Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.107
Filter
1.
Sci Rep ; 14(1): 12736, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830973

ABSTRACT

The purpose of this study was to develop and validate a physiologically based pharmacokinetic (PBPK) model combined with an EGFR occupancy (EO) model for osimertinib (OSI) to predict plasma trough concentration (Ctrough) and the intracranial time-course of EGFR (T790M and L858R mutants) engagement in patient populations. The PBPK model was also used to investigate the key factors affecting OSI pharmacokinetics (PK) and intracranial EGFR engagement, analyze resistance to the target mutation C797S, and determine optimal dosing regimens when used alone and in drug-drug interactions (DDIs). A population PBPK-EO model of OSI was developed using physicochemical, biochemical, binding kinetic, and physiological properties, and then validated using nine clinical PK studies, observed EO study, and two clinical DDI studies. The PBPK-EO model demonstrated good consistency with observed data, with most prediction-to-observation ratios falling within the range of 0.7 to 1.3 for plasma AUC, Cmax, Ctrough and intracranial free concentration. The simulated time-course of C797S occupancy by the PBPK model was much lower than T790M and L858R occupancy, providing an explanation for OSI on-target resistance to the C797S mutation. The PBPK model identified ABCB1 CLint,u, albumin level, and EGFR expression as key factors affecting plasma Ctrough and intracranial EO for OSI. Additionally, PBPK-EO simulations indicated that the optimal dosing regimen for OSI in patients with brain metastases is either 80 mg once daily (OD) or 160 mg OD, or 40 mg or 80 mg twice daily (BID). When used concomitantly with CYP enzyme perpetrators, the PBPK-EO model suggested appropriate dosing regimens of 80 mg OD with fluvoxamine (FLUV) itraconazole (ITR) or fluvoxamine (FLUC) for co-administration and an increase to 160 mg OD with rifampicin (RIF) or efavirenz (EFA). In conclusion, the PBPK-EO model has been shown to be capable of simulating the pharmacokinetic concentration-time profiles and the time-course of EGFR engagement for OSI, as well as determining the optimum dosing in various clinical situations.


Subject(s)
Acrylamides , Aniline Compounds , Brain Neoplasms , ErbB Receptors , Humans , Aniline Compounds/pharmacokinetics , Aniline Compounds/administration & dosage , Acrylamides/pharmacokinetics , Acrylamides/administration & dosage , ErbB Receptors/genetics , ErbB Receptors/metabolism , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Models, Biological , Mutation , Female , Male , Drug Interactions , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/blood , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/blood , Antineoplastic Agents/administration & dosage , Middle Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Indoles , Pyrimidines
2.
PeerJ ; 12: e17446, 2024.
Article in English | MEDLINE | ID: mdl-38827306

ABSTRACT

Objectives: To investigate the interaction between tramadol and representative tyrosine kinase inhibitors, and to study the inhibition mode of drug-interaction. Methods: Liver microsomal catalyzing assay was developed. Sprague-Dawley rats were administrated tramadol with or without selected tyrosine kinase inhibitors. Samples were prepared and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for analysis. Besides, liver, kidney, and small intestine were collected and morphology was examined by hematoxyline-eosin (H&E) staining. Meanwhile, liver microsomes were prepared and carbon monoxide differential ultraviolet radiation (UV) spectrophotometric quantification was performed. Results: Among the screened inhibitors, crizotinib takes the highest potency in suppressing the metabolism of tramadol in rat/human liver microsome, following non-competitive inhibitory mechanism. In vivo, when crizotinib was co-administered, the AUC value of tramadol increased compared with the control group. Besides, no obvious pathological changes were observed, including cell morphology, size, arrangement, nuclear morphology with the levels of alanine transaminase (ALT) and aspartate transaminase (AST) increased after multiple administration of crizotinib. Meanwhile, the activities of CYP2D1 and CYP3A2 as well as the total cytochrome P450 abundance were found to be decreased in rat liver of combinational group. Conclusions: Crizotinib can inhibit the metabolism of tramadol. Therefore, this recipe should be vigilant to prevent adverse reactions.


