Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.899
Filter
1.
Biomolecules ; 14(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062533

ABSTRACT

In Asian populations with non-small-cell lung cancer (NSCLC), EGFR mutations are highly prevalent, occurring in roughly half of these patients. Studies have revealed that individuals with EGFR mutation typically fare worse with immunotherapy. In patients who received EGFR tyrosine kinase inhibitor (TKI) treatment followed by anti-PD-1 therapy, poor results were observed. The underlying mechanism remains unclear. We used high-resolution flow cytometry and ELISA to detect the circulating level of small extracellular vesicle (sEV) PD-L1 in NSCLC individuals with EGFR mutations before and after receiving TKIs. The secretion amount of sEV PD-L1 of lung cancer cell lines with EGFR mutations under TKI treatment or not were detected using high-resolution flow cytometry and Western blotting. The results revealed that patients harboring EGFR mutations exhibit increased levels of sEV PD-L1 in circulation, which inversely correlated with the presence of CD8+ T cells in tumor tissues. Furthermore, tumor cells carrying EGFR mutations secrete a higher quantity of PD-L1-positive sEVs. TKI treatment appeared to amplify the levels of PD-L1-positive sEVs in the bloodstream. Mutation-induced and TKI-induced sEVs substantially impaired the functionality of CD8+ T cells. Importantly, our findings indicated that EGFR mutations and TKI therapies promote secretion of PD-L1-positive sEVs via distinct molecular mechanisms, namely the HRS and ALIX pathways, respectively. In conclusion, the increased secretion of PD-L1-positive sEVs, prompted by genetic alterations and TKI administration, may contribute to the limited efficacy of immunotherapy observed in EGFR-mutant patients and patients who have received TKI treatment.


Subject(s)
B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Extracellular Vesicles , Lung Neoplasms , Mutation , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Female , Cell Line, Tumor , Male , Middle Aged , Aged , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Immunosuppression Therapy
2.
Biomolecules ; 14(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39062574

ABSTRACT

One of the most challenging issues scientists face is finding a suitable non-invasive treatment for cancer, as it is widespread around the world. The efficacy of phytochemicals that target oncogenic pathways appears to be quite promising and has gained attention over the past few years. We investigated the effect of docking phytochemicals isolated from the rhizomes of the Cimicifuga foetida plant on different domains of the IκB kinase alpha (IKK1/alpha) protein. The Cimicifugoside H-2 phytochemical registered a high docking score on the activation loop of IKK1/alpha amongst the other phytochemicals compared to the positive control. The interaction of the protein with Cimicifugoside H-2 was mostly stabilized by hydrogen bonds and hydrophobic interactions. A dynamic simulation was then performed with the Cimicifugoside H-2 phytochemical on the activation loop of IKK1/alpha, revealing that Cimicifugoside H-2 is a possible inhibitor of this protein. The pharmacokinetic properties of the drug were also examined to assess the safety of administering the drug. Therefore, in this in silico study, we discovered that the Cimicifugoside H-2 phytochemical inhibits the actively mutated conformation of IKK1/alpha, potentially suppressing the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway.


Subject(s)
I-kappa B Kinase , Molecular Docking Simulation , Molecular Dynamics Simulation , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/metabolism , I-kappa B Kinase/chemistry , Humans , Cimicifuga/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Hydrogen Bonding , Protein Binding
3.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062849

ABSTRACT

A key step in platelet production is the migration of megakaryocytes to the vascular sinusoids within the bone marrow. This homing is mediated by the chemokine CXCL12 and its receptor CXCR4. CXCR4 is also a positive regulator of platelet activation and thrombosis. Pim-1 kinase has been shown to regulate CXCR4 signalling in other cell types, and we have previously described how Pim kinase inhibitors attenuate platelet aggregation to CXCL12. However, the mechanism by which Pim-1 regulates CXCR4 signalling in platelets and megakaryocytes has yet to be elucidated. Using human platelets, murine bone marrow-derived megakaryocytes, and the megakaryocyte cell line MEG-01, we demonstrate that pharmacological Pim kinase inhibition leads to reduced megakaryocyte and platelet function responses to CXCL12, including reduced megakaryocyte migration and platelet granule secretion. Attenuation of CXCL12 signalling was found to be attributed to the reduced surface expression of CXCR4. The decrease in CXCR4 surface levels was found to be mediated by rapid receptor internalisation, in the absence of agonist stimulation. We demonstrate that pharmacological Pim kinase inhibition disrupts megakaryocyte and platelet function by reducing constitutive CXCR4 surface expression, decreasing the number of receptors available for agonist stimulation and signalling. These findings have implications for the development and use of Pim kinase inhibitors for the treatment of conditions associated with elevated circulating levels of CXCL12/SDF1α and increased thrombotic risk.


