Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67.779
Filter
1.
J Exp Clin Cancer Res ; 43(1): 156, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822429

ABSTRACT

BACKGROUND: Platinum-based chemotherapy regimens are a mainstay in the management of ovarian cancer (OC), but emergence of chemoresistance poses a significant clinical challenge. The persistence of ovarian cancer stem cells (OCSCs) at the end of primary treatment contributes to disease recurrence. Here, we hypothesized that the extracellular matrix protects CSCs during chemotherapy and supports their tumorigenic functions by activating integrin-linked kinase (ILK), a key enzyme in drug resistance. METHODS: TCGA datasets and OC models were investigated using an integrated proteomic and gene expression analysis and examined ILK for correlations with chemoresistance pathways and clinical outcomes. Canonical Wnt pathway components, pro-survival signaling, and stemness were examined using OC models. To investigate the role of ILK in the OCSC-phenotype, a novel pharmacological inhibitor of ILK in combination with carboplatin was utilized in vitro and in vivo OC models. RESULTS: In response to increased fibronectin secretion and integrin ß1 clustering, aberrant ILK activation supported the OCSC phenotype, contributing to OC spheroid proliferation and reduced response to platinum treatment. Complexes formed by ILK with the Wnt receptor frizzled 7 (Fzd7) were detected in tumors and correlated with metastatic progression. Moreover, TCGA datasets confirmed that combined expression of ILK and Fzd7 in high grade serous ovarian tumors is correlated with reduced response to chemotherapy and poor patient outcomes. Mechanistically, interaction of ILK with Fzd7 increased the response to Wnt ligands, thereby amplifying the stemness-associated Wnt/ß-catenin signaling. Notably, preclinical studies showed that the novel ILK inhibitor compound 22 (cpd-22) alone disrupted ILK interaction with Fzd7 and CSC proliferation as spheroids. Furthermore, when combined with carboplatin, this disruption led to sustained AKT inhibition, apoptotic damage in OCSCs and reduced tumorigenicity in mice. CONCLUSIONS: This "outside-in" signaling mechanism is potentially actionable, and combined targeting of ILK-Fzd7 may lead to new therapeutic approaches to eradicate OCSCs and improve patient outcomes.


Subject(s)
Drug Resistance, Neoplasm , Frizzled Receptors , Neoplastic Stem Cells , Ovarian Neoplasms , Protein Serine-Threonine Kinases , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Animals , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , Cell Line, Tumor , Platinum/pharmacology , Platinum/therapeutic use , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects
2.
J Cell Sci ; 137(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38813860

ABSTRACT

WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of ß1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.


Subject(s)
Adaptor Proteins, Signal Transducing , Astrocytes , Cell Differentiation , Cell Proliferation , Neural Stem Cells , Signal Transduction , Trans-Activators , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Animals , Astrocytes/metabolism , Astrocytes/cytology , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Integrin beta1/metabolism , Integrin beta1/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Bone Morphogenetic Proteins/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Protein Serine-Threonine Kinases
3.
Nat Commun ; 15(1): 4099, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816352

ABSTRACT

Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Interferon Regulatory Factor-3 , Interleukin-33 , Pancreatic Neoplasms , Protein Serine-Threonine Kinases , Quinolines , Signal Transduction , Interleukin-33/metabolism , Animals , Interferon Regulatory Factor-3/metabolism , Humans , Pancreatic Neoplasms/prevention & control , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Mice , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Quinolines/pharmacology , Quinolines/therapeutic use , Inflammation/prevention & control , Inflammation/metabolism , Pancreatitis, Chronic/prevention & control , Pancreatitis, Chronic/metabolism , Toll-Like Receptor 3/metabolism , Mice, Inbred C57BL , Toll-Like Receptor 4/metabolism , Mevalonic Acid/metabolism , Male , Female , Mice, Knockout
4.
Bone Res ; 12(1): 34, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816384

ABSTRACT

Degenerated endplate appears with cheese-like morphology and sensory innervation, contributing to low back pain and subsequently inducing intervertebral disc degeneration in the aged population.1 However, the origin and development mechanism of the cheese-like morphology remain unclear. Here in this study, we report lumbar instability induced cartilage endplate remodeling is responsible for this pathological change. Transcriptome sequencing of the endplate chondrocytes under abnormal stress revealed that the Hippo signaling was key for this process. Activation of Hippo signaling or knockout of the key gene Yap1 in the cartilage endplate severed the cheese-like morphological change and disc degeneration after lumbar spine instability (LSI) surgery, while blocking the Hippo signaling reversed this process. Meanwhile, transcriptome sequencing data also showed osteoclast differentiation related gene set expression was up regulated in the endplate chondrocytes under abnormal mechanical stress, which was activated after the Hippo signaling. Among the discovered osteoclast differentiation gene set, CCL3 was found to be largely released from the chondrocytes under abnormal stress, which functioned to recruit and promote osteoclasts formation for cartilage endplate remodeling. Over-expression of Yap1 inhibited CCL3 transcription by blocking its promoter, which then reversed the endplate from remodeling to the cheese-like morphology. Finally, LSI-induced cartilage endplate remodeling was successfully rescued by local injection of an AAV5 wrapped Yap1 over-expression plasmid at the site. These findings suggest that the Hippo signaling induced osteoclast gene set activation in the cartilage endplate is a potential new target for the management of instability induced low back pain and lumbar degeneration.


