Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.500
Filter
1.
Function (Oxf) ; 5(3): zqae005, 2024.
Article in English | MEDLINE | ID: mdl-38706964

ABSTRACT

Exercise promotes brain plasticity partly by stimulating increases in mature brain-derived neurotrophic factor (mBDNF), but the role of the pro-BDNF isoform in the regulation of BDNF metabolism in humans is unknown. We quantified the expression of pro-BDNF and mBDNF in human skeletal muscle and plasma at rest, after acute exercise (+/- lactate infusion), and after fasting. Pro-BDNF and mBDNF were analyzed with immunoblotting, enzyme-linked immunosorbent assay, immunohistochemistry, and quantitative polymerase chain reaction. Pro-BDNF was consistently and clearly detected in skeletal muscle (40-250 pg mg-1 dry muscle), whereas mBDNF was not. All methods showed a 4-fold greater pro-BDNF expression in type I muscle fibers compared to type II fibers. Exercise resulted in elevated plasma levels of mBDNF (55%) and pro-BDNF (20%), as well as muscle levels of pro-BDNF (∼10%, all P < 0.05). Lactate infusion during exercise induced a significantly greater increase in plasma mBDNF (115%, P < 0.05) compared to control (saline infusion), with no effect on pro-BDNF levels in plasma or muscle. A 3-day fast resulted in a small increase in plasma pro-BDNF (∼10%, P < 0.05), with no effect on mBDNF. Pro-BDNF is highly expressed in human skeletal muscle, particularly in type I fibers, and is increased after exercise. While exercising with higher lactate augmented levels of plasma mBDNF, exercise-mediated increases in circulating mBDNF likely derive partly from release and cleavage of pro-BDNF from skeletal muscle, and partly from neural and other tissues. These findings have implications for preclinical and clinical work related to a wide range of neurological disorders such as Alzheimer's, clinical depression, and amyotrophic lateral sclerosis.


Subject(s)
Brain-Derived Neurotrophic Factor , Exercise , Muscle, Skeletal , Neuronal Plasticity , Adult , Female , Humans , Male , Young Adult , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/blood , Exercise/physiology , Lactic Acid/blood , Lactic Acid/metabolism , Muscle, Skeletal/metabolism , Protein Precursors/metabolism
3.
BMC Plant Biol ; 24(1): 265, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600480

ABSTRACT

BACKGROUND: Leaf variegation is an intriguing phenomenon observed in many plant species. However, questions remain on its mechanisms causing patterns of different colours. In this study, we describe a tomato plant detected in an M2 population of EMS mutagenised seeds, showing variegated leaves with sectors of dark green (DG), medium green (MG), light green (LG) hues, and white (WH). Cells and tissues of these classes, along with wild-type tomato plants, were studied by light, fluorescence, and transmission electron microscopy. We also measured chlorophyll a/b and carotene and quantified the variegation patterns with a machine-learning image analysis tool. We compared the genomes of pooled plants with wild-type-like and mutant phenotypes in a segregating F2 population to reveal candidate genes responsible for the variegation. RESULTS: A genetic test demonstrated a recessive nuclear mutation caused the variegated phenotype. Cross-sections displayed distinct anatomy of four-leaf phenotypes, suggesting a stepwise mesophyll degradation. DG sectors showed large spongy layers, MG presented intercellular spaces in palisade layers, and LG displayed deformed palisade cells. Electron photomicrographs of those mesophyll cells demonstrated a gradual breakdown of the chloroplasts. Chlorophyll a/b and carotene were proportionally reduced in the sectors with reduced green pigments, whereas white sectors have hardly any of these pigments. The colour segmentation system based on machine-learning image analysis was able to convert leaf variegation patterns into binary images for quantitative measurements. The bulk segregant analysis of pooled wild-type-like and variegated progeny enabled the identification of SNP and InDels via bioinformatic analysis. The mutation mapping bioinformatic pipeline revealed a region with three candidate genes in chromosome 4, of which the FtsH-like protein precursor (LOC100037730) carries an SNP that we consider the causal variegated phenotype mutation. Phylogenetic analysis shows the candidate is evolutionary closest to the Arabidopsis VAR1. The synonymous mutation created by the SNP generated a miRNA binding site, potentially disrupting the photoprotection mechanism and thylakoid development, resulting in leaf variegation. CONCLUSION: We described the histology, anatomy, physiology, and image analysis of four classes of cell layers and chloroplast degradation in a tomato plant with a variegated phenotype. The genomics and bioinformatics pipeline revealed a VAR1-related FtsH mutant, the first of its kind in tomato variegation phenotypes. The miRNA binding site of the mutated SNP opens the way to future studies on its epigenetic mechanism underlying the variegation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genetics , Chlorophyll A/metabolism , Phylogeny , Chloroplasts/genetics , Arabidopsis/genetics , Mutation , Phenotype , Plant Leaves/metabolism , Carotenoids/metabolism , MicroRNAs/metabolism , Protein Precursors/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Arabidopsis Proteins/genetics
4.
Poult Sci ; 103(6): 103712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603935