Subject(s)
Crizotinib , Cytochrome P-450 CYP3A , Microsomes, Liver , Rats, Sprague-Dawley , Tramadol , Animals , Tramadol/pharmacology , Crizotinib/pharmacology , Rats , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Cytochrome P-450 CYP3A/metabolism , Male , Drug Interactions , Humans , Tandem Mass Spectrometry , Cytochrome P450 Family 2/metabolism , Cytochrome P450 Family 2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Analgesics, Opioid/pharmacology
3.
J Med Chem ; 67(10): 8060-8076, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38722184

ABSTRACT

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a promising therapeutic target in inflammation-related diseases. However, the inhibition of IRAK4 kinase activity may lead to moderate anti-inflammatory efficacy owing to the dual role of IRAK4 as an active kinase and a scaffolding protein. Herein, we report the design, synthesis, and biological evaluation of an efficient and selective IRAK4 proteolysis-targeting chimeric molecule that eliminates IRAK4 scaffolding functions. The most potent compound, LC-MI-3, effectively degraded cellular IRAK4, with a half-maximal degradation concentration of 47.3 nM. LC-MI-3 effectively inhibited the activation of downstream nuclear factor-κB signaling and exerted more potent pharmacological effects than traditional kinase inhibitors. Furthermore, LC-MI-3 exerted significant therapeutic effects in lipopolysaccharide- and Escherichia coli-induced acute and chronic inflammatory skin models compared with kinase inhibitors in vivo. Therefore, LC-MI-3 is a candidate IRAK4 degrader in alternative targeting strategies and advanced drug development.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Animals , Humans , Mice , Inflammation/drug therapy , Inflammation/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Administration, Oral , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacokinetics , Biological Availability , Drug Discovery , Proteolysis/drug effects , Structure-Activity Relationship , Male , Mice, Inbred C57BL
4.
Clin Transl Sci ; 17(5): e13808, 2024 May.
Article in English | MEDLINE | ID: mdl-38700272

ABSTRACT

Sitravatinib (MGCD516) is an orally available, small molecule, tyrosine kinase inhibitor that has been evaluated in patients with advanced solid tumors. Concentration-corrected QT interval (QTc; C-QTc) modeling was undertaken, using 767 matched concentration-ECG observations from 187 patients across two clinical studies in patients with advanced solid malignancies, across a dose range of 10-200 mg, via a linear mixed-effects (LME) model. The effect on heart rate (HR)-corrected QT interval via Fridericia's correction method (QTcF) at the steady-state maximum concentration (Cmax,ss) for the sitravatinib proposed therapeutic dosing regimen (100 mg malate once daily [q.d.]) without and with relevant intrinsic and extrinsic factors were predicted. No significant changes in HR from baseline were observed. Hysteresis between sitravatinib plasma concentration and change in QTcF from baseline (ΔQTcF) was not observed. There was no significant relationship between sitravatinib plasma concentration and ΔQTcF. The final C-QTc model predicted a mean (90% confidence interval [CI]) ΔQTcF of 3.92 (1.95-5.89) ms and 2.94 (0.23-6.10) ms at the proposed therapeutic dosing regimen in patients with normal organ function (best case scenario) and patients with hepatic impairment (worst-case scenario), respectively. The upper bounds of the 90% CIs were below the regulatory threshold of concern of 10 ms. The results of the described C-QTc analysis, along with corroborating results from nonclinical safety pharmacology studies, indicate that sitravatinib has a low risk of QTc interval prolongation at the proposed therapeutic dose of 100 mg malate q.d.


Subject(s)
Electrocardiography , Heart Rate , Neoplasms , Humans , Neoplasms/drug therapy , Heart Rate/drug effects , Male , Female , Middle Aged , Aged , Adult , Dose-Response Relationship, Drug , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Models, Biological , Aged, 80 and over , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Young Adult , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics
5.
J Med Chem ; 67(10): 8161-8171, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38690856

ABSTRACT

The mediator kinases CDK8 and CDK19 control the dynamic transcription of selected genes in response to various signals and have been shown to be hijacked to sustain hyperproliferation by various solid and liquid tumors. CDK8/19 is emerging as a promising anticancer therapeutic target. Here, we report the discovery of compound 12, a novel small molecule CDK8/19 inhibitor. This molecule demonstrated not only decent enzymatic and cellular activities but also remarkable selectivity in CDK and kinome panels. Besides, compound 12 also displayed favorable ADME profiles including low CYP1A2 inhibition, acceptable clearance, and high oral bioavailability in multiple preclinical species. Robust in vivo PD and efficacy studies in mice models further demonstrated its potential use as mono- and combination therapy for the treatment of cancers.