Subject(s)
Blood Platelets , Chemokine CXCL12 , Megakaryocytes , Proto-Oncogene Proteins c-pim-1 , Receptors, CXCR4 , Signal Transduction , Receptors, CXCR4/metabolism , Blood Platelets/metabolism , Blood Platelets/drug effects , Megakaryocytes/metabolism , Megakaryocytes/drug effects , Megakaryocytes/cytology , Humans , Signal Transduction/drug effects , Animals , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Chemokine CXCL12/metabolism , Mice , Protein Kinase Inhibitors/pharmacology , Cell Movement/drug effects , Cell Line
4.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062902

ABSTRACT

In this issue honoring the contributions of Greg Lemke, the Earp and Graham lab teams discuss several threads in the discovery, action, signaling, and translational/clinical potential of MERTK, originally called c-mer, a member of the TYRO3, AXL, and MERTK (TAM) family of receptor tyrosine kinases. The 30-year history of the TAM RTK family began slowly as all three members were orphan RTKs without known ligands and/or functions when discovered by three distinct alternate molecular cloning strategies in the pre-genome sequencing era. The pace of understanding their physiologic and pathophysiologic roles has accelerated over the last decade. The activation of ligands bridging externalized phosphatidylserine (PtdSer) has placed these RTKs in a myriad of processes including neurodevelopment, cancer, and autoimmunity. The field is ripe for further advancement and this article hopefully sets the stage for further understanding and therapeutic intervention. Our review will focus on progress made through the collaborations of the Earp and Graham labs over the past 30 years.


Subject(s)
Neoplasms , c-Mer Tyrosine Kinase , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , c-Mer Tyrosine Kinase/metabolism , c-Mer Tyrosine Kinase/antagonists & inhibitors , c-Mer Tyrosine Kinase/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Animals , Molecular Targeted Therapy , Signal Transduction/drug effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
5.
Int J Mol Sci ; 25(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062967

ABSTRACT

Nature provides us with a rich source of compounds with a wide range of applications, including the creation of innovative drugs. Despite advancements in chemically synthesized therapeutics, natural compounds are increasingly significant, especially in cancer treatment, a leading cause of death globally. One promising approach involves the use of natural inhibitors of checkpoint kinase 2 (Chk2), a critical regulator of DNA repair, cell cycle arrest, and apoptosis. Chk2's activation in response to DNA damage can lead to apoptosis or DNA repair, influencing glycolysis and mitochondrial function. In cancer therapy, inhibiting Chk2 can disrupt DNA repair and cell cycle progression, promoting cancer cell death and enhancing the efficacy of radiotherapy and chemotherapy. Additionally, Chk2 inhibitors can safeguard non-cancerous cells during these treatments by inhibiting p53-dependent apoptosis. Beyond oncology, Chk2 inhibition shows potential in treating hepatitis C virus (HCV) infections, as the virus relies on Chk2 for RNA replication in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), in which DNA damage plays a crucial role. Plant-derived Chk2 inhibitors, such as artemetin, rhamnetin, and curcumin, offer a promising future for treating various diseases with potentially milder side effects and broader metabolic impacts compared to conventional therapies. The review aims to underscore the immense potential of natural Chk2 inhibitors in various therapeutic contexts, particularly in oncology and the treatment of other diseases involving DNA damage and repair mechanisms. These natural Chk2 inhibitors hold significant promise for revolutionizing the landscape of cancer treatment and other diseases. Further research into these compounds could lead to the development of innovative therapies that offer hope for the future with fewer side effects and enhanced efficacy.


Subject(s)
Checkpoint Kinase 2 , Checkpoint Kinase 2/metabolism , Checkpoint Kinase 2/antagonists & inhibitors , Humans , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neoplasms/drug therapy , DNA Damage/drug effects , DNA Repair/drug effects
6.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063112