ABSTRACT

The effects of the administration of the opioid agonist, morphine, on plasma and tissue concentrations of Met-enkephalin were determined in 14 wk old female chickens. In addition, effects of morphine on proenkephalin (PENK) expression were examined. Plasma concentrations of Met-enkephalin were reduced 10 minutes after morphine administration. Plasma concentrations of peptides that contain Met-enkephalin motifs were decreased 30 minutes after morphine administration. Tissue concentrations of Met-enkephalin tended to be depressed following morphine administration. Adrenal concentrations of PENK peptides containing Met-enkephalin motifs were decreased in chickens challenged with morphine. Expression of PENK in the anterior pituitary gland and adrenal glands were decreased in morphine treated compared to control pullets. In contrast, plasma concentrations of corticosterone were elevated 10 min after morphine treatment. Morphine also induced changes in mu (µ) opioid receptors and delta (δ) opioid receptors in both anterior pituitary tissue and adrenal tissues.


Subject(s)
Chickens , Corticosterone , Enkephalin, Methionine , Enkephalins , Morphine , Protein Precursors , Animals , Morphine/administration & dosage , Morphine/pharmacology , Chickens/metabolism , Enkephalin, Methionine/metabolism , Female , Corticosterone/blood , Protein Precursors/metabolism , Enkephalins/metabolism , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Avian Proteins/metabolism , Avian Proteins/genetics
5.
Calcif Tissue Int ; 114(5): 524-534, 2024 May.
Article in English | MEDLINE | ID: mdl-38506955

ABSTRACT

Pre-proenkephalin 1 (Penk1) is a pro-neuropeptide that belongs to the typical opioid peptide's family, having analgesic properties. We previously found Penk1 to be the most downregulated gene in a whole gene profiling analysis performed in osteoblasts subjected to microgravity as a model of mechanical unloading. In this work, Penk1 downregulation was confirmed in the bones of two in vivo models of mechanical unloading: tail-suspended and botulinum toxin A (botox)-injected mice. Consistently, in the sera from healthy volunteers subjected to bed rest, we observed an inverse correlation between PENK1 and bed rest duration. These results prompted us to investigate a role for this factor in bone. Penk1 was highly expressed in mouse bone, but its global deletion failed to impact bone metabolism in vivo. Indeed, Penk1 knock out (Penk1-/-) mice did not show an overt bone phenotype compared to the WT littermates. Conversely, in vitro Penk1 gene expression progressively increased during osteoblast differentiation and its transient silencing in mature osteoblasts by siRNAs upregulated the transcription of the Sost1 gene encoding sclerostin, and decreased Wnt3a and Col1a1 mRNAs, suggesting an altered osteoblast activity due to an impairment of the Wnt pathway. In line with this, osteoblasts treated with the Penk1 encoded peptide, Met-enkephalin, showed an increase of Osx and Col1a1 mRNAs and enhanced nodule mineralization. Interestingly, primary osteoblasts isolated from Penk1-/- mice showed lower metabolic activity, ALP activity, and nodule mineralization, as well as a lower number of CFU-F compared to osteoblasts isolated from WT mice, suggesting that, unlike the transient inhibition, the chronic Penk1 deletion affects both osteoblast differentiation and activity. Taken together, these results highlight a role for Penk1 in the regulation of the response of the bone to mechanical unloading, potentially acting on osteoblast differentiation and activity in a cell-autonomous manner.


