Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44.736
Filter
1.
Nat Commun ; 15(1): 4695, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824138

ABSTRACT

Which isoforms of apolipoprotein E (apoE) we inherit determine our risk of developing late-onset Alzheimer's Disease (AD), but the mechanism underlying this link is poorly understood. In particular, the relevance of direct interactions between apoE and amyloid-ß (Aß) remains controversial. Here, single-molecule imaging shows that all isoforms of apoE associate with Aß in the early stages of aggregation and then fall away as fibrillation happens. ApoE-Aß co-aggregates account for ~50% of the mass of diffusible Aß aggregates detected in the frontal cortices of homozygotes with the higher-risk APOE4 gene. We show how dynamic interactions between apoE and Aß tune disease-related functions of Aß aggregates throughout the course of aggregation. Our results connect inherited APOE genotype with the risk of developing AD by demonstrating how, in an isoform- and lipidation-specific way, apoE modulates the aggregation, clearance and toxicity of Aß. Selectively removing non-lipidated apoE4-Aß co-aggregates enhances clearance of toxic Aß by glial cells, and reduces secretion of inflammatory markers and membrane damage, demonstrating a clear path to AD therapeutics.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Apolipoprotein E4 , Apolipoproteins E , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Humans , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Animals , Apolipoprotein E4/metabolism , Apolipoprotein E4/genetics , Protein Isoforms/metabolism , Protein Isoforms/genetics , Mice , Female , Protein Aggregates , Male , Protein Aggregation, Pathological/metabolism , Mice, Transgenic , Neuroglia/metabolism
2.
Nat Commun ; 15(1): 4479, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802343

ABSTRACT

Deposition of amyloid-ß (Aß) peptides in the brain is a hallmark of Alzheimer's disease. Aßs are generated through sequential proteolysis of the amyloid precursor protein by the γ-secretase complexes (GSECs). Aß peptide length, modulated by the Presenilin (PSEN) and APH-1 subunits of GSEC, is critical for Alzheimer's pathogenesis. Despite high relevance, mechanistic understanding of the proteolysis of Aß, and its modulation by APH-1, remain incomplete. Here, we report cryo-EM structures of human GSEC (PSEN1/APH-1B) reconstituted into lipid nanodiscs in apo form and in complex with the intermediate Aß46 substrate without cross-linking. We find that three non-conserved and structurally divergent APH-1 regions establish contacts with PSEN1, and that substrate-binding induces concerted rearrangements in one of the identified PSEN1/APH-1 interfaces, providing structural basis for APH-1 allosteric-like effects. In addition, the GSEC-Aß46 structure reveals an interaction between Aß46 and loop 1PSEN1, and identifies three other H-bonding interactions that, according to functional validation, are required for substrate recognition and efficient sequential catalysis.


Subject(s)
Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Cryoelectron Microscopy , Membrane Proteins , Presenilin-1 , Humans , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/chemistry , Presenilin-1/metabolism , Presenilin-1/chemistry , Presenilin-1/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Endopeptidases/metabolism , Endopeptidases/chemistry , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/chemistry , Protein Binding , Protein Isoforms/metabolism , Protein Isoforms/chemistry , Alzheimer Disease/metabolism , Peptide Fragments/metabolism , Peptide Fragments/chemistry , Peptide Hydrolases/metabolism , Peptide Hydrolases/chemistry , Models, Molecular , Proteolysis
3.
Sci Rep ; 14(1): 12112, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802392

ABSTRACT

The forkhead box P3 (FOXP3) transcript is essential for tolerance of alloantigens. Here, we describe the expression of FOXP3 mRNA variants in healthy females and males, and in kidney transplant recipients (KTR). We measured FOXP3 in peripheral blood mononuclear cells from healthy kidney donors (N = 101), and in blood from KTRs (N = 248) before and after transplantation. FOXP3 was measured with quantitative polymerase chain reaction, and differentiated between pre-mature mRNA FOXP3, Total mature FOXP3, FOXP3 in which exon two is spliced, and full length FOXP3. We found similar levels of FOXP3 in healthy female and male kidney donors. We confirmed this result in a publicly available cohort (N = 33) of healthy individuals (GSE97475). Homogenously, female and male KTR FOXP3 levels were similar pre-transplantation, one day post-transplantation and 29 days post-transplantation. This may suggest that kidney transplantation and related immunosuppressive treatments do not influence FOXP3 expression differently in females and males. Finally, fold difference analysis revealed that KTRs express lower levels of mature FOXP3 and higher levels of pre-mature FOXP3 mRNA pre-transplant compared to healthy individuals. This finding may suggest higher pre-mRNA synthesis, lower pre-mRNA degradation, lower spliceosome efficiency or higher degradation of mature FOXP3 mRNA in kidney transplant candidates.


