu swim bladder gelatin (SBG) and SBGH was 93.68% and 94.98%, respectively. Both SBG and SBGH were rich in glycine, proline, glutamic acid, alanine, arginine, and hydroxyproline amino acids. Therefore, SBGH could be an effective nutraceutical in functional food development.


Subject(s)
Air Sacs , Fishes , Animals , Air Sacs/chemistry , Air Sacs/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Biphenyl Compounds/chemistry , Cyprinidae/metabolism , Fish Proteins/metabolism , Gelatin/chemistry , Hydrolysis , Osteogenesis/drug effects , Picrates , Protein Hydrolysates/chemistry , Protein Hydrolysates/pharmacology , Subtilisins/metabolism , Fishes/metabolism
19.
Food Chem ; 450: 139400, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640536

ABSTRACT

Three protein hydrolysates from Tenebrio molitor were obtained by enzymatic hydrolysis employing two food-grade proteases (i.e. Alcalase and Flavourzyme), and a complete characterisation of their composition was done. The digestion-derived products were obtained using the INFOGEST protocol. In vitro antioxidant activity and anti-inflammatory activities were evaluated. Tenebrio molitor flour and the protein hydrolysates showed a high ability to scavenge the DPPH radical (EC50 values from 0.30 to 0.87 mg/mL). The hydrolysate obtained with a combination of the two food-grade proteases could decrease the gene expression of pro-inflammatory genes after being digested. Furthermore, the peptidome was fully determined for the first time for T. molitor hydrolysates and digests, and 40 peptides were selected based on their bioactivity to be evaluated by in silico tools, including prediction tools and molecular docking. These results provide new perspectives on the use of edible insects as sustainable and not nutritionally disadvantageous food for human consumption.


Subject(s)
Antioxidants , Insect Proteins , Oligopeptides , Tenebrio , Tenebrio/chemistry , Tenebrio/genetics , Tenebrio/metabolism , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oligopeptides/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Molecular Docking Simulation , Protein Hydrolysates/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Hydrolysis , Humans
20.
Food Chem ; 450: 138833, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38653053

ABSTRACT

The instability and discoloration of (-)-epigallocatechin-3-gallate (EGCG) constrain its application in functional dairy products. Concurrently, challenges persist in the separation and utilization of whey in the dairy industry. By harnessing the interactions between polyphenols and whey proteins or their hydrolysates, this study proposed a method that involved limited enzymatic hydrolysis followed by the addition of EGCG and pH adjustment around the isoelectric point to obtain whey protein hydrolysates (WPH)-EGCG. Over 92 % of protein-EGCG complexes recovered from whey while ensuring the preservation of α-lactalbumin. The combination between EGCG and WPH depended on hydrogen bonding and hydrophobic interactions, significantly enhanced the thermal stability and storage stability of EGCG. Besides, the intestinal phase retention rate of EGCG in WPH-EGCG complex was significantly increased by 23.67 % compared to free EGCG. This work represents an exploratory endeavor in the improvement of EGCG stability and expanding the utilization approaches of whey.


Subject(s)
Catechin , Polyphenols , Whey Proteins , Catechin/chemistry , Catechin/analogs & derivatives , Whey Proteins/chemistry , Polyphenols/chemistry , Hydrolysis , Protein Hydrolysates/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Isoelectric Point
SELECTION OF CITATIONS
SEARCH DETAIL
...