ABSTRACT

Bruton's tyrosine kinase (BTK) is pivotal in B-cell signaling and a target for potential anti-cancer and immunological disorder therapies. Improved selective reversible BTK inhibitors are in demand due to the absence of direct BTK engagement measurement tools. Promisingly, PET imaging can non-invasively evaluate BTK expression. In this study, radiolabeled BIO-2008846 ([11C]BIO-2008846-A), a BTK inhibitor, was used for PET imaging in NHPs to track brain biodistribution. Radiolabeling BIO-2008846 with carbon-11, alongside four PET scans on two NHPs each, showed a homogeneous distribution of [11C]BIO-2008846-A in NHP brains. Brain uptake ranged from 1.8% ID at baseline to a maximum of 3.2% post-pretreatment. The study found no significant decrease in regional VT values post-dose, implying minimal specific binding of [11C]BIO-2008846-A compared to free and non-specific components in the brain. Radiometabolite analysis revealed polar metabolites with 10% unchanged radioligand after 30 min. The research highlighted strong brain uptake despite minor distribution variability, confirming passive diffusion kinetics dominated by free and non-specific binding.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Brain , Carbon Radioisotopes , Positron-Emission Tomography , Protein Kinase Inhibitors , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Positron-Emission Tomography/methods , Animals , Protein Kinase Inhibitors/pharmacology , Brain/metabolism , Brain/diagnostic imaging , Tissue Distribution , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Male , Macaca mulatta , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Humans
7.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063200

ABSTRACT

While BCR::ABL1 tyrosine kinase inhibitors have transformed the treatment paradigm for chronic myeloid leukemia (CML), disease progression and treatment resistance due to BCR::ABL1-dependent and BCR::ABL1-independent mechanisms remain a therapeutic challenge. Natural compounds derived from plants have significantly contributed to cancer pharmacotherapy. This study investigated the efficacy of an active component of Leea indica, a local medicinal plant, in CML. Using high-performance liquid chromatography-electrospray ionization-mass spectrometry, a chemical constituent from L. indica extract was isolated and identified as gallic acid. Commercially obtained gallic acid was used as a chemical standard. Gallic acid from L. indica inhibited proliferation and induced apoptosis in CML cell lines, as did the chemical standard. Furthermore, gallic acid induced apoptosis and decreased the colony formation of primary CML CD34+ cells. The combination of isolated gallic acid or its chemical standard with BCR::ABL1 tyrosine kinase inhibitors resulted in a significantly greater inhibition of colony formation and cell growth compared to a single drug alone. Mechanistically, CML cells treated with gallic acid exhibited the disruption of multiple oncogenic pathways including ERK/MAPK, FLT3 and JAK/STAT, as well as impaired mitochondrial respiration. Rescue studies showed that gallic acid is significantly less effective in inducing apoptosis in mitochondrial respiration-deficient ρ0 cells compared to wildtype cells, suggesting that the action of gallic acid is largely through the inhibition of mitochondrial respiration. Our findings highlight the therapeutic potential of L. indica in CML and suggest that gallic acid may be a promising lead chemical constituent for further development for CML treatment.


Subject(s)
Apoptosis , Cell Proliferation , Fusion Proteins, bcr-abl , Gallic Acid , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Mitochondria , Protein Kinase Inhibitors , Signal Transduction , Gallic Acid/pharmacology , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Protein Kinase Inhibitors/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Signal Transduction/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor
8.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063224

ABSTRACT

DNA-PKcs is a crucial protein target involved in DNA repair and response pathways, with its abnormal activity closely associated with the occurrence and progression of various cancers. In this study, we employed a deep learning-based screening and molecular dynamics (MD) simulation-based pipeline, identifying eight candidates for DNA-PKcs targets. Subsequent experiments revealed the effective inhibition of DNA-PKcs-mediated cell proliferation by three small molecules (5025-0002, M769-1095, and V008-1080). These molecules exhibited anticancer activity with IC50 (inhibitory concentration at 50%) values of 152.6 µM, 30.71 µM, and 74.84 µM, respectively. Notably, V008-1080 enhanced homology-directed repair (HDR) mediated by CRISPR/Cas9 while inhibiting non-homologous end joining (NHEJ) efficiency. Further investigations into the structure-activity relationships unveiled the binding sites and critical interactions between these small molecules and DNA-PKcs. This is the first application of DeepBindGCN_RG in a real drug screening task, and the successful discovery of a novel DNA-PKcs inhibitor demonstrates its efficiency as a core component in the screening pipeline. Moreover, this study provides important insights for exploring novel anticancer therapeutics and advancing the development of gene editing techniques by targeting DNA-PKcs.