Subject(s)
Forkhead Transcription Factors , Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Male , Female , Adult , Middle Aged , Transplant Recipients , RNA, Messenger/genetics , RNA, Messenger/metabolism , Alternative Splicing , Protein Isoforms/genetics , Protein Isoforms/metabolism , Leukocytes, Mononuclear/metabolism , Aged
4.
Cell Rep ; 43(5): 114221, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748877

ABSTRACT

ZBP1 is an interferon (IFN)-induced nucleic acid (NA) sensor that senses unusual Z-form NA (Z-NA) to promote cell death and inflammation. However, the mechanisms that dampen ZBP1 activation to fine-tune inflammatory responses are unclear. Here, we characterize a short isoform of ZBP1 (referred to as ZBP1-S) as an intrinsic suppressor of the inflammatory signaling mediated by full-length ZBP1. Mechanistically, ZBP1-S depresses ZBP1-mediated cell death by competitive binding with Z-NA for Zα domains of ZBP1. Cells from mice (Ripk1D325A/D325A) with cleavage-resistant RIPK1-induced autoinflammatory (CRIA) syndrome are alive but sensitive to IFN-induced and ZBP1-dependent cell death. Intriguingly, Ripk1D325A/D325A cells die spontaneously when ZBP1-S is deleted, indicating that cell death driven by ZBP1 is under the control of ZBP1-S. Thus, our findings reveal that alternative splicing of Zbp1 represents autogenic inhibition for regulating ZBP1 signaling and indicate that uncoupling of Z-NA with ZBP1 could be an effective strategy against autoinflammations.


Subject(s)
Cell Death , Protein Isoforms , RNA-Binding Proteins , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Protein Isoforms/metabolism , Protein Isoforms/genetics , Humans , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Mice, Inbred C57BL , Alternative Splicing/genetics , HEK293 Cells , Inflammation/metabolism , Inflammation/pathology
5.
Front Immunol ; 15: 1372904, 2024.
Article in English | MEDLINE | ID: mdl-38742116

ABSTRACT

Introduction: The California purple sea urchin, Strongylocentrotus purpuratus, relies solely on an innate immune system to combat the many pathogens in the marine environment. One aspect of their molecular defenses is the SpTransformer (SpTrf) gene family that is upregulated in response to immune challenge. The gene sequences are highly variable both within and among animals and likely encode thousands of SpTrf isoforms within the sea urchin population. The native SpTrf proteins bind foreign targets and augment phagocytosis of a marine Vibrio. A recombinant (r)SpTrf-E1-Ec protein produced by E. coli also binds Vibrio but does not augment phagocytosis. Methods: To address the question of whether other rSpTrf isoforms function as opsonins and augment phagocytosis, six rSpTrf proteins were expressed in insect cells. Results: The rSpTrf proteins are larger than expected, are glycosylated, and one dimerized irreversibly. Each rSpTrf protein cross-linked to inert magnetic beads (rSpTrf::beads) results in different levels of surface binding and phagocytosis by phagocytes. Initial analysis shows that significantly more rSpTrf::beads associate with cells compared to control BSA::beads. Binding specificity was verified by pre-incubating the rSpTrf::beads with antibodies, which reduces the association with phagocytes. The different rSpTrf::beads show significant differences for cell surface binding and phagocytosis by phagocytes. Furthermore, there are differences among the three distinct types of phagocytes that show specific vs. constitutive binding and phagocytosis. Conclusion: These findings illustrate the complexity and effectiveness of the sea urchin innate immune system driven by the natSpTrf proteins and the phagocyte cell populations that act to neutralize a wide range of foreign pathogens.


