Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.951
Filter
1.
Virus Genes ; 60(3): 287-294, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704458

ABSTRACT

Amsacta moorei entomopoxvirus (AMEV) is a poxvirus that can only infect insects. This virus is an attractive research material because it is similar to smallpox virus. AMEV is one of many viruses that encode protein kinases that drive the host's cellular mechanisms, modifying immune responses to it, and regulating viral protein activity. We report here the functional characterization of a serine/threonine (Ser/Thr) protein kinase (PK) gene (ORF AMV197) of AMEV. Expression of the AMV197 gene in baculovirus expression system yielded a ~ 35.5 kDa protein. PK activity of expressed AMV197 was shown by standard PK assay. Substrate profiling of AMV197 protein by peptide microarray indicated that the expressed protein phosphorylated 81 of 624 substrates which belong to 28 families of PK substrates. While the hypothetical AMV197 protein phosphorylates Ser/Thr only, we demonstrated that the expressed PK also phosphorylates probes with tyrosine residues on the array which is a rare property among PKs. Pull-down assay of the AMV197 protein with the subcellular protein fractionations of Ld652 cells showed that it is using two cellular proteins (18 and 42 kDa) as novel putative substrates. Our results suggest that AMEV can regulate cellular mechanisms by phosphorylating cellular proteins through AMV197 PK. However, further experiments are needed to identify the exact role of this PK in the replication of AMEV.


Subject(s)
Entomopoxvirinae , Viral Proteins , Viral Proteins/genetics , Viral Proteins/metabolism , Entomopoxvirinae/genetics , Entomopoxvirinae/metabolism , Phosphorylation , Animals , Substrate Specificity , Protein Kinases/genetics , Protein Kinases/metabolism , Cell Line
2.
J Tradit Chin Med ; 44(3): 468-477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767630

ABSTRACT

OBJECTIVE: To investigate the effect of acupotomy, on mitophagy and the Pink1-Parkin pathway in chondrocytes from rabbits with knee osteoarthritis (KOA). METHODS: A KOA model was established via the modified Videman method. Rabbits were randomly divided into a control group (CON), KOA group and KOA + acupotomy group (Acu). Rabbits in the acupotomy group were subjected to acupotomy for 4 weeks after model establishment. The behavior of the rabbits before and after intervention was recorded. Cartilage degeneration was evaluated by optical microscopy and fluorescence microscopy. The level of mitophagy was evaluated by transmission electron microscopy, immunofluorescence and enzyme-linked immunosorbent assay (ELISA). The expression of phosphatase and tensin homolog (PTEN)-induced kinase 1 (Pink1)-Parkin mitophagy pathway components was evaluated by immunofluorescence, Western blotting and real-time polymerase chain reaction. RESULTS: In rabbits with KOA, joint pain, mobility disorders and cartilage degeneration were observed, the Mankin score was increased, collagen type Ⅱ (Col-Ⅱ) expression was significantly decreased, mitophagy was inhibited, mitochondrial function was impaired, and factors associated with the Pink1-Parkin pathway were inhibited. Acupotomy regulated the expression of Pink1-Parkin pathway-related proteins, the mitophagy-related protein microtubule-associated protein-1 light chain-3, the translocase of the outer membrane, and the inner mitochondrial membrane 23; increased the colocalization of mitochondria and autophagosomes; promoted the removal of damaged mitochondria; restored mitochondrial adenosine-triphosphate (ATP) production; and alleviated cartilage degeneration in rabbits with KOA. CONCLUSIONS: Acupotomy played a role in alleviating KOA in rabbits by activating mitophagy in chondrocytes via the regulation of proteins that are related to the Pink1-Parkin pathway.