Subject(s)
DNA-Activated Protein Kinase , Molecular Dynamics Simulation , Humans , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , High-Throughput Screening Assays/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , DNA End-Joining Repair/drug effects , Molecular Docking Simulation , Binding Sites
9.
Cells ; 13(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39056757

ABSTRACT

Lorlatinib is a pharmaceutical ALK kinase inhibitor used to treat ALK driven non-small cell lung cancers. This paper analyses the intersection of past published data on the physiological consequences of two unrelated drugs from general medical practice-itraconazole and cilostazol-with the pathophysiology of ALK positive non-small cell lung cancer. A conclusion from that data analysis is that adding itraconazole and cilostazol may make lorlatinib more effective. Itraconazole, although marketed worldwide as a generic antifungal drug, also inhibits Hedgehog signaling, Wnt signaling, hepatic CYP3A4, and the p-gp efflux pump. Cilostazol, marketed worldwide as a generic thrombosis preventative drug, acts by inhibiting phosphodiesterase 3, and, by so doing, lowers platelets' adhesion, thereby partially depriving malignant cells of the many tumor trophic growth factors supplied by platelets. Itraconazole may enhance lorlatinib effectiveness by (i) reducing or stopping a Hedgehog-ALK amplifying feedback loop, by (ii) increasing lorlatinib's brain levels by p-gp inhibition, and by (iii) inhibiting growth drive from Wnt signaling. Cilostazol, surprisingly, carries minimal bleeding risk, lower than that of aspirin. Risk/benefit assessment of the combination of metastatic ALK positive lung cancer being a low-survival disease with the predicted safety of itraconazole-cilostazol augmentation of lorlatinib favors a trial of this drug trio in ALK positive lung cancer.


Subject(s)
Aminopyridines , Cilostazol , Drug Resistance, Neoplasm , Itraconazole , Humans , Itraconazole/pharmacology , Itraconazole/therapeutic use , Cilostazol/pharmacology , Cilostazol/therapeutic use , Drug Resistance, Neoplasm/drug effects , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Drug Repositioning , Lactams/pharmacology , Lactams/therapeutic use , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology
10.
Cells ; 13(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39056800

ABSTRACT

Descemet's Stripping Only (DSO) is a surgical technique that utilizes the peripheral corneal endothelial cell (CEnC) migration for wound closure. Ripasudil, a Rho-associated protein kinase (ROCK) inhibitor, has shown potential in DSO treatment; however, its mechanism in promoting CEnC migration remains unclear. We observed that ripasudil-treated immortalized normal and Fuchs endothelial corneal dystrophy (FECD) cells exhibited significantly enhanced migration and wound healing, particularly effective in FECD cells. Ripasudil upregulated mRNA expression of Snail Family Transcriptional Repressor (SNAI1/2) and Vimentin (VIM) while decreasing Cadherin (CDH1), indicating endothelial-to-mesenchymal transition (EMT) activation. Ripasudil activated Rac1, driving the actin-related protein complex (ARPC2) to the leading edge, facilitating enhanced migration. Ex vivo studies on cadaveric and FECD Descemet's membrane (DM) showed increased migration and proliferation of CEnCs after ripasudil treatment. An ex vivo DSO model demonstrated enhanced migration from the DM to the stroma with ripasudil. Coating small incision lenticule extraction (SMILE) tissues with an FNC coating mix and treating the cells in conjunction with ripasudil further improved migration and resulted in a monolayer formation, as detected by the ZO-1 junctional marker, thereby leading to the reduction in EMT. In conclusion, ripasudil effectively enhanced cellular migration, particularly in a novel ex vivo DSO model, when the stromal microenvironment was modulated. This suggests ripasudil as a promising adjuvant for DSO treatment, highlighting its potential clinical significance.


Subject(s)
Cell Movement , Fuchs' Endothelial Dystrophy , rho-Associated Kinases , Humans , rho-Associated Kinases/metabolism , rho-Associated Kinases/antagonists & inhibitors , Cell Movement/drug effects , Fuchs' Endothelial Dystrophy/pathology , Fuchs' Endothelial Dystrophy/drug therapy , Isoquinolines/pharmacology , Sulfonamides/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Corneal/drug effects , Endothelium, Corneal/metabolism , Endothelium, Corneal/pathology , Descemet Membrane/drug effects , Epithelial-Mesenchymal Transition/drug effects , Protein Kinase Inhibitors/pharmacology , Descemet Stripping Endothelial Keratoplasty/methods , Cell Proliferation/drug effects , Models, Biological , Wound Healing/drug effects
11.
Cells ; 13(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39056801

ABSTRACT

The MAPK signaling pathway with BRAF mutations has been shown to drive the pathogenesis of 40-60% of melanomas. Inhibitors of this pathway's BRAF and MEK components are currently used to treat these malignancies. However, responses to these treatments are not always successful. Therefore, identifying noninvasive biomarkers to predict treatment responses is essential for personalized medicine in melanoma. Using noninvasive 1H magnetic resonance spectroscopy (1H MRS), we previously showed that BRAF inhibition reduces lactate and alanine tumor levels in the early stages of effective therapy and could be considered as metabolic imaging biomarkers for drug response. The present work demonstrates that these metabolic changes observed by 1H MRS and those assessed by 31P MRS are also found in preclinical human melanoma models treated with MEK inhibitors. Apart from 1H and 31P MRS, additional supporting in vitro biochemical analyses are described. Our results indicate significant early metabolic correlations with response levels to MEK inhibition in the melanoma models and are consistent with our previous study of BRAF inhibition. Given these results, our study supports the potential clinical utility of noninvasive MRS to objectively image metabolic biomarkers for the early prediction of melanoma's response to MEK inhibition.