Subject(s)
Phagocytes , Phagocytosis , Recombinant Proteins , Animals , Phagocytosis/immunology , Phagocytes/immunology , Phagocytes/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Protein Binding , Strongylocentrotus purpuratus/immunology , Strongylocentrotus purpuratus/genetics , Immunity, Innate , Protein Isoforms/genetics , Protein Isoforms/immunology , Sea Urchins/immunology , Vibrio/immunology , Opsonin Proteins/metabolism , Opsonin Proteins/immunology
6.
Science ; 384(6698): eadh7688, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781356

ABSTRACT

RNA splicing is highly prevalent in the brain and has strong links to neuropsychiatric disorders; yet, the role of cell type-specific splicing and transcript-isoform diversity during human brain development has not been systematically investigated. In this work, we leveraged single-molecule long-read sequencing to deeply profile the full-length transcriptome of the germinal zone and cortical plate regions of the developing human neocortex at tissue and single-cell resolution. We identified 214,516 distinct isoforms, of which 72.6% were novel (not previously annotated in Gencode version 33), and uncovered a substantial contribution of transcript-isoform diversity-regulated by RNA binding proteins-in defining cellular identity in the developing neocortex. We leveraged this comprehensive isoform-centric gene annotation to reprioritize thousands of rare de novo risk variants and elucidate genetic risk mechanisms for neuropsychiatric disorders.


Subject(s)
Neocortex , Protein Isoforms , Single-Cell Analysis , Transcriptome , Humans , Neocortex/metabolism , Neocortex/embryology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Mental Disorders/genetics , RNA Splicing , Genetic Predisposition to Disease , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Alternative Splicing , Molecular Sequence Annotation
7.
Science ; 384(6698): eadh0829, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781368

ABSTRACT

Neuropsychiatric genome-wide association studies (GWASs), including those for autism spectrum disorder and schizophrenia, show strong enrichment for regulatory elements in the developing brain. However, prioritizing risk genes and mechanisms is challenging without a unified regulatory atlas. Across 672 diverse developing human brains, we identified 15,752 genes harboring gene, isoform, and/or splicing quantitative trait loci, mapping 3739 to cellular contexts. Gene expression heritability drops during development, likely reflecting both increasing cellular heterogeneity and the intrinsic properties of neuronal maturation. Isoform-level regulation, particularly in the second trimester, mediated the largest proportion of GWAS heritability. Through colocalization, we prioritized mechanisms for about 60% of GWAS loci across five disorders, exceeding adult brain findings. Finally, we contextualized results within gene and isoform coexpression networks, revealing the comprehensive landscape of transcriptome regulation in development and disease.


Subject(s)
Autism Spectrum Disorder , Brain , Genome-Wide Association Study , Protein Isoforms , Quantitative Trait Loci , Schizophrenia , Humans , Brain/metabolism , Brain/growth & development , Brain/embryology , Schizophrenia/genetics , Autism Spectrum Disorder/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcriptome , RNA Splicing , Gene Expression Regulation, Developmental , Alternative Splicing , Atlases as Topic , Gene Regulatory Networks
8.
Proc Natl Acad Sci U S A ; 121(21): e2318591121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739802

ABSTRACT

The transcription factor p73, a member of the p53 tumor-suppressor family, regulates cell death and also supports tumorigenesis, although the mechanistic basis for the dichotomous functions is poorly understood. We report here the identification of an alternate transactivation domain (TAD) located at the extreme carboxyl (C) terminus of TAp73ß, a commonly expressed p73 isoform. Mutational disruption of this TAD significantly reduced TAp73ß's transactivation activity, to a level observed when the amino (N)-TAD that is similar to p53's TAD, is mutated. Mutation of both TADs almost completely abolished TAp73ß's transactivation activity. Expression profiling highlighted a unique set of targets involved in extracellular matrix-receptor interaction and focal adhesion regulated by the C-TAD, resulting in FAK phosphorylation, distinct from the N-TAD targets that are common to p53 and are involved in growth inhibition. Interestingly, the C-TAD targets are also regulated by the oncogenic, amino-terminal-deficient DNp73ß isoform. Consistently, mutation of C-TAD reduces cellular migration and proliferation. Mechanistically, selective binding of TAp73ß to DNAJA1 is required for the transactivation of C-TAD target genes, and silencing DNAJA1 expression abrogated all C-TAD-mediated effects. Taken together, our results provide a mechanistic basis for the dichotomous functions of TAp73 in the regulation of cellular growth through its distinct TADs.