Subject(s)
Down-Regulation , Enkephalins , Mice, Knockout , Osteoblasts , Animals , Osteoblasts/metabolism , Osteoblasts/drug effects , Enkephalins/metabolism , Enkephalins/genetics , Mice , Humans , Male , Cell Differentiation , Protein Precursors/metabolism , Protein Precursors/genetics , Mice, Inbred C57BL , Adult
6.
J Mol Biol ; 436(6): 168492, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38360088

ABSTRACT

Many insulin gene variants alter the protein sequence and result in monogenic diabetes due to insulin insufficiency. However, the molecular mechanisms of various disease-causing mutations are unknown. Insulin is synthesized as preproinsulin containing a signal peptide (SP). SPs of secreted proteins are recognized by the signal recognition particle (SRP) or by another factor in a SRP-independent pathway. If preproinsulin uses SRP-dependent or independent pathways is still debatable. We demonstrate by the use of site-specific photocrosslinking that the SRP subunit, SRP54, interacts with the preproinsulin SP. Moreover, SRP54 depletion leads to the decrease of insulin mRNA and protein expression, supporting the involvement of the RAPP protein quality control in insulin biogenesis. RAPP regulates the quality of secretory proteins through degradation of their mRNA. We tested five disease-causing mutations in the preproinsulin SP on recognition by SRP and on their effects on mRNA and protein levels. We demonstrate that the effects of mutations are associated with their position in the SP and their severity. The data support diverse molecular mechanisms involved in the pathogenesis of these mutations. We show for the first time the involvement of the RAPP protein quality control pathway in insulin biogenesis that is implicated in the development of neonatal diabetes caused by the Leu13Arg mutation.


Subject(s)
Insulin , Protein Precursors , RNA Stability , Signal Recognition Particle , Humans , Infant, Newborn , Diabetes Mellitus , Insulin/genetics , Insulin/metabolism , Protein Precursors/metabolism , Protein Sorting Signals/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Recognition Particle/metabolism
7.
Mol Med Rep ; 29(4)2024 04.
Article in English | MEDLINE | ID: mdl-38391118

ABSTRACT

Prothymosin α (ProT), a highly acidic nuclear protein with multiple cellular functions, has shown potential neuroprotective properties attributed to its anti­necrotic and anti­apoptotic activities. The present study aimed to investigate the beneficial effect of ProT on neuroplasticity after ischemia­reperfusion injury and elucidate its underlying mechanism of action. Primary cortical neurons were either treated with ProT or overexpressing ProT by gene transfection and exposed to oxygen­glucose deprivation for 2 h in vitro. Immunofluorescence staining for ProT and MAP­2 was performed to quantify ProT protein expression and assess neuronal arborization. Mice treated with vehicle or ProT (100 µg/kg) and ProT overexpression in transgenic mice received middle cerebral artery occlusion for 50 min to evaluate the effect of ProT on neuroplasticity­associated protein following ischemia­reperfusion injury. The results demonstrated that in cultured neurons ProT significantly increased neurite lengths and the number of branches, accompanied by an upregulation mRNA level of brain­derived neurotrophic factor. Furthermore, ProT administration improved the protein expressions of synaptosomal­associated protein, 25 kDa and postsynaptic density protein 95 after ischemic­reperfusion injury in vivo. These findings suggested that ProT can potentially induce neuroplasticity effects following ischemia­reperfusion injury.


Subject(s)
Reperfusion Injury , Thymosin , Thymosin/analogs & derivatives , Mice , Animals , Mice, Transgenic , Protein Precursors/genetics , Protein Precursors/metabolism , Up-Regulation , Thymosin/genetics , Thymosin/pharmacology , Thymosin/metabolism , Reperfusion Injury/drug therapy
8.
Int J Dermatol ; 63(6): 780-786, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38214207

ABSTRACT

BACKGROUND: Palmoplantar pustulosis (PPP) and pompholyx are chronic diseases characterized by pustules and vesicles on the palms and soles. These disorders often have similar clinicopathological features, which lead to diagnostic difficulties. We aimed to investigate the expression patterns of keratins and involucrin in PPP and pompholyx using immunohistochemical staining. METHODS: Skin biopsies from patients with PPP (n = 40) and pompholyx (n = 22) were immunohistochemically analyzed for Keratin 5, 9, 14, and involucrin expression. RESULTS: K5 expression was higher in PPP than in pompholyx, with diffusely positive expression in the basal, spinous, and granular layers. K14 expression did not differ between groups. K9 expression was observed near the pompholyx vesicle (P = 0.014) and stratum spinosum (P < 0.001) but was almost absent around PPP pustules. Involucrin expression was diffused around the PPP pustules and partially around the pompholyx vesicles, but without statistical significance (P = 0.123). Involucrin expression was elevated in the basal layer of the PPP compared with that in the pompholyx (P = 0.023). CONCLUSION: PPP and pompholyx exhibited distinctive differentiation in the expression of K5, K9, and involucrin.