Subject(s)
Acupuncture Therapy , Chondrocytes , Mitophagy , Osteoarthritis, Knee , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Rabbits , Mitophagy/genetics , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/therapy , Chondrocytes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Male , Humans , Signal Transduction , Mitochondria/metabolism , Mitochondria/genetics
3.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731398

ABSTRACT

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Subject(s)
Adenosine Triphosphate , Carbon , Citric Acid , Mitochondria , Polyethyleneimine , Protein Kinases , Polyethyleneimine/chemistry , Carbon/chemistry , Adenosine Triphosphate/metabolism , Protein Kinases/metabolism , Protein Kinases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Quantum Dots/chemistry , Animals , Amyloid beta-Peptides/metabolism , Membrane Potential, Mitochondrial/drug effects , Humans , Cell Line , Reactive Oxygen Species/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
4.
Funct Plant Biol ; 512024 05.
Article in English | MEDLINE | ID: mdl-38723163

ABSTRACT

The investigation into cysteine-rich receptor-like kinases (CRLKs) holds pivotal significance as these conserved, upstream signalling molecules intricately regulate fundamental biological processes such as plant growth, development and stress adaptation. This study undertakes a comprehensive characterisation of CRLKs in Solanum tuberosum (potato), a staple food crop of immense economic importance. Employing comparative genomics and evolutionary analyses, we identified 10 distinct CRLK genes in potato. Further categorisation into three major groups based on sequence similarity was performed. Each CRLK member in potato was systematically named according to its chromosomal position. Multiple sequence alignment and phylogenetic analyses unveiled conserved gene structures and motifs within the same groups. The genomic distribution of CRLKs was observed across Chromosomes 2-5, 8 and 12. Gene duplication analysis highlighted a noteworthy trend, with most gene pairs exhibiting a Ka/Ks ratio greater than one, indicating positive selection of StCRLKs in potato. Salt and drought stresses significantly impacted peroxidase and catalase activities in potato seedlings. The presence of diverse cis -regulatory elements, including hormone-responsive elements, underscored their involvement in myriad biotic and abiotic stress responses. Interestingly, interactions between the phytohormone auxin and CRLK proteins unveiled a potential auxin-mediated regulatory mechanism. A holistic approach combining transcriptomics and quantitative PCR validation identified StCRLK9 as a potential candidate involved in plant response to heat, salt and drought stresses. This study lays a robust foundation for future research on the functional roles of the CRLK gene family in potatoes, offering valuable insights into their diverse regulatory mechanisms and potential applications in stress management.


Subject(s)
Droughts , Phylogeny , Plant Proteins , Solanum tuberosum , Stress, Physiological , Solanum tuberosum/genetics , Solanum tuberosum/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Multigene Family , Gene Expression Regulation, Plant , Hot Temperature , Protein Kinases/genetics , Protein Kinases/metabolism
5.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38697845

ABSTRACT

Defective mitophagy in renal tubular epithelial cells is one of the main drivers of renal fibrosis in diabetic kidney disease. Our gene sequencing data showed the expression of PINK1 and BNIP3, two key molecules of mitophagy, was decreased in renal tissues of VDR-knockout mice. Herein, streptozotocin (STZ) was used to induce renal interstitial fibrosis in mice. VDR deficiency exacerbated STZ-induced renal impairment and defective mitophagy. Paricalcitol (pari, a VDR agonist) and the tubular epithelial cell-specific overexpression of VDR restored the expression of PINK1 and BNIP3 in the renal cortex and attenuated STZ-induced kidney fibrosis and mitochondrial dysfunction. In HK-2 cells under high glucose conditions, an increased level of α-SMA, COL1, and FN and a decreased expression of PINK1 and BNIP3 with severe mitochondrial damage were observed, and these alterations could be largely reversed by pari treatment. ChIP-qPCR and luciferase reporter assays showed VDR could positively regulate the transcription of Pink1 and Bnip3 genes. These findings reveal that VDR could restore mitophagy defects and attenuate STZ-induced fibrosis in diabetic mice through regulation of PINK1 and BNIP3.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Ergocalciferols , Membrane Proteins , Mice, Knockout , Mitophagy , Protein Kinases , Receptors, Calcitriol , Streptozocin , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Mitophagy/genetics , Mitophagy/drug effects , Protein Kinases/metabolism , Protein Kinases/genetics , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Male , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Fibrosis , Kidney Tubules/metabolism , Kidney Tubules/pathology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice, Inbred C57BL , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Line , Gene Expression Regulation/drug effects
6.
Medicine (Baltimore) ; 103(18): e37837, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701259