Subject(s)
Cell Proliferation , Protein Domains , Transcriptional Activation , Tumor Protein p73 , Tumor Protein p73/metabolism , Tumor Protein p73/genetics , Humans , Cell Movement/genetics , Mutation , Cell Line, Tumor , Protein Isoforms/metabolism , Protein Isoforms/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Phosphorylation , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics
9.
J Chem Inf Model ; 64(10): 4121-4133, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38706255

ABSTRACT

Microtubules, composed of α- and ß-tubulin subunits are crucial for cell division with their dynamic tissue-specificity which is dictated by expression of isotypes. These isotypes differ in carboxy-terminal tails (CTTs), rich in negatively charged acidic residues in addition to the differences in the composition of active site residues. 2-Methoxy estradiol (2-ME) is the first antimicrotubule agent that showed less affinity toward hemopoietic-specific ß1 isotype consequently preventing myelosuppression toxicity. The present study focuses on the MD-directed conformational analysis of 2-ME and estimation of its binding affinity in the colchicine binding pocket of various ß-tubulin isotypes combined with the α-tubulin isotype, α1B. AlphaFold 2.0 was used to predict the 3D structure of phylogenetically divergent human ß-tubulin isotypes in dimer form with α1B. The dimeric complexes were subjected to induced-fit docking with 2-ME. The statistical analysis of docking showed differences in the binding characteristics of 2-ME with different isotypes. The replicas of atom-based molecular dynamic simulations of the best conformation of 2-ME provided insights into the molecular-level details of its binding pattern across the isotypes. Furthermore, the MM/GBSA analyses revealed the specific binding energy profile of 2-ME in ß-tubulin isotypes. It also highlighed, 2-ME exhibits the lowest binding affinity toward the ß1 isotype as supported by experimental study. The present study may offer useful information for designing next-generation antimicrotubule agents that are more specific and less toxic.


Subject(s)
2-Methoxyestradiol , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Isoforms , Tubulin , Humans , Tubulin/metabolism , Tubulin/chemistry , Protein Isoforms/metabolism , Protein Isoforms/chemistry , 2-Methoxyestradiol/metabolism , 2-Methoxyestradiol/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Estradiol/metabolism , Estradiol/chemistry , Estradiol/analogs & derivatives , Protein Conformation , Binding Sites
10.
BMC Genomics ; 25(1): 498, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773419

ABSTRACT

BACKGROUND: The hair follicle development process is regulated by sophisticated genes and signaling networks, and the hair grows from the hair follicle. The Tianzhu white yak population exhibits differences in hair length, especially on the forehead and shoulder region. However, the genetic mechanism is still unclear. Isoform sequencing (Iso-seq) technology with advantages in long reads sequencing. Hence, we combined the Iso-seq and RNA-seq methods to investigate the transcript complexity and difference between long-haired yak (LHY) and normal-haired yak (NHY). RESULTS: The hair length measurement result showed a significant difference between LHY and NHY on the forehead and the shoulder (P-value < 0.001). The skin samples from the forehead and the shoulder of LHY and NHY were pooled for isoform sequencing (Iso-seq). We obtained numerous long transcripts, including novel isoforms, long non-coding RNA, alternative splicing events, and alternative polyadenylation events. Combined with RNA-seq data, we performed differential isoforms (DEIs) analysis between LHY and NHY. We found that some hair follicle and skin development-related DEIs, like BMP4, KRT2, IGF2R, and COL1A2 in the forehead skin; BMP1, KRT1, FGF5, COL2A1, and IGFBP5 in the shoulder skin. Enrichment analysis revealed that DEIs in both two comparable groups significantly participated in skin and hair follicle development-related pathways, like ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathways. The results indicated that the hair follicle development of Tianzhu white yak may influence the hair length difference. Besides, the protein-protein interaction (PPI) network of DEIs showed COL2A1 and COL3A1 exhibited a high degree of centrality, and these two genes were suggested as potential candidates for the hair length growth of Tianzhu white yak. CONCLUSIONS: The results provided a comprehensive analysis of the transcriptome complexity and identified differential transcripts that enhance our understanding of the molecular mechanisms underlying the variation in hair length growth in Tianzhu white yak.