Subject(s)
Antineoplastic Agents , Cyclin-Dependent Kinase 8 , Cyclin-Dependent Kinases , Protein Kinase Inhibitors , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/metabolism , Humans , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemical synthesis , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Mice , Drug Discovery , Cell Line, Tumor , Structure-Activity Relationship , Cell Proliferation/drug effects , Neoplasms/drug therapy , Rats
6.
J Med Chem ; 67(10): 8383-8395, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38695469

ABSTRACT

Interleukin receptor associated kinase 4 (IRAK4) plays an important role in innate immune signaling through Toll-like and interleukin-1 receptors and represents an attractive target for the treatment of inflammatory diseases and cancer. We previously reported the development of a potent, selective, and brain-penetrant imidazopyrimidine series of IRAK4 inhibitors. However, lead molecule BIO-7488 (1) suffered from low solubility which led to variable PK, compound accumulation, and poor in vivo tolerability. Herein, we describe the discovery of a series of pyridone analogs with improved solubility which are highly potent, selective and demonstrate desirable PK profiles including good oral bioavailability and excellent brain penetration. BIO-8169 (2) reduced the in vivo production of pro-inflammatory cytokines, was well tolerated in safety studies in rodents and dog at margins well above the predicted efficacious exposure and showed promising results in a mouse model for multiple sclerosis.


Subject(s)
Brain , Interleukin-1 Receptor-Associated Kinases , Protein Kinase Inhibitors , Animals , Dogs , Male , Mice , Rats , Brain/metabolism , Brain/drug effects , Drug Discovery , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/chemical synthesis , Pyrimidines/therapeutic use , Structure-Activity Relationship
7.
J Med Chem ; 67(10): 8122-8140, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38712838

ABSTRACT

Multiple sclerosis (MS) is a chronic disease with an underlying pathology characterized by inflammation-driven neuronal loss, axonal injury, and demyelination. Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase and member of the TEC family of kinases, is involved in the regulation, migration, and functional activation of B cells and myeloid cells in the periphery and the central nervous system (CNS), cell types which are deemed central to the pathology contributing to disease progression in MS patients. Herein, we describe the discovery of BIIB129 (25), a structurally distinct and brain-penetrant targeted covalent inhibitor (TCI) of BTK with an unprecedented binding mode responsible for its high kinome selectivity. BIIB129 (25) demonstrated efficacy in disease-relevant preclinical in vivo models of B cell proliferation in the CNS, exhibits a favorable safety profile suitable for clinical development as an immunomodulating therapy for MS, and has a low projected total human daily dose.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Brain , Multiple Sclerosis , Protein Kinase Inhibitors , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Multiple Sclerosis/drug therapy , Humans , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Brain/metabolism , Mice , Drug Discovery , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Rats , Structure-Activity Relationship , Cell Proliferation/drug effects , Female
8.
J Med Chem ; 67(8): 6638-6657, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38577724

ABSTRACT

PI3Kδ is an essential target correlated to the occurrence and development of acute myeloid leukemia (AML). Herein, we investigated the pyrazolo[3,4-d]pyrimidine derivatives as potent and selective PI3Kδ inhibitors with high therapeutic efficacy toward AML. There were 44 compounds designed and prepared in a four-round optimization, and the biological evaluation showed that (S)-36 exhibited potent PI3Kδ inhibitory activity, high selectivity, and high antiproliferative activities against MV-4-11 and MOLM-13 cells, coupled with high oral bioavailability (F = 59.6%). In the MOLM-13 subcutaneous xenograft model, (S)-36 could significantly suppress the tumor progression with a TGI of 67.81% at an oral administration dosage of 10 mg/kg without exhibiting obvious toxicity. Mechanistically, (S)-36 could robustly inhibit the PI3K/AKT pathway for significant suppression of cell proliferation and remarkable induction of apoptosis both in vitro and in vivo. Thus, compound (S)-36 represents a promising PI3Kδ inhibitor for the treatment of acute myeloid leukemia with high efficacy.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Class I Phosphatidylinositol 3-Kinases , Leukemia, Myeloid, Acute , Phosphoinositide-3 Kinase Inhibitors , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Animals , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Cell Proliferation/drug effects , Mice , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Structure-Activity Relationship , Apoptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Xenograft Model Antitumor Assays , Drug Discovery , Mice, Nude , Molecular Docking Simulation , Male
9.
J Med Chem ; 67(8): 6253-6267, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38587857

ABSTRACT

In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16-F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics.