ABSTRACT

In this study, we aimed to investigate the involvement of PANoptosis, a form of regulated cell death, in the development of steroid-induced osteonecrosis of the femoral head (SONFH). The underlying pathogenesis of PANoptosis in SONFH remains unclear. To address this, we employed bioinformatics approaches to analyze the key genes associated with PANoptosis. Our analysis was based on the GSE123568 dataset, allowing us to investigate both the expression profiles of PANoptosis-related genes (PRGs) and the immune profiles in SONFHallowing us to investigate the expression profiles of PRGs as well as the immune profiles in SONFH. We conducted cluster classification based on PRGs and assessed immune cell infiltration. Additionally, we used the weighted gene co-expression network analysis (WGCNA) algorithm to identify cluster-specific hub genes. Furthermore, we developed an optimal machine learning model to identify the key predictive genes responsible for SONFH progression. We also constructed a nomogram model with high predictive accuracy for assessing risk factors in SONFH patients, and validated the model using external data (area under the curve; AUC = 1.000). Furthermore, we identified potential drug targets for SONFH through the Coremine medical database. Using the optimal machine learning model, we found that 2 PRGs, CASP1 and MLKL, were significantly correlated with the key predictive genes and exhibited higher expression levels in SONFH. Our analysis revealed the existence of 2 distinct PANoptosis molecular subtypes (C1 and C2) within SONFH. Importantly, we observed significant variations in the distribution of immune cells across these subtypes, with C2 displaying higher levels of immune cell infiltration. Gene set variation analysis indicated that C2 was closely associated with multiple immune responses. In conclusion, our study sheds light on the intricate relationship between PANoptosis and SONFH. We successfully developed a risk predictive model for SONFH patients and different SONFH subtypes. These findings enhance our understanding of the pathogenesis of SONFH and offer potential insights into therapeutic strategies.


Subject(s)
Computational Biology , Femur Head Necrosis , Humans , Femur Head Necrosis/genetics , Femur Head Necrosis/chemically induced , Computational Biology/methods , Machine Learning , Steroids/adverse effects , Caspase 1/genetics , Nomograms , Gene Expression Profiling/methods , Protein Kinases/genetics
7.
Nat Plants ; 10(5): 798-814, 2024 May.
Article in English | MEDLINE | ID: mdl-38714768

ABSTRACT

Phytochrome A (phyA) is the plant far-red (FR) light photoreceptor and plays an essential role in regulating photomorphogenic development in FR-rich conditions, such as canopy shade. It has long been observed that phyA is a phosphoprotein in vivo; however, the protein kinases that could phosphorylate phyA remain largely unknown. Here we show that a small protein kinase family, consisting of four members named PHOTOREGULATORY PROTEIN KINASES (PPKs) (also known as MUT9-LIKE KINASES), directly phosphorylate phyA in vitro and in vivo. In addition, TANDEM ZINC-FINGER/PLUS3 (TZP), a recently characterized phyA-interacting protein required for in vivo phosphorylation of phyA, is also directly phosphorylated by PPKs. We reveal that TZP contains two intrinsically disordered regions in its amino-terminal domain that undergo liquid-liquid phase separation (LLPS) upon light exposure. The LLPS of TZP promotes colocalization and interaction between PPKs and phyA, thus facilitating PPK-mediated phosphorylation of phyA in FR light. Our study identifies PPKs as a class of protein kinases mediating the phosphorylation of phyA and demonstrates that the LLPS of TZP contributes significantly to more production of the phosphorylated phyA form in FR light.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome A , Phosphorylation , Phytochrome A/metabolism , Phytochrome A/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Phase Separation
8.
J Agric Food Chem ; 72(20): 11724-11732, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718268