Subject(s)
Hair , Protein Isoforms , RNA-Seq , Skin , Transcriptome , Animals , Cattle/genetics , Skin/metabolism , Hair/metabolism , Hair/growth & development , Protein Isoforms/genetics , Protein Isoforms/metabolism , Hair Follicle/metabolism , Hair Follicle/growth & development , Gene Expression Profiling , Alternative Splicing , Sequence Analysis, RNA
11.
Sci Rep ; 14(1): 10276, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704483

ABSTRACT

Fuchs endothelial corneal dystrophy (FECD) is a complex corneal disease characterized by the progressive decline and morphological changes of corneal endothelial cells (CECs) that leads to corneal edema and vision loss. The most common mutation in FECD is an intronic CTG repeat expansion in transcription factor 4 (TCF4) that leads to its altered expression. Corneal endothelial wound healing occurs primarily through cell enlargement and migration, and FECD CECs have been shown to display increased migration speeds. In this study, we aim to determine whether TCF4 can promote cellular migration in FECD CECs. We generated stable CEC lines derived from FECD patients that overexpressed different TCF4 isoforms and investigated epithelial-to-mesenchymal (EMT) expression, morphological analysis and cellular migration speeds. We found that full length TCF4-B isoform overexpression promotes cellular migration in FECD CECs in an EMT-independent manner. RNA-sequencing identified several pathways including the negative regulation of microtubules, with TUBB4A (tubulin beta 4A class IVa) as the top upregulated gene. TUBB4A expression was increased in FECD ex vivo specimens, and there was altered expression of cytoskeleton proteins, tubulin and actin, compared to normal healthy donor ex vivo specimens. Additionally, there was increased acetylation and detyrosination of microtubules in FECD supporting that microtubule stability is altered in FECD and could promote cellular migration. Future studies could be aimed at investigating if targeting the cytoskeleton and microtubules would have therapeutic potential for FECD by promoting cellular migration and regeneration.


Subject(s)
Cell Movement , Endothelium, Corneal , Fuchs' Endothelial Dystrophy , Microtubules , Transcription Factor 4 , Humans , Fuchs' Endothelial Dystrophy/genetics , Fuchs' Endothelial Dystrophy/metabolism , Fuchs' Endothelial Dystrophy/pathology , Cell Movement/genetics , Microtubules/metabolism , Transcription Factor 4/metabolism , Transcription Factor 4/genetics , Endothelium, Corneal/metabolism , Endothelium, Corneal/pathology , Male , Female , Epithelial-Mesenchymal Transition/genetics , Aged , Endothelial Cells/metabolism , Endothelial Cells/pathology , Tubulin/metabolism , Tubulin/genetics , Middle Aged , Protein Isoforms/metabolism , Protein Isoforms/genetics
12.
ACS Chem Neurosci ; 15(10): 2018-2027, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38701380

ABSTRACT

In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π-π, and cation-π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation-π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π-π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases.


Subject(s)
Membrane Glycoproteins , Molecular Dynamics Simulation , Nerve Tissue Proteins , Protein Isoforms , Ligands , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/chemistry , Humans , Hydrogen Bonding , Protein Binding/physiology , Molecular Docking Simulation/methods , Synaptic Vesicles/metabolism
13.
Sci Rep ; 14(1): 12113, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802572