Subject(s)
Antineoplastic Agents , Biological Availability , DNA-Activated Protein Kinase , Protein Kinase Inhibitors , Humans , Animals , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Administration, Oral , Immunotherapy/methods , Doxorubicin/pharmacology , Structure-Activity Relationship , Cell Proliferation/drug effects , Mice, Inbred BALB C , Drug Discovery , Mice, Inbred C57BL , Cell Line, Tumor , Drug Synergism , Female
10.
Lancet Oncol ; 25(5): 649-657, 2024 May.
Article in English | MEDLINE | ID: mdl-38608694

ABSTRACT

BACKGROUND: Adrenocortical carcinoma is a rare malignancy with poor response to systemic chemotherapy. Mitotane is the only approved therapy for adrenocortical carcinoma. Cabozantinib is a multikinase inhibitor approved in multiple malignancies. This is the first prospective trial to explore the anti-tumour activity, safety, and pharmacokinetic profile of cabozantinib in patients with advanced adrenocortical carcinoma. METHODS: This investigator-initiated, single-arm, phase 2 trial in adult patients (aged ≥18 years) with advanced adrenocortical carcinoma was done at the University of Texas MD Anderson Cancer Center (Houston, TX, USA). Eligible patients had histologically confirmed adrenocortical carcinoma, were not candidates for surgery with curative intent, had measurable disease, had an estimated life expectancy of at least 3 months, and an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2 with adequate organ function. Patients who had used mitotane within 6 months of study participation were required to have a serum mitotane level of less than 2 mg/L. Patients were given oral cabozantinib 60 mg daily with the option of dose reduction to manage adverse events. The primary endpoint was progression-free survival at 4 months, assessed in all patients who received at least one dose of study drug per protocol. This study is registered with ClinicalTrials.gov, NCT03370718, and is now complete. FINDINGS: Between March 1, 2018, and May 31, 2021, we enrolled 18 patients (ten males and eight females), all of whom received at least one dose of study treatment. Of the 18 patients, eight (44%) had an ECOG performance status of 0, nine (50%) patients had a performance status of 1, and one (6%) patient had a performance status of 2. Median follow-up was 36·8 months (IQR 30·2-50·3). At 4 months, 13 (72·2%; 95% CI 46·5-90·3) of 18 patients had progression-free survival and median progression-free survival was 6 months (95% CI 4·3 to not reached). One patient remains on treatment. Treatment-related adverse events of grade 3 or worse occurred in 11 (61%) of 18 patients. The most common grade 3 adverse events were lipase elevation (three [17%] of 18 patients), elevated γ-glutamyl transferase concentrations (two [11%] patients), elevated alanine aminotransferase concentrations (two [11%] patients), hypophosphatemia (two [11%] patients), and hypertension (two [11%] patients). One (6%) of 18 patients had grade 4 hypertension. No treatment related deaths occurred on study. INTERPRETATION: Cabozantinib in advanced adrenocortical carcinoma showed promising efficacy with a manageable and anticipated safety profile. Further prospective studies with cabozantinib alone and in combination with immune checkpoint therapy are ongoing. FUNDING: Exelixis.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Anilides , Pyridines , Humans , Anilides/therapeutic use , Anilides/administration & dosage , Anilides/adverse effects , Anilides/pharmacokinetics , Pyridines/therapeutic use , Pyridines/administration & dosage , Pyridines/adverse effects , Female , Male , Middle Aged , Adrenocortical Carcinoma/drug therapy , Adrenocortical Carcinoma/pathology , Adrenocortical Carcinoma/mortality , Adult , Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/pathology , Adrenal Cortex Neoplasms/mortality , Aged , Prospective Studies , Progression-Free Survival , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics
11.
Mol Cancer Ther ; 23(6): 766-779, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38592383