Subject(s)
Chemokine CCL3 , Hippo Signaling Pathway , Intervertebral Disc Degeneration , Lumbar Vertebrae , Osteoclasts , Signal Transduction , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Animals , Osteoclasts/metabolism , Osteoclasts/pathology , Lumbar Vertebrae/pathology , Chemokine CCL3/genetics , Chemokine CCL3/metabolism , Mice , Cartilage/pathology , Cartilage/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Joint Instability/pathology , Joint Instability/genetics , Chondrocytes/metabolism , Chondrocytes/pathology , YAP-Signaling Proteins/metabolism , Male , Mice, Inbred C57BL
5.
Anticancer Res ; 44(6): 2417-2424, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821583

ABSTRACT

BACKGROUND/AIM: Although several studies in some neoplasms have reported correlation between the expression levels of Doublecortin-like kinase1(DCLK1) and carcinogenesis, its role in cholangiocarcinoma remains unknown. MATERIALS AND METHODS: DCLK1 expression in normal epithelium (NE), biliary intraepithelial neoplasia (BilIN)1∼3, and intrahepatic cholangiocarcinoma (ICC) were investigated immuno-histochemically. The molecular effects of DCLK1 were investigated by gene silencing using RNAi [DCLK1-tagrgeting (siDCLK1)]. The human ICC cell lines HuCCT1 and HuH28 were transfected with these siRNAs, and used for assays in the presence or absence of DCLK1 inhibitors. RESULTS: The positive ratio of DCLK1 expression in ICC was higher than that in NE, and equally distributed among BilIN1∼3 (NE: BilIN1: BilIN2: BilIN3: ICC=62%: 91%: 97%: 100%: 95%, p<0.05). In the wound healing assay, the migration of the siDCLK1-treated cells was significantly inhibited compared to the NT-treated cells (p<0.05). In the cell invasion assay, the invasion of the siDCLK1-treated cells was significantly inhibited compared to the NT-treated cells (p<0.05). In the presence of the DCLK1 inhibitor, cell proliferative capacity at 24 hours was decreased in a concentration-dependent manner. CONCLUSION: DCLK1 was highly expressed in the early stage of ICC carcinogenesis. Human ICC cell growth was suppressed in vitro by siRNA silencing of DCLK1 or after treatment with the DCLK1 inhibitor, indicating DCLK1 may be molecular target for ICC therapy.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Doublecortin-Like Kinases , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , Humans , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Staging , Male , Cell Proliferation , Middle Aged , Female , RNA, Small Interfering/genetics , Carcinoma in Situ/pathology , Carcinoma in Situ/genetics , Carcinoma in Situ/metabolism
6.
Gen Physiol Biophys ; 43(3): 243-253, 2024 May.
Article in English | MEDLINE | ID: mdl-38774924

ABSTRACT

Cataract, a painless and progressive disorder is manifested as the opacification of the lens that represents the most significant cause of blindness worldwide. The objective of this study is to unveil the function of Kirsten rat sarcoma (KRAS) and potential action mechanisms against cataract. The ferroptosis-associated differentially expressed genes (DEGs) and pivot genes were extracted through the comprehensive bioinformatics methods. Erastin was applied for inducing ferroptosis in hydrogen peroxide (H2O2)-treated SRA01/04 cells, and validated by detecting content of intracellular iron, glutathione (GSH), malondialdehyde (MDA). Additionally, the effects of KRAS deficiency on ferroptosis were determined by functional assays. The proteins expression related to ferroptosis and Hippo pathway were determined by Western blotting. A total of 73 ferroptosis-related DEGs were discovered, and 6 critical core genes were confirmed upregulation in cataract cell model. The H2O2-treated SRA01/04 cells exhibited decrease of cell viability and proliferation, iron accumulation, MDA increase, GSH consumption, rise of COX2 and decline of GPX4, with further aggravated under erastin treatment, while the phenomena were improved by KRAS knockdown. Additionally, KRAS deficiency was involved in the Hippo signalling pathway activation. Downregulation of KRAS might restrain ferroptosis and affect Hippo pathway in cataract.