ABSTRACT

SH-SY5Y, a neuroblastoma cell line, can be converted into mature neuronal phenotypes, characterized by the expression of mature neuronal and neurotransmitter markers. However, the mature phenotypes described across multiple studies appear inconsistent. As this cell line expresses common neuronal markers after a simple induction, there is a high chance of misinterpreting its maturity. Therefore, sole reliance on common neuronal markers is presumably inadequate. The Alzheimer's disease (AD) central gene, amyloid precursor protein (APP), has shown contrasting transcript variant dynamics in various cell types. We differentiated SH-SY5Y cells into mature neuron-like cells using a concise protocol and observed the upregulation of total APP throughout differentiation. However, APP transcript variant-1 was upregulated only during the early to middle stages of differentiation and declined in later stages. We identified the maturity state where this post-transcriptional shift occurs, terming it "true maturity." At this stage, we observed a predominant expression of mature neuronal and cholinergic markers, along with a distinct APP variant pattern. Our findings emphasize the necessity of using a differentiation state-sensitive marker system to precisely characterize SH-SY5Y differentiation. Moreover, this study offers an APP-guided, alternative neuronal marker system to enhance the accuracy of the conventional markers.


Subject(s)
Amyloid beta-Protein Precursor , Cell Differentiation , Neurons , Humans , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Neurons/metabolism , Neurons/cytology , Cell Line, Tumor , Neuroblastoma/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Biomarkers/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alternative Splicing , Protein Isoforms/metabolism , Protein Isoforms/genetics
14.
Mol Neurodegener ; 19(1): 42, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802940

ABSTRACT

Microglia play diverse pathophysiological roles in Alzheimer's disease (AD), with genetic susceptibility factors skewing microglial cell function to influence AD risk. CD33 is an immunomodulatory receptor associated with AD susceptibility through a single nucleotide polymorphism that modulates mRNA splicing, skewing protein expression from a long protein isoform (CD33M) to a short isoform (CD33m). Understanding how human CD33 isoforms differentially impact microglial cell function in vivo has been challenging due to functional divergence of CD33 between mice and humans. We address this challenge by studying transgenic mice expressing either of the human CD33 isoforms crossed with the 5XFAD mouse model of amyloidosis and find that human CD33 isoforms have opposing effects on the response of microglia to amyloid-ß (Aß) deposition. Mice expressing CD33M have increased Aß levels, more diffuse plaques, fewer disease-associated microglia, and more dystrophic neurites compared to 5XFAD control mice. Conversely, CD33m promotes plaque compaction and microglia-plaque contacts, and minimizes neuritic plaque pathology, highlighting an AD protective role for this isoform. Protective phenotypes driven by CD33m are detected at an earlier timepoint compared to the more aggressive pathology in CD33M mice that appears at a later timepoint, suggesting that CD33m has a more prominent impact on microglia cell function at earlier stages of disease progression. In addition to divergent roles in modulating phagocytosis, scRNAseq and proteomics analyses demonstrate that CD33m+ microglia upregulate nestin, an intermediate filament involved in cell migration, at plaque contact sites. Overall, our work provides new functional insights into how CD33, as a top genetic susceptibility factor for AD, modulates microglial cell function.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Mice, Transgenic , Microglia , Protein Isoforms , Sialic Acid Binding Ig-like Lectin 3 , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Microglia/metabolism , Sialic Acid Binding Ig-like Lectin 3/metabolism , Humans , Mice , Protein Isoforms/metabolism , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology
15.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38803235

ABSTRACT

Translation initiation at alternative start sites can dynamically control the synthesis of two or more functionally distinct protein isoforms from a single mRNA. Alternate isoforms of the developmental transcription factor CCAAT/enhancer-binding protein α (C/EBPα) produced from different start sites exert opposing effects during myeloid cell development. This choice between alternative start sites depends on sequence features of the CEBPA transcript, including a regulatory uORF, but the molecular basis is not fully understood. Here, we identify the factors that affect C/EBPα isoform choice using a sensitive and quantitative two-color fluorescent reporter coupled with CRISPRi screening. Our screen uncovered a role of the ribosome rescue factor PELOTA (PELO) in promoting the expression of the longer C/EBPα isoform by directly removing inhibitory unrecycled ribosomes and through indirect effects mediated by the mechanistic target of rapamycin kinase. Our work uncovers further links between ribosome recycling and translation reinitiation that regulate a key transcription factor, with implications for normal hematopoiesis and leukemogenesis.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha , Protein Biosynthesis , Protein Isoforms , Ribosomes , Protein Isoforms/metabolism , Protein Isoforms/genetics , Humans , Ribosomes/metabolism , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , Peptide Chain Initiation, Translational , Mice , TOR Serine-Threonine Kinases/metabolism , HEK293 Cells
16.
Sci Rep ; 14(1): 12347, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811840