ABSTRACT

Aurora kinase inhibitors, such as alisertib, can destabilize MYC-family oncoproteins and have demonstrated compelling antitumor efficacy. In this study, we report 6K465, a novel pyrimidine-based Aurora A inhibitor, that reduces levels of c-MYC and N-MYC oncoproteins more potently than alisertib. In an analysis of the antiproliferative effect of 6K465, the sensitivities of small cell lung cancer (SCLC) and breast cancer cell lines to 6K465 were strongly associated with the protein levels of c-MYC and/or N-MYC. We also report DBPR728, an acyl-based prodrug of 6K465 bearing fewer hydrogen-bond donors, that exhibited 10-fold improved oral bioavailability. DBPR728 induced durable tumor regression of c-MYC- and/or N-MYC-overexpressing xenografts including SCLC, triple-negative breast cancer, hepatocellular carcinoma, and medulloblastoma using a 5-on-2-off or once-a-week dosing regimen on a 21-day cycle. A single oral dose of DBPR728 at 300 mg/kg induced c-MYC reduction and cell apoptosis in the tumor xenografts for more than 7 days. The inhibitory effect of DBPR728 at a reduced dosing frequency was attributed to its uniquely high tumor/plasma ratio (3.6-fold within 7 days) and the long tumor half-life of active moiety 6K465. Furthermore, DBPR728 was found to synergize with the mTOR inhibitor everolimus to suppress c-MYC- or N-MYC-driven SCLC. Collectively, these results suggest DBPR728 has the potential to treat cancers overexpressing c-MYC and/or N-MYC.


Subject(s)
Aurora Kinase A , Everolimus , Proto-Oncogene Proteins c-myc , Xenograft Model Antitumor Assays , Humans , Animals , Aurora Kinase A/antagonists & inhibitors , Mice , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Everolimus/pharmacology , Everolimus/pharmacokinetics , Everolimus/administration & dosage , Cell Line, Tumor , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Cell Proliferation/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/administration & dosage , Pyrimidines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
12.
Cancer Res Commun ; 4(4): 1165-1173, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38602417

ABSTRACT

PURPOSE: Despite efficacy of approved FGFR inhibitors, emergence of polyclonal secondary mutations in the FGFR kinase domain leads to acquired resistance. KIN-3248 is a selective, irreversible, orally bioavailable, small-molecule inhibitor of FGFR1-4 that blocks both primary oncogenic and secondary kinase domain resistance FGFR alterations. EXPERIMENTAL DESIGN: A first-in-human, phase I study of KIN-3248 was conducted in patients with advanced solid tumors harboring FGFR2 and/or FGFR3 gene alterations (NCT05242822). The primary objective was determination of MTD/recommended phase II dose (RP2D). Secondary and exploratory objectives included antitumor activity, pharmacokinetics, pharmacodynamics, and molecular response by circulating tumor DNA (ctDNA) clearance. RESULTS: Fifty-four patients received doses ranging from 5 to 50 mg orally daily across six cohorts. Intrahepatic cholangiocarcinoma (48.1%), gastric (9.3%), and urothelial (7.4%) were the most common tumors. Tumors harbored FGFR2 (68.5%) or FGFR3 (31.5%) alterations-23 (42.6%) received prior FGFR inhibitors. One dose-limiting toxicity (hypersensitivity) occurred in cohort 1 (5 mg). Treatment-related, adverse events included hyperphosphatemia, diarrhea, and stomatitis. The MTD/RP2D was not established. Exposure was dose proportional and concordant with hyperphosphatemia. Five partial responses were observed; 4 in FGFR inhibitor naïve and 1 in FGFR pretreated patients. Pretreatment ctDNA profiling confirmed FGFR2/3 alterations in 63.3% of cases and clearance at cycle 2 associated with radiographic response. CONCLUSION: The trial was terminated early for commercial considerations; therefore, RP2D was not established. Preliminary clinical data suggest that KIN-3248 is a safe, oral FGFR1-4 inhibitor with favorable pharmacokinetic parameters, though further dose escalation was required to nominate the MTD/RP2D. SIGNIFICANCE: KIN-3248 was a rationally designed, next generation selective FGFR inhibitor, that was effective in interfering with both FGFR wild-type and mutant signaling. Clinical data indicate that KIN-3248 is safe with a signal of antitumor activity. Translational science support the mechanism of action in that serum phosphate was proportional with exposure, paired biopsies suggested phospho-ERK inhibition (a downstream target of FGFR2/3), and ctDNA clearance may act as a RECIST response surrogate.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Female , Male , Middle Aged , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Aged , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Adult , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/administration & dosage , Maximum Tolerated Dose , Mutation , Aged, 80 and over , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics
13.
J Med Chem ; 67(9): 7197-7223, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38655686