Subject(s)
Melanoma , Metabolomics , Protein Kinase Inhibitors , Melanoma/metabolism , Melanoma/drug therapy , Melanoma/pathology , Humans , Metabolomics/methods , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Magnetic Resonance Spectroscopy/methods , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Proton Magnetic Resonance Spectroscopy/methods
12.
Cancer Res Commun ; 4(7): 1850-1862, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954773

ABSTRACT

The comprehensive genomic analysis of the head and neck squamous cell carcinoma (HNSCC) oncogenome revealed the frequent loss of p16INK4A (CDKN2A) and amplification of cyclin D1 genes in most human papillomavirus-negative HNSCC lesions. However, cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have shown modest effects in the clinic. The aberrant activation of the PI3K/mTOR pathway is highly prevalent in HNSCC, and recent clinical trials have shown promising clinical efficacy of mTOR inhibitors (mTORi) in the neoadjuvant and adjuvant settings but not in patients with advanced HNSCC. By implementing a kinome-wide CRISPR/Cas9 screen, we identified cell-cycle inhibition as a synthetic lethal target for mTORis. A combination of mTORi and palbociclib, a CDK4/6-specific inhibitor, showed strong synergism in HNSCC-derived cells in vitro and in vivo. Remarkably, we found that an adaptive increase in cyclin E1 (CCNE1) expression upon palbociclib treatment underlies the rapid acquired resistance to this CDK4/6 inhibitor. Mechanistically, mTORi inhibits the formation of eIF4G-CCNE1 mRNA complexes, with the consequent reduction in mRNA translation and CCNE1 protein expression. Our findings suggest that mTORi reverts the adaptive resistance to palbociclib. This provides a multimodal therapeutic option for HNSCC by cotargeting mTOR and CDK4/6, which in turn may halt the emergence of palbociclib resistance. SIGNIFICANCE: A kinome-wide CRISPR/Cas9 screen identified cell-cycle inhibition as a synthetic lethal target of mTORis. A combination of mTORi and palbociclib, a CDK4/6-specific inhibitor, showed strong synergistic effects in HNSCC. Mechanistically, mTORis inhibited palbociclib-induced increase in CCNE1.


Subject(s)
CRISPR-Cas Systems , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Drug Resistance, Neoplasm , Head and Neck Neoplasms , Piperazines , Pyridines , Squamous Cell Carcinoma of Head and Neck , Humans , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Piperazines/pharmacology , Piperazines/therapeutic use , Pyridines/pharmacology , Mice , Animals , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Cell Line, Tumor , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Cyclin E/genetics , Cyclin E/metabolism , Xenograft Model Antitumor Assays , Synthetic Lethal Mutations , Oncogene Proteins
13.
Biomed Pharmacother ; 177: 117076, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971011

ABSTRACT

Hyperactive FMS-like receptor tyrosine kinase-3 mutants with internal tandem duplications (FLT3-ITD) are frequent driver mutations of aggressive acute myeloid leukemia (AML). Inhibitors of FLT3 produce promising results in rationally designed cotreatment schemes. Since FLT3-ITD modulates DNA replication and DNA repair, valid anti-leukemia strategies could rely on a combined inhibition of FLT3-ITD and regulators of cell cycle progression and DNA integrity. These include the WEE1 kinase which controls cell cycle progression, nucleotide synthesis, and DNA replication origin firing. We investigated how pharmacological inhibition of FLT3 and WEE1 affected the survival and genomic integrity of AML cell lines and primary AML cells. We reveal that promising clinical grade and preclinical inhibitors of FLT3 and WEE1 synergistically trigger apoptosis in leukemic cells that express FLT3-ITD. An accumulation of single and double strand DNA damage precedes this process. Mass spectrometry-based proteomic analyses show that FLT3-ITD and WEE1 sustain the expression of the ribonucleotide reductase subunit RRM2, which provides dNTPs for DNA replication. Unlike their strong pro-apoptotic effects on leukemia cells with FLT3-ITD, inhibitors of FLT3 and WEE1 do not damage healthy human blood cells and murine hematopoietic stem cells. Thus, pharmacological inhibition of FLT3-ITD and WEE1 might become an improved, rationally designed therapeutic option.