ABSTRACT

Protein post-translational modifications (PTMs) play an essential role in meat quality development. However, the effect of specific PTM sites on meat proteins has not been investigated yet. The characteristics of pyruvate kinase M (PKM) were found to exhibit a close correlation with final meat quality, and thus, serine 99 (S99) and lysine 137 (K137) in PKM were mutated to study their effect on PKM function. The structural and functional properties of five lamb PKM variants, including wild-type PKM (wtPKM), PKM_S99D (S99 phosphorylation), PKM_S99A (PKM S99 dephosphorylation), PKM_K137Q (PKM K137 acetylation), and PKM_K137R (PKM K137 deacetylation), were evaluated. The results showed that the secondary structure, tertiary structure, and polymer formation were affected among different PKM variants. In addition, the glycolytic activity of PKM_K137Q was decreased because of its weakened binding with phosphoenolpyruvate. In the PKM_K137R variant, the actin phosphorylation level exhibited a decrease, suggesting a low kinase activity of PKM_K137R. The results of molecular simulation showed a 42% reduction in the interface area between PKM_K137R and actin, in contrast to wtPKM and actin. These findings are significant for revealing the mechanism of how PTMs regulate PKM function and provide a theoretical foundation for the development of precise meat quality preservation technology.


Subject(s)
Glycolysis , Pyruvate Kinase , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Pyruvate Kinase/chemistry , Phosphorylation , Animals , Acetylation , Sheep , Protein Processing, Post-Translational , Protein Kinases/metabolism , Protein Kinases/genetics , Protein Kinases/chemistry , Meat/analysis
9.
Planta ; 259(6): 149, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724681

ABSTRACT

MAIN CONCLUSION: The rice SnRK2 members SAPK4, SAPK5, SAPK7 and SAPK10 are positive regulators involved in the regulation of rice flowering, while other single mutants exhibited no effect on rice flowering. The rice SnRK2 family, comprising 10 members known as SAPK (SnRK2-Associated Protein Kinase), is pivotal in the abscisic acid (ABA) pathway and crucial for various biological processes, such as drought resistance and salt tolerance. Additionally, these members have been implicated in the regulation of rice heading date, a key trait influencing planting area and yield. In this study, we utilized gene editing technology to create mutants in the Songjing 2 (SJ2) background, enabling a comprehensive analyze the role of each SAPK member in rice flowering. We found that SAPK1, SAPK2, and SAPK3 may not directly participate in the regulatory network of rice heading date, while SAPK4, SAPK5, and SAPK7 play positive roles in rice flowering regulation. Notably, polygene deletion resulted in an additive effect on delaying flowering. Our findings corroborate the previous studies indicating the positive regulatory role of SAPK10 in rice flowering, as evidenced by delayed flowering observed in sapk9/10 double mutants. Moving forward, our future research will focus on analyzing the molecular mechanisms underlying SAPKs involvement in rice flowering regulation, aiming to enhance our understanding of the rice heading date relationship network and lay a theoretical foundation for breeding efforts to alter rice ripening dates.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/growth & development , Oryza/physiology , Oryza/enzymology , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Mutation , Gene Editing , Stress, Physiological/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Abscisic Acid/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
10.
Cell Mol Biol Lett ; 29(1): 82, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822260