ABSTRACT

Fms-like tyrosine receptor kinase 3 (FLT3) proteolysis-targeting chimeras (PROTACs) represent a promising approach to eliminate the resistance of FLT3 inhibitors. However, due to the poor druggability of PROTACs, the development of orally bioavailable FLT3-PROTACs faces great challenges. Herein, a novel orally bioavailable FLT3-ITD degrader A20 with excellent pharmacokinetic properties was discovered through reasonable design. A20 selectively inhibited the proliferation of FLT3-ITD mutant acute myeloid leukemia (AML) cells and potently induced FLT3-ITD degradation through the ubiquitin-proteasome system. Notably, oral administration of A20 resulted in complete tumor regression on subcutaneous AML xenograft models. Furthermore, on systemic AML xenograft models, A20 could completely eliminate the CD45+CD33+ human leukemic cells in murine and significantly prolonged the survival time of mice. Most importantly, A20 exerted significantly improved antiproliferative activity against drug-resistant AML cells compared to existing FLT3 inhibitors. These findings suggested that A20 could serve as a promising drug candidate for relapsed or refractory AML.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , fms-Like Tyrosine Kinase 3 , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Humans , Animals , Drug Resistance, Neoplasm/drug effects , Administration, Oral , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Line, Tumor , Proteolysis/drug effects , Drug Discovery , Xenograft Model Antitumor Assays , Biological Availability , Structure-Activity Relationship
14.
J Med Chem ; 67(9): 7330-7358, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38661655

ABSTRACT

The aberrant activation of the PI3K/mTOR signaling pathway is implicated in various human cancers. Thus, the development of inhibitors targeting mTOR has attracted considerable attention. In this study, we used a structure-based drug design strategy to discover a highly potent and kinase-selective mTOR inhibitor 24 (PT-88), which demonstrated an mTOR inhibitory IC50 value of 1.2 nM without obvious inhibition against another 195 kinases from the kinase profiling screening. PT-88 displayed selective inhibition against MCF-7 cells (IC50: 0.74 µM) with high biosafety against normal cells, in which autophagy induced by mTOR inhibition was implicated. After successful encapsulation in a lipodisc formulation, PT-88 demonstrated favorable pharmacokinetic and biosafety profiles and exerted a large antitumor effect in an MCF-7 subcutaneous bearing nude mice model. Our study shows the discovery of a highly selective mTOR inhibitor using a structure-based drug discovery strategy and provides a promising antitumor candidate for future study and development.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Drug Design , MTOR Inhibitors , Mice, Nude , TOR Serine-Threonine Kinases , Triazines , Humans , Animals , Triazines/chemical synthesis , Triazines/pharmacology , Triazines/chemistry , Triazines/pharmacokinetics , Triazines/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mice , MTOR Inhibitors/pharmacology , MTOR Inhibitors/chemical synthesis , MTOR Inhibitors/therapeutic use , MTOR Inhibitors/chemistry , Structure-Activity Relationship , MCF-7 Cells , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Mice, Inbred BALB C , Autophagy/drug effects
15.
J Med Chem ; 67(9): 7647-7662, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38684226

ABSTRACT

The elevated activity of leucine-rich repeat kinase 2 (LRRK2) is implicated in the pathogenesis of Parkinson's disease (PD). The quest for effective LRRK2 inhibitors has been impeded by the formidable challenge of crossing the blood-brain barrier (BBB). We leveraged structure-based de novo design and developed robust three-dimensional quantitative structure-activity relationship (3D-QSAR) models to predict BBB permeability, enhancing the likelihood of the inhibitor's brain accessibility. Our strategy involved the synthesis of macrocyclic molecules by linking the two terminal nitrogen atoms of HG-10-102-01 with an alkyl chain ranging from 2 to 4 units, laying the groundwork for innovative LRRK2 inhibitor designs. Through meticulous computational and synthetic optimization of both biochemical efficacy and BBB permeability, 9 out of 14 synthesized candidates demonstrated potent low-nanomolar inhibition and significant BBB penetration. Further assessments of in vitro and in vivo effectiveness, coupled with pharmacological profiling, highlighted 8 as the promising new lead compound for PD therapeutics.