Subject(s)
Apoptosis , Cell Cycle Proteins , DNA Damage , Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , fms-Like Tyrosine Kinase 3 , Humans , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Apoptosis/drug effects , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Drug Synergism , Animals , Pyrazoles , Pyrimidinones
14.
Biomed Pharmacother ; 177: 117093, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971012

ABSTRACT

Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.


Subject(s)
Cardiovascular Diseases , Protein Serine-Threonine Kinases , Humans , Cardiovascular Diseases/enzymology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Animals , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Phosphorylation , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology
15.
Medicine (Baltimore) ; 103(30): e38828, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058877

ABSTRACT

The fact that the human epidermal growth factor receptor 2 (HER2)-low group, historically classified as HER2 negative in breast cancer histology, benefited from HER2-targeted treatments similarly to the HER2-positive group indicates that this group has a distinct histology from the HER2-0 group. The effectiveness of cyclin-dependent kinase 4/6 inhibitors, which are the standard first-line treatment for hormone receptor-positive, HER2-negative advanced breast cancer, in this newly defined histological subgroup remains a topic of debate. In our study, we examined the impact of HER2 status on the efficacy of CDK4/6 inhibitors. Our study is a retrospective, multicenter, real-world data analysis. One hundred sixty patients were included in the study. The relationship between HER2 status and other clinical-pathological features, as well as progression-free survival, was examined. Median follow-up was 20.33 ±â€…0.98 months. The mPFS could not be reached. All patients exhibited positive estrogen receptor expression. Among the patients, 111 (69.4%) were categorized as HER2-0, and 49 (30.6%) as HER2-low. The 24-month progression-free survival rates were similar between HER2-0 and HER2-low patients (60.6% vs 65.3%, hormone receptor: 1.18, CI: 0.67-2.20, P = .554). We established that the mPFS achieved with cyclin-dependent kinase 4/6 inhibitors as a first-line therapy for patients with advanced breast cancer is unaffected by HER2 status.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Retrospective Studies , Middle Aged , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Aged , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Adult , Progression-Free Survival , Receptors, Estrogen/metabolism
16.
Anticancer Res ; 44(8): 3287-3294, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060052

ABSTRACT

BACKGROUND/AIM: Transforming growth factor-ß (TGF-ß) plays a significant role in the formation of different cancer subtypes. There is evidence that TGF-ß pathways promote cancerogenic cell characteristics but also have tumor-suppressor capabilities. The tyrosine kinase inhibitors nilotinib, dasatinib, erlotinib, gefitinib, and everolimus are approved as targeted therapies for several tumor entities, including head and neck squamous cell carcinoma (HNSCC). This study aimed to investigate the effects of these substances on the expression levels of TGFß1 and TGF-ß receptor type 2 (TGFßR2) in HPV-negative and HPV-positive SCC cell cultures. MATERIALS AND METHODS: Expression patterns of TGFß1 and TGFßR2 were determined using enzyme-linked immunosorbent assay (ELISA) in three HNSCC cell lines (i.e., HNSCC-11A, HNSCC-14C, and CERV196). These cells were incubated with nilotinib, dasatinib, erlotinib, gefitinib, and everolimus (20 µmol/l) and compared to a chemonaive control. An assessment of concentration levels was conducted after 24, 48, 72, and 96 h of treatment. RESULTS: Statistically significant changes in the expression levels of TGFß1 and TGFßR2 were found in all tested cell cultures (p<0.05) compared to the negative control. An increase in TGFß-R2 expression was detected after treatment with most of the tested tyrosine kinase inhibitors, whereas a reduction in TGFß1 was observed. The addition of everolimus had the opposite effect on both TGFßR2 and TGF-B1- expression. CONCLUSION: Expression of TGFß1 and TGFßR2 was detected in all cultured HNSCC cell lines. Nilotinib, dasatinib, erlotinib, gefitinib, and everolimus had an impact on the expression levels of TGFß1 and TGFßR2 in vitro.