ABSTRACT

Fascioliasis is a parasitic infection in animals and humans caused by the parasitic flatworm genus Fasciola, which has two major species, F. hepatica and F. gigantica. A major concern regarding this disease is drug resistance, which is increasingly reported worldwide. Hence, the discovery of a novel drug as well as drug targets is crucially required. Therefore, this study aims to characterize the novel drug target in the adult F. gigantica. In the beginning, we hypothesized that the parasite might interact with some host molecules when it lives inside the liver parenchyma or bile ducts, specifically hormones and hormone-like molecules, through the specific receptors, primarily nuclear receptors (NRs), which are recognized as a major drug target in various diseases. The retinoid X receptor (RXR) is a member of subfamily 2 NRs that plays multitudinous roles in organisms by forming homodimers or heterodimers with other NRs. We obtained the full-length amino acid sequences of F. gigantica retinoid X receptor-alpha (FgRXRα-A) from the transcriptome of F. gigantica that existed in the NCBI database. The FgRXRα-A were computationally predicted for the basic properties, multiple aligned, phylogeny analyzed, and generated of 2D and 3D models. Moreover, FgRXRα-A was molecular cloned and expressed as a recombinant protein (rFgRXRα-A), then used for immunization for specific polyclonal antibodies. The native FgRXRα-A was detected in the parasite extracts and tissues, and the function was investigated by in vitro binding assay. The results demonstrated the conservation of FgRXRα-A to the other RXRs, especially RXRs from the trematodes. Interestingly, the native FgRXRα-A could be detected in the testes of the parasite, where the sex hormones are accumulated. Moreover, the binding assay revealed the interaction of 9-cis retinoic acid and FgRXRα-A, suggesting the function of FgRXRα-A. Our findings suggested that FgRXRα-A will be involved with the sexual reproduction of the parasite by forming heterodimers with other NRs, and it could be the potential target for further drug development of fascioliasis.


Subject(s)
Fasciola , Retinoid X Receptor alpha , Animals , Fasciola/metabolism , Fasciola/genetics , Retinoid X Receptor alpha/metabolism , Retinoid X Receptor alpha/genetics , Protein Isoforms/metabolism , Protein Isoforms/genetics , Phylogeny , Helminth Proteins/metabolism , Helminth Proteins/genetics , Helminth Proteins/chemistry , Fascioliasis/parasitology , Amino Acid Sequence
17.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732215

ABSTRACT

We explored the functional redundancy of three structurally related KCTD (Potassium Channel Tetramerization Domain) proteins, KCTD2, KCTD5, and KCTD17, by progressively knocking them out in HEK 293 cells using CRISPR/Cas9 genome editing. After validating the knockout, we assessed the effects of progressive knockout on cell growth and gene expression. We noted that the progressive effects of knockout of KCTD isoforms on cell growth were most pervasive when all three isoforms were deleted, suggesting some functions were conserved between them. This was also reflected in progressive changes in gene expression. Our previous work indicated that Gß1 was involved in the transcriptional control of gene expression, so we compared the gene expression patterns between GNB1 and KCTD KO. Knockout of GNB1 led to numerous changes in the expression levels of other G protein subunit genes, while knockout of KCTD isoforms had the opposite effect, presumably because of their role in regulating levels of Gß1. Our work demonstrates a unique relationship between KCTD proteins and Gß1 and a global role for this subfamily of KCTD proteins in maintaining the ability of cells to survive and proliferate.