Subject(s)
Blood-Brain Barrier , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Protein Kinase Inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Blood-Brain Barrier/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Animals , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Mice , Quantitative Structure-Activity Relationship , Permeability , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacokinetics , Male
16.
Expert Opin Drug Metab Toxicol ; 20(4): 225-233, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600865

ABSTRACT

INTRODUCTION: Cyclin-dependent kinase (CDK) 4/6 inhibitors are cornerstones in the treatment of Hormone Receptor (HR) positive and Human Epidermal Growth factor (HER2) negative metastatic breast cancer. Given their widespread use in the metastatic setting and emerging use in the adjuvant setting, studying drug-drug interactions (DDI) of these medications is of utmost importance. AREAS COVERED: This review provides key background information on the CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib. We discuss drug-drug interactions including those with proton pump inhibitors as well as CYP3A substrates, inhibitors, and inducers. We describe the effect of these drugs on membrane transporters and their substrates as well as those drugs that increase risk of CDK4/6 toxicities. Finally, we explore future directions for strategies to minimize drug-drug interactions. EXPERT OPINION: It is crucial to be mindful of medications that may interfere with drug absorption, such as proton pump inhibitors, as well as those that interfere with drug metabolism, such as CYP3A4 inhibitors and inducers. Additionally, special consideration should be given to populations at higher risk for polypharmacy, such as older patients with greater comorbidities. These interactions and patient characteristics should be considered when developing individual treatment plans with CDK4/6 inhibitors.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Drug Interactions , Protein Kinase Inhibitors , Humans , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Female , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/pharmacology , Proton Pump Inhibitors/adverse effects , Aminopyridines/administration & dosage , Aminopyridines/adverse effects , Aminopyridines/pharmacology , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacology , Benzimidazoles/adverse effects , Pyridines/administration & dosage , Pyridines/adverse effects , Pyridines/pharmacology , Pyridines/pharmacokinetics
17.
Toxicol Appl Pharmacol ; 485: 116911, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38527694

ABSTRACT

The highly selective Spleen Tyrosine Kinase (SYK) inhibitors entospletinib and lanraplenib disrupt kinase activity and inhibit immune cell functions. They are developed for treatment of B-cell malignancies and autoimmunity diseases. The impact of P-gp/ABCB1 and BCRP/ABCG2 efflux transporters, OATP1a/1b uptake transporters and CYP3A drug-metabolizing enzymes on the oral pharmacokinetics of these drugs was assessed using mouse models. Entospletinib and lanraplenib were orally administered simultaneously at moderate dosages (10 mg/kg each) to female mice to assess the possibility of examining two structurally and mechanistically similar drugs at the same time, while reducing the number of experimental animals and sample-processing workload. The plasma pharmacokinetics of both drugs were not substantially restricted by Abcb1 or Abcg2. The brain-to-plasma ratios of entospletinib in Abcb1a/b-/-, Abcg2-/- and Abcb1a/b;Abcg2-/- mice were 1.7-, 1.8- and 2.9-fold higher, respectively, compared to those in wild-type mice. For lanraplenib these brain-to-plasma ratios were 3.0-, 1.3- and 10.4-fold higher, respectively. This transporter-mediated restriction of brain penetration for both drugs could be almost fully inhibited by coadministration of the dual ABCB1/ABCG2 inhibitor elacridar, without signs of acute toxicity. Oatp1a/b and human CYP3A4 did not seem to affect the pharmacokinetics of entospletinib and lanraplenib, but mouse Cyp3a may limit lanraplenib plasma exposure. Unexpectedly, entospletinib and lanraplenib increased each other's plasma exposure by 2.6- to 2.9-fold, indicating a significant drug-drug interaction. This interaction was, however, unlikely to be mediated through any of the studied transporters or CYP3A. The obtained insights may perhaps help to further improve the safety and efficacy of entospletinib and lanraplenib.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Brain , Indazoles , Morpholines , Protein Kinase Inhibitors , Pyrazines , Animals , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Female , Mice , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Brain/metabolism , Brain/drug effects , Syk Kinase/antagonists & inhibitors , Syk Kinase/metabolism , Mice, Knockout , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Mice, Inbred C57BL , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Administration, Oral
18.
J Pharmacokinet Pharmacodyn ; 51(3): 265-277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431923

ABSTRACT

Brepocitinib is an oral selective dual TYK2/JAK1 inhibitor and based on its cytokine inhibition profile is expected to provide therapeutic benefit in the treatment of plaque psoriasis. Efficacy data from a completed Phase 2a study in patients with moderate-to-severe plaque psoriasis were utilized to develop a population exposure-response model that can be employed to inform dose selection decisions for further clinical development. A modeling approach that employs the zero-inflated beta distribution was used to account for the bounded nature and distributional characteristics of the Psoriasis Area and Severity Index (PASI) score data. The developed exposure-response model provided an adequate description of the observed PASI scores across all the treatment arms tested and across both the induction and maintenance dosing periods of the study. In addition, the developed model exhibited a good predictive capacity with regard to the derived responder metrics (e.g., 75%/90%/100% improvement in PASI score [PASI75/90/100]). Clinical trial simulations indicated that the induction/maintenance dosing paradigm explored in this study does not offer any advantages from an efficacy perspective and that doses of 10, 30, and 60 mg once-daily may be suitable candidates for clinical evaluation in subsequent Phase 2b studies.