Subject(s)
Immunohistochemistry , Keratins , Protein Precursors , Psoriasis , Humans , Protein Precursors/metabolism , Protein Precursors/analysis , Psoriasis/metabolism , Psoriasis/pathology , Psoriasis/diagnosis , Male , Female , Keratins/metabolism , Keratins/analysis , Middle Aged , Adult , Diagnosis, Differential , Aged , Young Adult , Eczema, Dyshidrotic/diagnosis , Eczema, Dyshidrotic/metabolism , Eczema, Dyshidrotic/pathology , Biopsy , Adolescent , Skin/pathology , Skin/metabolism , Keratin-9/metabolism , Keratin-9/analysis , Keratin-14/metabolism , Keratin-14/analysis
9.
J Pept Sci ; 30(4): e3554, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009400

ABSTRACT

The cysteine-free acyclic peptides present in marine cone snail venom have been much less investigated than their disulfide bonded counterparts. Precursor protein sequences derived from transcriptomic data, together with mass spectrometric fragmentation patterns for peptides present in venom duct tissue extracts, permit the identification of mature peptides. Twelve distinct gene superfamiles have been identified with precursor lengths between 64 and 158 residues. In the case of Conus monile, three distinct mature peptides have been identified, arising from two distinct protein precursors. Mature acyclic peptides are often post-translationally modified, with C-terminus amidation, a feature characteristic of neuropeptides. In the present study, 20 acyclic peptides from Conus monile and Conus betulinus were identified. The common modifications of C-terminus amidation, gamma carboxylation of glutamic acid (E to ϒ), N-terminus conversion of Gln (Q) to a pyroglutamyl residue (Z), and hydroxylation of Pro (P) to Hyp (O) are observed in one or more peptides identified in this study. Proteolytic trimming of sequences by cleavage at the C-terminus of Asn (N) residues is established. The presence of an asparagine endopeptidase is strengthened by the identification of legumain-like sequences in the transcriptome assemblies from diverse Conus species. Such sequences may be expected to have a cleavage specificity at Asn-Xxx peptide bonds.


Subject(s)
Conotoxins , Conus Snail , Animals , Mollusk Venoms/chemistry , Mollusk Venoms/genetics , Mollusk Venoms/metabolism , Conotoxins/chemistry , Peptides/chemistry , Conus Snail/chemistry , Protein Precursors/genetics , Protein Precursors/metabolism
10.
Nature ; 624(7991): 451-459, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993712

ABSTRACT

Inflammatory caspases are key enzymes in mammalian innate immunity that control the processing and release of interleukin-1 (IL-1)-family cytokines1,2. Despite the biological importance, the structural basis for inflammatory caspase-mediated cytokine processing has remained unclear. To date, catalytic cleavage of IL-1-family members, including pro-IL-1ß and pro-IL-18, has been attributed primarily to caspase-1 activities within canonical inflammasomes3. Here we demonstrate that the lipopolysaccharide receptor caspase-4 from humans and other mammalian species (except rodents) can cleave pro-IL-18 with an efficiency similar to pro-IL-1ß and pro-IL-18 cleavage by the prototypical IL-1-converting enzyme caspase-1. This ability of caspase-4 to cleave pro-IL-18, combined with its previously defined ability to cleave and activate the lytic pore-forming protein gasdermin D (GSDMD)4,5, enables human cells to bypass the need for canonical inflammasomes and caspase-1 for IL-18 release. The structure of the caspase-4-pro-IL-18 complex determined using cryogenic electron microscopy reveals that pro-lL-18 interacts with caspase-4 through two distinct interfaces: a protease exosite and an interface at the caspase-4 active site involving residues in the pro-domain of pro-IL-18, including the tetrapeptide caspase-recognition sequence6. The mechanisms revealed for cytokine substrate capture and cleavage differ from those observed for the caspase substrate GSDMD7,8. These findings provide a structural framework for the discussion of caspase activities in health and disease.