ABSTRACT

BACKGROUND: Hepatic stellate cells (HSCs) play a crucial role in the development of fibrosis in non-alcoholic fatty liver disease (NAFLD). Small extracellular vesicles (sEV) act as mediators for intercellular information transfer, delivering various fibrotic factors that impact the function of HSCs in liver fibrosis. In this study, we investigated the role of lipotoxic hepatocyte derived sEV (LTH-sEV) in HSCs activation and its intrinsic mechanisms. METHODS: High-fat diet (HFD) mice model was constructed to confirm the expression of LIMA1. The relationship between LIMA1-enriched LTH-sEV and LX2 activation was evaluated by measurement of fibrotic markers and related genes. Levels of mitophagy were detected using mt-keima lentivirus. The interaction between LIMA1 and PINK1 was discovered through database prediction and molecular docking. Finally, sEV was injected to investigate whether LIMA1 can accelerate HFD induced liver fibrosis in mice. RESULTS: LIMA1 expression was upregulated in lipotoxic hepatocytes and was found to be positively associated with the expression of the HSCs activation marker α-SMA. Lipotoxicity induced by OPA led to an increase in both the level of LIMA1 protein in LTH-sEV and the release of LTH-sEV. When HSCs were treated with LTH-sEV, LIMA1 was observed to hinder LX2 mitophagy while facilitating LX2 activation. Further investigation revealed that LIMA1 derived from LTH-sEV may inhibit PINK1-Parkin-mediated mitophagy, consequently promoting HSCs activation. Knocking down LIMA1 significantly attenuates the inhibitory effects of LTH-sEV on mitophagy and the promotion of HSCs activation. CONCLUSIONS: Lipotoxic hepatocyte-derived LIMA1-enriched sEVs play a crucial role in promoting HSCs activation in NAFLD-related liver fibrosis by negatively regulating PINK1 mediated mitophagy. These findings provide new insights into the pathological mechanisms involved in the development of fibrosis in NAFLD.


Subject(s)
Diet, High-Fat , Extracellular Vesicles , Hepatic Stellate Cells , Hepatocytes , Liver Cirrhosis , Mice, Inbred C57BL , Mitophagy , Animals , Mitophagy/genetics , Hepatic Stellate Cells/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Mice , Diet, High-Fat/adverse effects , Male , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Humans , Disease Models, Animal
11.
Physiol Res ; 73(2): 253-263, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710055

ABSTRACT

Up to now, there's a limited number of studies on the relationship between PINK1/Park2 pathway and mitophagy in NAFLD. To investigate the effect of Park2-mediated mitophagy on non-alcoholic fatty liver disease (NAFLD). Oleic acid was used for the establishment of NAFLD model. Oil red-dyed lipid drops and mitochondrial alternations were observed by transmission electron microscopy. Enzymatic kit was used to test lipid content. The levels of IL-8 and TNF-alpha were determined by ELISA. Lenti-Park2 and Park2-siRNA were designed to upregulate and downregulate Park2 expression, respectively. The changing expression of PINK and Park2 was detected by RT-qPCR and Western blot. Immunofluorescence staining was applied to measure the amount of LC3. Successful NAFLD modeling was featured by enhanced lipid accumulation, as well as the elevated total cholesterol (TC), triglyceride (TG), TNF-alpha and IL-8 levels. Mitochondria in NAFLD model were morphologically and functionally damaged. Park2 expression was upregulated by lenti-Park2 and downregulated through Park2-siRNA. The PINK1 expression showed the same trend as Park2 expression. Immunofluorescence staining demonstrated that the when Park2 was overexpressed, more LC3 protein on mitochondrial autophagosome membrane was detected, whereas Park2 knockdown impeded LC3' locating on the membrane. The transmission electron microscopy image exhibited that the extent of damage to the mitochondrial in NAFLD model was revered by enhanced Park2 expression but further exacerbated by reduced Park2 expression. Park2-mediated mitophagy could relive NAFLD and may be a novel therapeutic target for NAFLD treatment. Keywords: Non-alcoholic Fatty Liver Disease (NAFLD), Mitophagy, PINK1/Park2, Park2, PINK1.


Subject(s)
Mitophagy , Non-alcoholic Fatty Liver Disease , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Humans , Male , Mice , Mitophagy/physiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
12.
BMC Genomics ; 25(1): 449, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714914

ABSTRACT

BACKGROUND: Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT: This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION: Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.