Subject(s)
Janus Kinase 1 , Protein Kinase Inhibitors , Psoriasis , TYK2 Kinase , Humans , Psoriasis/drug therapy , Janus Kinase 1/antagonists & inhibitors , TYK2 Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/therapeutic use , Male , Adult , Female , Middle Aged , Dose-Response Relationship, Drug , Severity of Illness Index , Models, Biological
19.
Med ; 5(5): 445-458.e3, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38521070

ABSTRACT

BACKGROUND: BEBT-109 is an oral pan-mutant-selective inhibitor of epidermal growth factor receptor (EGFR) that demonstrated promising antitumor potency in preclinical models. METHODS: This first-in-human study was a single-arm, open-label, two-stage study. Phase Ia dose-escalation study evaluated the safety and pharmacokinetics of BEBT-109 in 11 patients with EGFR T790M-mutated advanced non-small cell lung cancer (aNSCLC). Phase Ib dose-expansion study evaluated the safety and efficacy of BEBT-109 in 18 patients with EGFR exon 20 insertion (ex20ins)-mutated treatment-refractory aNSCLC. The primary outcomes were adverse events and antitumor activity. Clinical trial registration number CTR20192575. FINDINGS: The phase Ia study demonstrated no dose-limiting toxicity, no observation of the maximum tolerated dose, and no new safety signals with BEBT-109 in the dose range of 20-180 mg/d, suggesting that BEBT-109 had an acceptable safety profile among patients with EGFR T790M-mutated aNSCLC. Plasma pharmacokinetics of BEBT-109 showed a dose-proportional increase in the area under the curve and maximal concentration, with no significant drug accumulation. The dose-expansion study demonstrated that BEBT-109 treatment was tolerable across the three dose levels. The three most common treatment-related adverse events were diarrhea (100%; 22.2% ≥Grade 3), rash (66.7%; 5.6% ≥Grade 3), and anemia (61.1%; 0% ≥Grade 3). The objective response rate was 44.4% (8 of 18). Median progression-free survival was 8.0 months (95% confidence intervals, 1.33-14.67). CONCLUSION: Preliminary findings showed that BEBT-109 had an acceptable safety profile and favorable antitumor activity in patients with refractory EGFR ex20ins-mutated aNSCLC. FUNDING: National Natural Science Foundation of China.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Exons , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Male , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Middle Aged , Female , Aged , Exons/genetics , Mutation , Maximum Tolerated Dose , Adult , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects
20.
Expert Opin Drug Metab Toxicol ; 20(4): 197-205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38497279

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) is the third most diagnosed cancer globally and despite therapeutic strides, the prognosis for patients with metastatic disease (mCRC) remains poor. Fruquintinib is an oral vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI) targeting VEGFR -1, -2, and -3, and has recently received approval by the U.S. Food and Drug Administration for treatment of mCRC refractory to standard chemotherapy, anti-VEGF therapy, and anti-epidermal growth factor receptor (EGFR) therapy. AREAS COVERED: This article provides an overview of the pre-clinical data, pharmacokinetics, clinical efficacy, and safety profile of fruquintinib, as well as the management of clinical toxicities associated with fruquintinib. EXPERT OPINION: Fruquintinib is a valuable additional treatment option for patients with refractory mCRC. The pivotal role of vigilant toxicity management cannot be understated. While fruquintinib offers a convenient and overall, well-tolerated treatment option, ongoing research is essential to determine its efficacy in different patient subsets, evaluate it in combination with chemotherapy and immunotherapy, and determine its role in earlier lines of therapy.


Subject(s)
Antineoplastic Agents , Benzofurans , Colorectal Neoplasms , Neoplasm Metastasis , Protein Kinase Inhibitors , Quinazolines , Receptors, Vascular Endothelial Growth Factor , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Benzofurans/administration & dosage , Benzofurans/adverse effects , Benzofurans/pharmacology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Animals , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Quinazolines/adverse effects , Quinazolines/administration & dosage , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...