Subject(s)
Caspases, Initiator , Interleukin-18 , Interleukin-1beta , Animals , Humans , Caspase 1/metabolism , Caspases, Initiator/metabolism , Cryoelectron Microscopy , Gasdermins/metabolism , Inflammasomes/metabolism , Interleukin-18/chemistry , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/metabolism , Protein Precursors/chemistry , Protein Precursors/metabolism , Catalytic Domain
11.
Proc Natl Acad Sci U S A ; 120(48): e2311901120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37983489

ABSTRACT

Zebra and quagga mussels (Dreissena spp.) are invasive freshwater biofoulers that perpetrate devastating economic and ecological impact. Their success depends on their ability to anchor onto substrates with protein-based fibers known as byssal threads. Yet, compared to other mussel lineages, little is understood about the proteins comprising their fibers or their evolutionary history. Here, we investigated the hierarchical protein structure of Dreissenid byssal threads and the process by which they are fabricated. Unique among bivalves, we found that threads possess a predominantly ß-sheet crystalline structure reminiscent of spider silk. Further analysis revealed unexpectedly that the Dreissenid thread protein precursors are mechanoresponsive α-helical proteins that are mechanically processed into ß-crystallites during thread formation. Proteomic analysis of the byssus secretory organ and byssus fibers revealed a family of ultrahigh molecular weight (354 to 467 kDa) asparagine-rich (19 to 20%) protein precursors predicted to form α-helical coiled coils. Moreover, several independent lines of evidence indicate that the ancestral predecessor of these proteins was likely acquired via horizontal gene transfer. This chance evolutionary event that transpired at least 12 Mya has endowed Dreissenids with a distinctive and effective fiber formation mechanism, contributing significantly to their success as invasive species and possibly, inspiring new materials design.


Subject(s)
Bivalvia , Dreissena , Animals , Silk/chemistry , Proteomics , Bivalvia/chemistry , Protein Precursors/metabolism
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1205-1210, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37551499

ABSTRACT

OBJECTIVE: To develop monoclonal antibodies that can specifically recognize human von Willebrand factor (VWF) propeptide (VWFpp) in plasma, and establish a rapid and reliable method for the detection of VWFpp antigen in plasma by using the double-antibody sandwich ELISA with the obtained anti-VWFpp monoclonal antibody. METHODS: The recombinant human VWFpp (D1 and D2 regions) protein expressed in eukaryotic cells was used as immunogen to immunize BALB/c mice with routine method, so as to obtain clones of fusion cells. After screening and identification, hybridoma cell lines secreting monoclonal antibodies against VWFpp were selected, and then double-antibody sandwich ELISA assay was used to construct VWFpp antigen detection kit for the determination of VWFpp in human plasma. The levels of VWFpp antigen in plasma of 12 leukemia patients who underwent bone marrow transplantation were dynamically detected. RESULTS: Two hybridoma cell lines that can be subcultured continuously and secrete monoclonal antibodies against VWFpp were obtained and named SZ175 and SZ176 respectively. Identified by ELISA and Western blot, the antibodies could both specifically recognize VWFpp but couldn't recognize mature VWF (without propeptide). Based on the principle of double-antibody sandwich ELISA, monoclonal antibodies SZ175 and SZ176 were successfully made into a kit for detecting VWFpp antigen. The plasma VWFpp levels of leukemia patients before and after bone marrow transplantation were dynamically detected. The results showed that the plasma VWFpp levels of the patients after transplantation were significantly higher than those before transplantation. CONCLUSION: Two monoclonal antibodies against VWFpp were successfully prepared, and a double-antibody sandwich ELISA detection kit for VWFpp antigen was constructed, which provides a powerful tool for further study on the biological function of VWFpp, the clinical diagnosis and classification of von Willebrand disease (VWD), and the prognostic monitoring of endothelial injury-related diseases.


Subject(s)
von Willebrand Diseases , von Willebrand Factor , Animals , Mice , Humans , Antibodies, Monoclonal , Protein Precursors/metabolism , von Willebrand Diseases/diagnosis , Prognosis
13.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108711

ABSTRACT

The relationship between dysbiosis and central nervous diseases has been proved in the last 10 years. Microbial alterations cause increased intestinal permeability, and the penetration of bacterial fragment and toxins induces local and systemic inflammatory processes, affecting distant organs, including the brain. Therefore, the integrity of the intestinal epithelial barrier plays a central role in the microbiota-gut-brain axis. In this review, we discuss recent findings on zonulin, an important tight junction regulator of intestinal epithelial cells, which is assumed to play a key role in maintaining of the blood-brain barrier function. In addition to focusing on the effect of microbiome on intestinal zonulin release, we also summarize potential pharmaceutical approaches to modulate zonulin-associated pathways with larazotide acetate and other zonulin receptor agonists or antagonists. The present review also addresses the emerging issues, including the use of misleading nomenclature or the unsolved questions about the exact protein sequence of zonulin.