Subject(s)
Dasatinib , Everolimus , Protein Kinase Inhibitors , Receptor, Transforming Growth Factor-beta Type II , Transforming Growth Factor beta1 , Humans , Everolimus/pharmacology , Transforming Growth Factor beta1/metabolism , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Receptor, Transforming Growth Factor-beta Type II/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Dasatinib/pharmacology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Gefitinib/pharmacology , Erlotinib Hydrochloride/pharmacology , Pyrimidines/pharmacology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Antineoplastic Agents/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
17.
Anticancer Res ; 44(8): 3587-3591, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060048

ABSTRACT

BACKGROUND/AIM: Acetyl glucose adducts (UTX-114, -115, and -116) were prepared from gefitinib, and their characteristics (e.g., anticancer activity, structural property) were analyzed. MATERIALS AND METHODS: Cytotoxicity and radiosensitizing properties of the UTX-114 family were examined using A431 cells. Supramolecular associations between the UTX-114 family compounds and the tyrosine kinase domain of epidermal growth factor receptor (EGFR-tyk) were also examined. The interactive analyses of the UTX-114 family compounds with EGFR-tyk were performed using docking simulation technique. RESULTS: The UTX-114 family showed a similar cytotoxicity as gefitinib, yielding IC50 values of 31.2 µM (gefitinib), 34.3 µM (UTX-114), 36.8 µM (UTX-115), and 39.4 µM (UTX-116). The EGFR-tyk inhibition ratios (IR) of UTX-114, -115, and -116 to gefitinib were 1.515, 0.983, and 0.551, respectively. The EGFR-tyk inhibitory activity of UTX-114 was higher than that of gefitinib. UTX-114 also showed the highest radiosensitizing activity among the tested compounds. UTX-114 expressed 1841 conformers (-8.989~15.718 kcal/mol) with the solvation free energy (dGW) of UTX-114 decreasing with increasing conformational energy, ranging between -354.955~ -260.815 kJ/mol. Interactive energies of gefitinib, UTX-114, -115, and -116 with EGFR-tyk were -123.640, -144.053, -120.830, and -124.658 kcal/mol, respectively. CONCLUSION: UTX-114 yielded the lowest interaction energy with EGFR-tyk among tested compounds. Given the association behavior between UTX-114 and EGFR-tyk, along with its other observed properties, UTX-114 appears to be a viable therapeutic possibility.


Subject(s)
ErbB Receptors , Gefitinib , Molecular Docking Simulation , Gefitinib/pharmacology , Humans , ErbB Receptors/metabolism , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Glycosylation , Protein Kinase Inhibitors/pharmacology , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemistry
18.
Comput Methods Programs Biomed ; 254: 108318, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38991374

ABSTRACT

BACKGROUND AND OBJECTIVE: While numerous in silico tools exist for target-based drug discovery, the inconsistent integration of in vitro data with predictive models hinders research and development productivity. This is particularly apparent during the Hit-to-Lead stage, where unreliable in-silico tools often lead to suboptimal lead selection. Herein, we address this challenge by presenting a CADD-guided pipeline that successfully integrates rational drug design with in-silico hits to identify a promising DDR1 lead. METHODS: 2 × 1000 ns MD simulations along with their respective FEL and MMPBSA analyses were employed to guide the rational design and synthesis of 12 novel compounds which were evaluated for their DDR inhibition. RESULTS: The molecular dynamics investigation of the initial hit led to the identification of key structural features within the DDR1 binding pocket. The identified key features were used to guide the rational design and synthesis of twelve novel derivatives. SAR analysis, biological evaluation, molecular dynamics, and free energy calculations were carried out for the synthesized derivatives to understand their mechanism of action. Compound 4c exhibited the strongest inhibition and selectivity for DDR1, with an IC50 of 0.11 µM. CONCLUSIONS: The MD simulations led to the identification of a key hydrophobic groove in the DDR1 binding pocket. The integrated approach of SAR analysis with molecular dynamics led to the identification of compound 4c as a promising lead for further development of potent and selective DDR1 inhibitors. Moreover, this work establishes a protocol for translating in silico hits to real world bioactive druggable leads.


Subject(s)
Discoidin Domain Receptor 1 , Drug Design , Molecular Dynamics Simulation , Protein Kinase Inhibitors , Discoidin Domain Receptor 1/antagonists & inhibitors , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Computer-Aided Design , Binding Sites , Structure-Activity Relationship , Molecular Docking Simulation
19.
Biomed Pharmacother ; 177: 117126, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38996706