Subject(s)
Cell Proliferation , Potassium Channels , Humans , HEK293 Cells , Cell Proliferation/genetics , Potassium Channels/metabolism , Potassium Channels/genetics , CRISPR-Cas Systems , Gene Knockout Techniques , Protein Isoforms/genetics , Protein Isoforms/metabolism , Gene Editing , Gene Expression Regulation
18.
Nat Commun ; 15(1): 3972, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730241

ABSTRACT

The advancement of Long-Read Sequencing (LRS) techniques has significantly increased the length of sequencing to several kilobases, thereby facilitating the identification of alternative splicing events and isoform expressions. Recently, numerous computational tools for isoform detection using long-read sequencing data have been developed. Nevertheless, there remains a deficiency in comparative studies that systemically evaluate the performance of these tools, which are implemented with different algorithms, under various simulations that encompass potential influencing factors. In this study, we conducted a benchmark analysis of thirteen methods implemented in nine tools capable of identifying isoform structures from long-read RNA-seq data. We evaluated their performances using simulated data, which represented diverse sequencing platforms generated by an in-house simulator, RNA sequins (sequencing spike-ins) data, as well as experimental data. Our findings demonstrate IsoQuant as a highly effective tool for isoform detection with LRS, with Bambu and StringTie2 also exhibiting strong performance. These results offer valuable guidance for future research on alternative splicing analysis and the ongoing improvement of tools for isoform detection using LRS data.


Subject(s)
Algorithms , Alternative Splicing , RNA, Messenger , Sequence Analysis, RNA , Humans , RNA, Messenger/genetics , RNA, Messenger/analysis , Sequence Analysis, RNA/methods , RNA Isoforms/genetics , Software , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Protein Isoforms/genetics
20.
JCO Precis Oncol ; 8: e2300543, 2024 May.
Article in English | MEDLINE | ID: mdl-38781542

ABSTRACT

PURPOSE: Claudin 18 isoform 2 (CLDN18.2) is an emerging biomarker and therapeutic target in gastric and gastroesophageal junction (G/GEJ) adenocarcinoma. This study aimed to obtain deeper understanding of CLDN18.2 positivity patterns, prognostic implications, and associations with various demographic, clinical, and molecular characteristics in G/GEJ adenocarcinoma. METHODS: Archived tumor tissue samples from 304 patients with G/GEJ adenocarcinoma in the United States were assessed for CLDN18.2 positivity by immunohistochemistry. CLDN18.2 positivity was defined as ≥50% or ≥75% of tumor cells with CLDN18 staining intensity ≥2+. CLDN18.2 positivity patterns were analyzed for association with prognosis and clinicopathologic/demographic characteristics. Where possible, CLDN18.2 positivity was analyzed for matched tissue samples to assess concordance between primary and metastatic tumors and concordance before and after chemotherapy. RESULTS: The overall prevalence of CLDN18.2-positive tumors (with ≥75% cutoff) was 44.4% (n = 135 of 304). CLDN18.2-positive tumors had a prevalence of 51.4% (n = 91 of 177) in gastric and 34.6% (n = 44 of 127) in GEJ adenocarcinoma. With a ≥50% cutoff, the prevalence of CLDN18.2-positive tumors was 64.4% (n = 114 of 177) in gastric adenocarcinoma and 44.9% (n = 57 of 127) in GEJ adenocarcinoma. There was no association between overall survival and CLDN18.2 positivity using either threshold. Statistically significant associations were noted between CLDN18.2 positivity and sex, histologic type of G/GEJ adenocarcinoma, and adenocarcinoma subtype (≥75% cutoff), and metastasis site and tumor grade (≥50% cutoff). The overall concordance of CLDN18.2 positivity (≥75% cutoff) was 73% (27 of 37) for matched primary versus metastatic tumor samples and 74% (29 of 39) for matched samples before and after chemotherapy. CONCLUSION: This study demonstrated that CLDN18.2 positivity did not correlate with survival in G/GEJ adenocarcinoma, consistent with published data. On the basis of matched sample analysis, CLDN18.2 appears to demonstrate >70% concordance as a biomarker. Observed correlations with certain patient/tumor characteristics warrant further study.


Subject(s)
Adenocarcinoma , Claudins , Esophageal Neoplasms , Esophagogastric Junction , Stomach Neoplasms , Humans , Male , Stomach Neoplasms/pathology , Stomach Neoplasms/epidemiology , Adenocarcinoma/pathology , Female , Esophagogastric Junction/pathology , Middle Aged , Aged , Prognosis , Retrospective Studies , Esophageal Neoplasms/pathology , Protein Isoforms , Adult , Aged, 80 and over , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...