Subject(s)
Brain-Gut Axis , Microbiota , Protein Precursors/metabolism , Bacteria , Permeability , Intestinal Mucosa/metabolism
14.
Molecules ; 28(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37110728

ABSTRACT

Investigations of protein folding have largely involved the use of disulfide-containing proteins, since the disulfide-coupled folding of proteins allows folding intermediates to be trapped and their conformations determined. However, studies of the folding mechanisms of mid-size proteins face several problems, one of which is that detecting folding intermediates is difficult. Therefore, to solve this issue, a novel peptide reagent, maleimidohexanoyl-Arg5-Tyr-NH2, was designed and applied to the detection of folding intermediates of model proteins. BPTI was chosen as a model small protein to estimate the ability of the novel reagent to detect folding intermediates. In addition, a precursor protein (prococoonase) of Bombyx mori cocoonase was used as a model mid-size protein. Cocoonase is classified as a serine protease and has a high homology with trypsin. We recently found that the propeptide sequence of prococoonase (proCCN) is important for the folding of cocoonase. However, it was difficult to study the folding pathway of proCCN since the folding intermediates could not be separated on a reversed-phase HPLC (RP-HPLC). Therefore, to separate the folding intermediates by RP-HPLC, the novel labeling reagent was used to accomplish this for proCCN. The results indicated that the peptide reagent allowed the intermediates to be captured, separated on SDS-PAGE, and analyzed by RP-HPLC without the occurrence of undesirable disulfide-exchange reactions during the labeling reactions. The peptide reagent reported herein is a practical tool for investigating the mechanisms of disulfide-coupled folding of mid-size proteins.


Subject(s)
Disulfides , Peptides , Disulfides/metabolism , Peptides/metabolism , Protein Folding , Protein Precursors/metabolism , Chromatography, High Pressure Liquid , Kinetics , Oxidation-Reduction
15.
EMBO Rep ; 24(5): e55760, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36938994

ABSTRACT

Mitochondria play central roles in cellular energy production and metabolism. Most proteins required to carry out these functions are synthesized in the cytosol and imported into mitochondria. A growing number of metabolic disorders arising from mitochondrial dysfunction can be traced to errors in mitochondrial protein import. The mechanisms underlying the import of precursor proteins are commonly studied using radioactively labeled precursor proteins imported into purified mitochondria. Here, we establish a fluorescence-based import assay to analyze protein import into mitochondria. We show that fluorescently labeled precursors enable import analysis with similar sensitivity to those using radioactive precursors, yet they provide the advantage of quantifying import with picomole resolution. We adapted the import assay to a 96-well plate format allowing for fast analysis in a screening-compatible format. Moreover, we show that fluorescently labeled precursors can be used to monitor the assembly of the F1 F0 ATP synthase in purified mitochondria. Thus, we provide a sensitive fluorescence-based import assay that enables quantitative and fast import analysis.


Subject(s)
Mitochondria , Protein Precursors , Fluorescence , Protein Transport , Protein Precursors/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism
16.
Mol Cell ; 83(6): 890-910, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931257

ABSTRACT

Biogenesis of mitochondria requires the import of approximately 1,000 different precursor proteins into and across the mitochondrial membranes. Mitochondria exhibit a wide variety of mechanisms and machineries for the translocation and sorting of precursor proteins. Five major import pathways that transport proteins to their functional intramitochondrial destination have been elucidated; these pathways range from the classical amino-terminal presequence-directed pathway to pathways using internal or even carboxy-terminal targeting signals in the precursors. Recent studies have provided important insights into the structural organization of membrane-embedded preprotein translocases of mitochondria. A comparison of the different translocases reveals the existence of at least three fundamentally different mechanisms: two-pore-translocase, ß-barrel switching, and transport cavities open to the lipid bilayer. In addition, translocases are physically engaged in dynamic interactions with respiratory chain complexes, metabolite transporters, quality control factors, and machineries controlling membrane morphology. Thus, mitochondrial preprotein translocases are integrated into multi-functional networks of mitochondrial and cellular machineries.