Subject(s)
Endoplasmic Reticulum Stress , Fungal Proteins , Oryza , Proteomics , Oryza/microbiology , Oryza/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Plant Diseases/microbiology , Gene Expression Regulation, Fungal , Protein Kinases/metabolism , Protein Kinases/genetics , Mutation , Multiomics , Ascomycota
13.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119745, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719029

ABSTRACT

The dynamic interface between invading viral pathogens and programmed cell death (PCD) of the host is a finely regulated process. Host cellular demise at the end of the viral life cycle ensures the release of progeny virions to initiate new infection cycles. Rotavirus (RV), a diarrheagenic virus with double-stranded RNA genome, has been reported to trigger different types of PCD such as apoptosis and pyroptosis in a highly regulated way to successfully disseminate progeny virions. Recently our lab also showed that induction of MLKL-driven programmed necroptosis by RV. However, the host cellular machinery involved in RV-induced necroptosis and the upstream viral trigger responsible for it remained unaddressed. In the present study, the signalling upstream of MLKL-driven necroptosis has been delineated where the involvement of Receptor interacting serine/threonine kinase 3 (RIPK3) and 1 (RIPK1) from the host side and RV non-structural protein 4 (NSP4) as the viral trigger for necroptosis has been shown. Interestingly, RV-NSP4 was found to be an integral component of the necrosome complex by interacting with RIPK1, thereby bypassing the requirement of RIPK1 kinase activity. Subsequently, NSP4-driven elevated cytosolic Ca2+ concentration and Ca2+-binding to NSP4 lead further to RHIM domain-dependent RIPK1-RIPK3 interaction, RIPK3-dependent MLKL phosphorylation, and eventual necroptosis. Overall, this study presents the interplay between RV-NSP4 and the host cellular necrosome complex to induce necroptotic death of host cells.


Subject(s)
Necroptosis , Protein Kinases , Receptor-Interacting Protein Serine-Threonine Kinases , Rotavirus , Viral Nonstructural Proteins , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Humans , Protein Kinases/metabolism , Protein Kinases/genetics , Rotavirus/metabolism , Animals , Host-Pathogen Interactions , Toxins, Biological/metabolism
14.
Sci Rep ; 14(1): 11721, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777823

ABSTRACT

It has recently been shown that KAT8, a genome-wide association study candidate risk gene for Parkinson's Disease, is involved in PINK1/Parkin-dependant mitophagy. The KAT8 gene encodes a lysine acetyltransferase and represents the catalytically active subunit of the non-specific lethal epigenetic remodelling complex. In the current study, we show that contrary to KAT5 inhibition, dual inhibition of KAT5 and KAT8 via the MG149 compound inhibits the initial steps of the PINK1-dependant mitophagy process. More specifically, our study shows that following mitochondrial depolarisation induced by mitochondrial toxins, MG149 treatment inhibits PINK1-dependant mitophagy initiation by impairing PINK1 activation, and subsequent phosphorylation of Parkin and ubiquitin. While this inhibitory effect of MG149 on PINK1-activation is potent, MG149 treatment in the absence of mitochondrial toxins is sufficient to depolarise the mitochondrial membrane, recruit PINK1 and promote partial downstream recruitment of the autophagy receptor p62, leading to an increase in mitochondrial delivery to the lysosomes. Altogether, our study provides additional support for KAT8 as a regulator of mitophagy and autophagy processes.