ABSTRACT

BACKGROUND: Rhabdomyosarcoma (RMS) is one of the most common soft tissue sarcomas in children and adolescents, in which PAX3-FOXO1 fusion gene positive patients have very poor prognosis. PAX3-FOXO1 has been identified as an independent prognostic predictor in RMS, with no currently available targeted therapeutic intervention. The novel tyrosine kinase inhibitor anlotinib exhibits a wide range of anticancer effects in multiple types of cancers; however, there have been no relevant studies regarding its application in RMS. MATERIALS AND METHODS: We investigated the effects of PAX3-FOXO1 on the therapeutic efficacy of anlotinib using the CCK-8 assay, flow cytometry, invasion assay, wound healing assay, western blotting, quantitative polymerase chain reaction(qPCR), and xenograft experiments. RNA-seq and co-immunoprecipitation assays were conducted to determine the specific mechanism by which anlotinib regulates PAX3-FOXO1 expression. RESULTS: Anlotinib effectively inhibited RMS cell proliferation and promoted apoptosis and G2/M phase arrest while impeding tumor growth in vivo. Downregulation of PAX3-FOXO1 enhances the antitumor effects of anlotinib. Anlotinib upregulates protein kinase NEK2 and increases the degradation of PAX3-FOXO1 via the ubiquitin-proteasome pathway, leading to a reduction in PAX3-FOXO1 protein levels. CONCLUSION: Anlotinib effectively inhibited the malignant progression of RMS and promoted degradation of the fusion protein PAX3-FOXO1. Anlotinib could be a targeted therapeutic approach to treat PAX3-FOXO1 fusion-positive RMS.


Subject(s)
Apoptosis , Cell Proliferation , Indoles , NIMA-Related Kinases , Oncogene Proteins, Fusion , Quinolines , Rhabdomyosarcoma , Up-Regulation , Humans , Indoles/pharmacology , Indoles/therapeutic use , Animals , Cell Line, Tumor , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/pathology , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/metabolism , Up-Regulation/drug effects , Quinolines/pharmacology , NIMA-Related Kinases/metabolism , NIMA-Related Kinases/genetics , Apoptosis/drug effects , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/genetics , Cell Proliferation/drug effects , Mice, Nude , Xenograft Model Antitumor Assays , Mice , Gene Expression Regulation, Neoplastic/drug effects , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Protein Kinase Inhibitors/pharmacology , Paired Box Transcription Factors
20.
Exp Cell Res ; 441(1): 114154, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38996959

ABSTRACT

Platelet-derived growth factor (PDGF) is one of the most important cytokines associated with pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). PDGF receptor (PDGFR) inhibition exerted therapeutic effects on PAH in clinical trials, but serious side effects warrant the withdrawal of existing drugs. In this study, a novel highly selective PDGFR inhibitor WQ-C-401 was developed, and its effects on PDGFR signaling pathway and pulmonary vascular remodeling in PAH were investigated. Cell proliferation assays and Western blot analysis of PDGFRα/ß phosphorylation showed that WQ-C-401 inhibited PDGFR-mediated cell proliferation assay and suppressed PDGFR phosphorylation in a concentration-dependent manner. DiscoverX's KinomeScanTM technology confirmed the good kinome selectivity of WQ-C-401 (S score (1) of PDGFR = (0.01)). In monocrotaline (MCT)-induced PAH rats, intragastric administration of WQ-C-401 (25, 50, 100 mg/kg/d) or imatinib (50 mg/kg/d, positive control) significantly decreased right ventricular systolic pressure (RVSP). Histological analysis demonstrated that WQ-C-401 inhibited pulmonary vascular remodeling by reducing muscularization and fibrosis, as well as alleviated right ventricular hypertrophy in MCT-treated rats. In addition, WQ-C-401 suppressed MCT-induced cell hyperproliferation and CD68+ macrophage infiltration around the pulmonary artery. In vitro, WQ-C-401 inhibited PDGF-BB-induced proliferation and migration of human pulmonary arterial smooth muscle cells (PASMCs). Moreover, Western blot analysis showed that WQ-C-401 concertration-dependently inhibited PDGF-BB-induced phosphorylation of ERK1/2 and PDGFRß Y751, decreased collagen Ⅰ synthesis and increased alpha smooth muscle actin (α-SMA) expression in PASMCs. Collectively, our results suggest that WQ-C-401 is a selective and potent PDGFR inhibitor which could be a promising drug for the therapeutics of PAH by preventing pulmonary vascular remodeling.


Subject(s)
Cell Proliferation , Monocrotaline , Pulmonary Arterial Hypertension , Rats, Sprague-Dawley , Vascular Remodeling , Animals , Vascular Remodeling/drug effects , Rats , Cell Proliferation/drug effects , Male , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Humans , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Platelet-Derived Growth Factor/metabolism , Phosphorylation/drug effects , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Signal Transduction/drug effects , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/prevention & control , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...