Subject(s)
Mitochondria , Mitochondrial Proteins , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Carrier Proteins/metabolism , Protein Transport , Protein Precursors/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism
17.
J Cell Biol ; 222(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36828365

ABSTRACT

We previously reported that glycosylphosphatidylinositol (GPI) biosynthesis is upregulated when endoplasmic reticulum-associated degradation (ERAD) is defective; however, the underlying mechanistic basis remains unclear. Based on a genome-wide CRISPR-Cas9 screen, we show that a widely expressed GPI-anchored protein CD55 precursor and ER-resident ARV1 are involved in upregulation of GPI biosynthesis under ERAD-deficient conditions. In cells defective in GPI transamidase, GPI-anchored protein precursors fail to obtain GPI, with the remaining uncleaved GPI-attachment signal at the C-termini. We show that ERAD deficiency causes accumulation of the CD55 precursor, which in turn upregulates GPI biosynthesis, where the GPI-attachment signal peptide is the active element. Among the 31 GPI-anchored proteins tested, only the GPI-attachment signal peptides of CD55, CD48, and PLET1 enhance GPI biosynthesis. ARV1 is prerequisite for the GPI upregulation by CD55 precursor. Our data indicate that GPI biosynthesis is balanced to need by ARV1 and precursors of specific GPI-anchored proteins.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , GPI-Linked Proteins , Glycosylphosphatidylinositols , Glycosylphosphatidylinositols/biosynthesis , GPI-Linked Proteins/metabolism , Protein Precursors/metabolism , Protein Sorting Signals
18.
J Neurosci ; 43(11): 1871-1887, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36823038

ABSTRACT

Corticospinal neurons (CSN) are centrally required for skilled voluntary movement, which necessitates that they establish precise subcerebral connectivity with the brainstem and spinal cord. However, molecular controls regulating specificity of this projection targeting remain largely unknown. We previously identified that developing CSN subpopulations exhibit striking axon targeting specificity in the spinal white matter. These CSN subpopulations with segmentally distinct spinal projections are also molecularly distinct; a subset of differentially expressed genes between these distinct CSN subpopulations regulate differential axon projection targeting. Rostrolateral CSN extend axons exclusively to bulbar-cervical segments (CSNBC-lat), while caudomedial CSN (CSNmedial) are more heterogeneous, with distinct, intermingled subpopulations extending axons to either bulbar-cervical or thoraco-lumbar segments. Here, we report, in male and female mice, that Cerebellin 1 (Cbln1) is expressed specifically by CSN in medial, but not lateral, sensorimotor cortex. Cbln1 shows highly dynamic temporal expression, with Cbln1 levels in CSN highest during the period of peak axon extension toward thoraco-lumbar segments. Using gain-of-function experiments, we identify that Cbln1 is sufficient to direct thoraco-lumbar axon extension by CSN. Misexpression of Cbln1 in CSNBC-lat either by in utero electroporation, or by postmitotic AAV-mediated gene delivery, redirects these axons past their normal bulbar-cervical targets toward thoracic segments. Further, Cbln1 overexpression in postmitotic CSNBC-lat increases the number of CSNmedial axons that extend past cervical segments into the thoracic cord. Collectively, these results identify that Cbln1 functions as a potent molecular control over thoraco-lumbar CSN axon extension, part of an integrated network of controls over segmentally-specific CSN axon projection targeting.SIGNIFICANCE STATEMENT Corticospinal neurons (CSN) exhibit remarkable diversity and precision of axonal projections to targets in the brainstem and distinct spinal segments; the molecular basis for this targeting diversity is largely unknown. CSN subpopulations projecting to distinct targets are also molecularly distinguishable. Distinct subpopulations degenerate in specific motor neuron diseases, further suggesting that intrinsic molecular differences might underlie differential vulnerability to disease. Here, we identify a novel molecular control, Cbln1, expressed by CSN extending axons to thoraco-lumbar spinal segments. Cbln1 is sufficient, but not required, for CSN axon extension toward distal spinal segments, and Cbln1 expression is controlled by recently identified, CSN-intrinsic regulators of axon extension. Our results identify that Cbln1, together with other regulators, coordinates segmentally precise CSN axon targeting.