Subject(s)
Mitochondria , Mitophagy , Protein Kinases , Ubiquitin-Protein Ligases , Mitophagy/drug effects , Humans , Protein Kinases/metabolism , Protein Kinases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/antagonists & inhibitors , Phosphorylation/drug effects , Membrane Potential, Mitochondrial/drug effects , HeLa Cells
15.
Nat Commun ; 15(1): 4339, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773116

ABSTRACT

Cell-surface receptors form the front line of plant immunity. The leucine-rich repeat (LRR)-receptor-like kinases SOBIR1 and BAK1 are required for the functionality of the tomato LRR-receptor-like protein Cf-4, which detects the secreted effector Avr4 of the pathogenic fungus Fulvia fulva. Here, we show that the kinase domains of SOBIR1 and BAK1 directly phosphorylate each other and that residues Thr522 and Tyr469 of the kinase domain of Nicotiana benthamiana SOBIR1 are required for its kinase activity and for interacting with signalling partners, respectively. By knocking out multiple genes belonging to different receptor-like cytoplasmic kinase (RLCK)-VII subfamilies in N. benthamiana:Cf-4, we show that members of RLCK-VII-6, -7, and -8 differentially regulate the Avr4/Cf-4-triggered biphasic burst of reactive oxygen species. In addition, members of RLCK-VII-7 play an essential role in resistance against the oomycete pathogen Phytophthora palmivora. Our study provides molecular evidence for the specific roles of RLCKs downstream of SOBIR1/BAK1-containing immune complexes.


Subject(s)
Nicotiana , Plant Diseases , Plant Immunity , Plant Proteins , Protein Serine-Threonine Kinases , Nicotiana/immunology , Nicotiana/microbiology , Nicotiana/genetics , Nicotiana/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Immunity/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Phytophthora/pathogenicity , Protein Kinases/metabolism , Protein Kinases/genetics , Phosphorylation , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism , Signal Transduction
16.
Stem Cell Reports ; 19(5): 673-688, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38579709

ABSTRACT

Maintenance of mitochondrial function plays a crucial role in the regulation of muscle stem cell (MuSC), but the underlying mechanisms remain ill defined. In this study, we monitored mitophagy in MuSCS under various myogenic states and examined the role of PINK1 in maintaining regenerative capacity. Results indicate that quiescent MuSCs actively express mitophagy genes and exhibit a measurable mitophagy flux and prominent mitochondrial localization to autophagolysosomes, which become rapidly decreased during activation. Genetic disruption of Pink1 in mice reduces PARKIN recruitment to mitochondria and mitophagy in quiescent MuSCs, which is accompanied by premature activation/commitment at the expense of self-renewal and progressive loss of muscle regeneration, but unhindered proliferation and differentiation capacity. Results also show that impaired fate decisions in PINK1-deficient MuSCs can be restored by scavenging excess mitochondrial ROS. These data shed light on the regulation of mitophagy in MuSCs and position PINK1 as an important regulator of their mitochondrial properties and fate decisions.


Subject(s)
Cell Differentiation , Mitophagy , Protein Kinases , Regeneration , Stem Cells , Animals , Mitophagy/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Protein Kinases/deficiency , Mice , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/deficiency , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Reactive Oxygen Species/metabolism , Muscle Development/genetics , Cell Proliferation
17.
Nat Commun ; 15(1): 3223, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622146

ABSTRACT

Two-component systems, consisting of a histidine kinase and a response regulator, serve signal transduction in bacteria, often regulating transcription in response to environmental stimuli. Here, we identify a tandem serine histidine kinase function for KdpD, previously described as a histidine kinase of the KdpDE two-component system, which controls production of the potassium pump KdpFABC. We show that KdpD additionally mediates an inhibitory serine phosphorylation of KdpFABC at high potassium levels, using not its C-terminal histidine kinase domain but an N-terminal atypical serine kinase domain. Sequence analysis of KdpDs from different species highlights that some KdpDs are much shorter than others. We show that, while Escherichia coli KdpD's atypical serine kinase domain responds directly to potassium levels, a shorter version from Deinococcus geothermalis is controlled by second messenger cyclic di-AMP. Our findings add to the growing functional diversity of sensor kinases while simultaneously expanding the framework for regulatory mechanisms in bacterial potassium homeostasis.


