Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 103(11): 2331-40, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23283232

ABSTRACT

Elucidating the principles governing anesthetic-protein interactions requires structural determinations at high resolutions not yet achieved with ion channels. Protein kinase C (PKC) activity is modulated by general anesthetics. We solved the structure of the phorbol-binding domain (C1B) of PKCδ complexed with an ether (methoxymethylcycloprane) and with an alcohol (cyclopropylmethanol) at 1.36-Å resolution. The cyclopropane rings of both agents displace a single water molecule in a surface pocket adjacent to the phorbol-binding site, making van der Waals contacts with the backbone and/or side chains of residues Asn-237 to Ser-240. Surprisingly, two water molecules anchored in a hydrogen-bonded chain between Thr-242 and Lys-260 impart elasticity to one side of the binding pocket. The cyclopropane ring takes part in π-acceptor hydrogen bonds with the amide of Met-239. There is a crucial hydrogen bond between the oxygen atoms of the anesthetics and the hydroxyl of Tyr-236. A Tyr-236-Phe mutation results in loss of binding. Thus, both van der Waals interactions and hydrogen-bonding are essential for binding to occur. Ethanol failed to bind because it is too short to benefit from both interactions. Cyclopropylmethanol inhibited phorbol-ester-induced PKCδ activity, but failed to do so in PKCδ containing the Tyr-236-Phe mutation.


Subject(s)
Anesthetics, General/chemistry , Cyclopropanes/chemistry , Cysteine/chemistry , Ethers/chemistry , Methanol/analogs & derivatives , Protein Kinase C-delta/chemistry , Protein Kinase C-delta/ultrastructure , Binding Sites , Humans , Methanol/chemistry , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Structure-Activity Relationship
2.
Cell Signal ; 19(10): 2035-45, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17604605

ABSTRACT

Two-dimensional crystals of protein kinase C delta (PKCdelta) and of its regulatory domain (RDdelta) were grown on lipid monolayers and analyzed by electron microscopy at tilt angles varying from -50 degrees to +55 degrees. Although the crystals exhibit pseudo-3-fold symmetry, analysis of difference phase residuals indicates that there is only one way to align the crystals for merging so the data were processed in plane group P1. Three-dimensional reconstructions generated for several two-dimensional crystals each of PKCdelta and RDdelta show good agreement and are consistent with membrane attachment via a single C1 subdomain, a small surface contact by one or two loops from the C2 domain, and, in intact PKCdelta, a small appendage from the catalytic domain, probably V5. Two-dimensional crystallography with three-dimensional reconstruction should be suitable for examination of additional PKC isozymes and for analysis of the enzymes bound to substrates and other proteins.


Subject(s)
Models, Molecular , Protein Kinase C-delta/ultrastructure , Crystallization , Imaging, Three-Dimensional , Membrane Lipids/chemistry , Protein Kinase C-delta/chemistry , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...