Subject(s)
Axons , Spinal Cord , Female , Male , Animals , Mice , Axons/physiology , Spinal Cord/physiology , Neurons/physiology , Neurites , Nerve Tissue Proteins/metabolism , Protein Precursors/metabolism
19.
J Pediatr ; 255: 98-104, 2023 04.
Article in English | MEDLINE | ID: mdl-36343740

ABSTRACT

OBJECTIVE: To study the efficacy of 3 different vitamin K birth prophylaxis regimens in infants born premature. STUDY DESIGN: This was an open-label, parallel-group, randomized clinical trial conducted in a tertiary neonatal care unit in India. Infants born very preterm (≤32 weeks) and/or with very low birth weight (≤1500 g) were included. In each arm, 25 babies were enrolled. Babies were randomized to receive 1.0 mg, 0.5 mg, or 0.3 mg intramuscular (IM) vitamin K1 at birth. Protein induced by vitamin K absence - II (PIVKA-II) levels were assessed at birth, and on days 5 and 28, along with the frequency of death, bleeding manifestations, intraventricular hemorrhage, necrotizing enterocolitis, bilirubin levels, and duration of phototherapy. The primary outcome was comparison of PIVKA-II levels on day 5 of life. RESULTS: All the 3 regimens resulted in similar proportion of vitamin K subclinical sufficiency (PIVKA-II < 0.028 AU/mL) infants on day 5 (1 mg - 100%; 0.5 mg - 91.7%; 0.3 mg - 91.7%, P = .347), with no significant difference in median (IQR) PIVKA-II levels (AU/mL): 1 mg 0.006 (0.004, 0.009); 0.5 mg 0.008 (0.004, 0.009); 0.3 mg 0.006 (0.003, 0.009), P = .301. However, on day 28, there was a significant decrease in the proportion of vitamin K-sufficient infants in the 0.3-mg IM group (72.7%) compared with the 1.0-mg (100%) or 0.5-mg (91.3) groups. The 1.0-mg group had significantly greater bilirubin levels and duration of phototherapy. None of the other clinical outcomes were statistically different. CONCLUSIONS: Both 1-mg and 0.5-mg IM vitamin K birth prophylaxis resulted in high sufficiency on follow-up, compared with 0.3 mg. The current recommendation of 0.5-1 mg IM vitamin K birth prophylaxis for infants born preterm, needs to be continued. TRIAL REGISTRATION: CTRI/2022/02/040396.


Subject(s)
Prothrombin , Vitamin K , Infant, Newborn , Infant , Humans , Protein Precursors/metabolism , Vitamin K 1/therapeutic use , Vitamins , Bilirubin
20.
Journal of Experimental Hematology ; (6): 1205-1210, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009976

ABSTRACT

OBJECTIVE@#To develop monoclonal antibodies that can specifically recognize human von Willebrand factor (VWF) propeptide (VWFpp) in plasma, and establish a rapid and reliable method for the detection of VWFpp antigen in plasma by using the double-antibody sandwich ELISA with the obtained anti-VWFpp monoclonal antibody.@*METHODS@#The recombinant human VWFpp (D1 and D2 regions) protein expressed in eukaryotic cells was used as immunogen to immunize BALB/c mice with routine method, so as to obtain clones of fusion cells. After screening and identification, hybridoma cell lines secreting monoclonal antibodies against VWFpp were selected, and then double-antibody sandwich ELISA assay was used to construct VWFpp antigen detection kit for the determination of VWFpp in human plasma. The levels of VWFpp antigen in plasma of 12 leukemia patients who underwent bone marrow transplantation were dynamically detected.@*RESULTS@#Two hybridoma cell lines that can be subcultured continuously and secrete monoclonal antibodies against VWFpp were obtained and named SZ175 and SZ176 respectively. Identified by ELISA and Western blot, the antibodies could both specifically recognize VWFpp but couldn't recognize mature VWF (without propeptide). Based on the principle of double-antibody sandwich ELISA, monoclonal antibodies SZ175 and SZ176 were successfully made into a kit for detecting VWFpp antigen. The plasma VWFpp levels of leukemia patients before and after bone marrow transplantation were dynamically detected. The results showed that the plasma VWFpp levels of the patients after transplantation were significantly higher than those before transplantation.@*CONCLUSION@#Two monoclonal antibodies against VWFpp were successfully prepared, and a double-antibody sandwich ELISA detection kit for VWFpp antigen was constructed, which provides a powerful tool for further study on the biological function of VWFpp, the clinical diagnosis and classification of von Willebrand disease (VWD), and the prognostic monitoring of endothelial injury-related diseases.


Subject(s)
Animals , Mice , Humans , von Willebrand Factor , Antibodies, Monoclonal , Protein Precursors/metabolism , von Willebrand Diseases/diagnosis , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...