Subject(s)
Escherichia coli Proteins , Histidine Kinase/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Protein Serine-Threonine Kinases , Protein Kinases/genetics , Protein Kinases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Phosphorylation , Potassium/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
18.
Mol Plant Pathol ; 25(4): e13447, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561315

ABSTRACT

Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Reproducibility of Results , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/pharmacology , Plant Immunity/physiology , Gene Expression Regulation, Plant , Protein Kinases/genetics , Protein Kinases/metabolism
19.
BMC Plant Biol ; 24(1): 319, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654176

ABSTRACT

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. Identification of new and elite Pst-resistance loci or genes has the potential to enhance overall resistance to this pathogen. Here, we conducted an integrated genome-wide association study (GWAS) and transcriptomic analysis to screen for loci associated with resistance to stripe rust in 335 accessions from Yunnan, including 311 landraces and 24 cultivars. Based on the environmental phenotype, we identified 113 protein kinases significantly associated with Pst resistance using mixed linear model (MLM) and generalized linear model (GLM) models. Transcriptomic analysis revealed that 52 of 113 protein kinases identified by GWAS were up and down regulated in response to Pst infection. Among these genes, a total of 15 receptor kinase genes were identified associated with Pst resistance. 11 candidate genes were newly discovered in Yunnan wheat germplasm. Our results revealed that resistance alleles to stripe rust were accumulated in Yunnan wheat germplasm, implying direct or indirect selection for improving stripe rust resistance in elite wheat breeding programs.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Plant Diseases , Puccinia , Triticum , Triticum/genetics , Triticum/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , China , Puccinia/physiology , Gene Expression Profiling , Basidiomycota/physiology , Genes, Plant , Protein Kinases/genetics , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Free Radic Biol Med ; 220: 15-27, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38679301

ABSTRACT

BACKGROUND: Chronic alcohol exposure induces cognitive impairment and NLRP3 inflammasome activation in the mPFC (medial prefrontal cortex). Mitophagy plays a crucial role in neuroinflammation, and dysregulated mitophagy is associated with behavioral deficits. However, the potential relationships among mitophagy, inflammation, and cognitive impairment in the context of alcohol exposure have not yet been studied. NRF2 promotes the process of mitophagy, while alcohol inhibits NRF2 expression. Whether NRF2 activation can ameliorate defective mitophagy and neuroinflammation in the presence of alcohol remains unknown. METHODS: BV2 cells and primary microglia were treated with alcohol. C57BL/6J mice were repeatedly administered alcohol intragastrically. BNIP3-siRNA, PINK1-siRNA, CCCP and bafilomycin A1 were used to regulate mitophagy in BV2 cells. RTA-408 acted as an NRF2 activator. Mitochondrial dysfunction, mitophagy and NLRP3 inflammasome activation were assayed. Behavioral tests were used to assess cognition. RESULTS: Chronic alcohol exposure impaired the initiation of both receptor-mediated mitophagy and PINK1-mediated mitophagy in the mPFC and in vitro microglial cells. Silencing BNIP3 or PINK1 induced mitochondrial dysfunction and aggravated alcohol-induced NLRP3 inflammasome activation in BV2 cells. In addition, alcohol exposure inhibited the NRF2 expression both in vivo and in vitro. NRF2 activation by RTA-408 ameliorated NLRP3 inflammasome activation and mitophagy downregulation in microglia, ultimately improving cognitive impairment in the presence of alcohol. CONCLUSION: Chronic alcohol exposure-induced impaired mitophagy initiation contributed to NLRP3 inflammasome activation and cognitive deficits, which could be alleviated by NRF2 activation via RTA-408.


Subject(s)
Cognitive Dysfunction , Inflammasomes , Membrane Proteins , Microglia , Mitophagy , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mitophagy/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Inflammasomes/metabolism , Inflammasomes/genetics , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/pathology , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Protein Kinases/metabolism , Protein Kinases/genetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prefrontal Cortex/drug effects , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Ethanol/toxicity , Ethanol/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...