Subject(s)
Cataract , Ferroptosis , Hippo Signaling Pathway , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Ferroptosis/drug effects , Cataract/metabolism , Cataract/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Humans , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Line
7.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731938

ABSTRACT

Inherited retinal degeneration (RD) constitutes a heterogeneous group of genetic retinal degenerative disorders. The molecular mechanisms underlying RD encompass a diverse spectrum of cellular signaling, with the unfolded protein response (UPR) identified as a common signaling pathway chronically activated in degenerating retinas. TRIB3 has been recognized as a key mediator of the PERK UPR arm, influencing various metabolic pathways, such as insulin signaling, lipid metabolism, and glucose homeostasis, by acting as an AKT pseudokinase that prevents the activation of the AKT → mTOR axis. This study aimed to develop a gene-independent approach targeting the UPR TRIB3 mediator previously tested by our group using a genetic approach in mice with RD. The goal was to validate a therapeutic approach targeting TRIB3 interactomes through the pharmacological targeting of EGFR-TRIB3 and delivering cell-penetrating peptides targeting TRIB3 → AKT. The study employed rd10 and P23H RHO mice, with afatinib treatment conducted in p15 rd10 mice through daily intraperitoneal injections. P15 P23H RHO mice received intraocular injections of cell-penetrating peptides twice at a 2-week interval. Our study revealed that both strategies successfully targeted TRIB3 interactomes, leading to an improvement in scotopic A- and B-wave ERG recordings. Additionally, the afatinib-treated mice manifested enhanced photopic ERG amplitudes accompanied by a delay in photoreceptor cell loss. The treated rd10 retinas also showed increased PDE6ß and RHO staining, along with an elevation in total PDE activity in the retinas. Consequently, our study demonstrated the feasibility of a gene-independent strategy to target common signaling in degenerating retinas by employing a TRIB3-based therapeutic approach that delays retinal function and photoreceptor cell loss in two RD models.


Subject(s)
Retinal Degeneration , Animals , Mice , Retinal Degeneration/drug therapy , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Disease Models, Animal , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Signal Transduction/drug effects , Unfolded Protein Response/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Mice, Inbred C57BL , Retina/metabolism , Retina/drug effects , Retina/pathology
8.
Cell Commun Signal ; 22(1): 264, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734696

ABSTRACT

BACKGROUND: Traditional biomarkers of chronic kidney disease (CKD) detect the disease in its late stages and hardly predict associated vascular damage. Integrin-linked kinase (ILK) is a scaffolding protein and a serine/threonine protein kinase that plays multiple roles in several pathophysiological processes during renal damage. However, the involvement of ILK as a biomarker of CKD and its associated vascular problems remains to be fully elucidated. METHODS: CKD was induced by an adenine-rich diet for 6 weeks in mice. We used an inducible ILK knockdown mice (cKD-ILK) model to decrease ILK expression. ILK content in mice's peripheral blood mononuclear cells (PBMCs) was determined and correlated with renal function parameters and with the expression of ILK and fibrosis and inflammation markers in renal and aortic tissues. Also, the expression of five miRNAs that target ILK was analyzed in whole blood of mice. RESULTS: The adenine diet increased ILK expression in PBMCs, renal cortex, and aortas, and creatinine and urea nitrogen concentrations in the plasma of WT mice, while these increases were not observed in cKD-ILK mice. Furthermore, ILK content in PBMCs directly correlated with renal function parameters and with the expression of renal and vascular ILK and fibrosis and inflammation markers. Finally, the expression of the five miRNAs increased in the whole blood of adenine-fed mice, although only four correlated with plasma urea nitrogen, and of those, three were downregulated in cKD-ILK mice. CONCLUSIONS: ILK, in circulating mononuclear cells, could be a potential biomarker of CKD and CKD-associated renal and vascular damage.


Subject(s)
Biomarkers , Kidney , Leukocytes, Mononuclear , Protein Serine-Threonine Kinases , RNA, Messenger , Renal Insufficiency, Chronic , Animals , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Leukocytes, Mononuclear/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Biomarkers/metabolism , Biomarkers/blood , Mice , Kidney/pathology , Kidney/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Male , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/blood , MicroRNAs/metabolism , Disease Models, Animal , Fibrosis
9.
Front Immunol ; 15: 1387896, 2024.
Article in English | MEDLINE | ID: mdl-38736875

ABSTRACT

Background: Mutations in STK11 (STK11Mut) gene may present a negative impact on survival in Non-small Cell Lung Cancer (NSCLC) patients, however, its relationship with immune related genes remains unclear. This study is to unveil whether overexpressed- and mutated-STK11 impact survival in NSCLC and to explore whether immune related genes (IRGs) are involved in STK11 mutations. Methods: 188 NSCLC patients with intact formalin-fixed paraffin-embedded (FFPE) tissue available for detecting STK11 protein expression were included in the analysis. After immunohistochemical detection of STK11 protein, patients were divided into high STK11 expression group (STK11High) and low STK11 expression group (STK11Low), and then Kaplan-Meier survival analysis and COX proportional hazards model were used to compare the overall survival (OS) and progression-free survival (PFS) of the two groups of patients. In addition, the mutation data from the TCGA database was used to categorize the NSCLC population, namely STK11 Mutated (STK11Mut) and wild-type (STK11Wt) subgroups. The difference in OS between STK11Mut and STK11Wt was compared. Finally, bioinformatics analysis was used to compare the differences in IRGs expression between STK11Mut and STK11Wt populations. Results: The median follow-up time was 51.0 months (range 3.0 - 120.0 months) for real-life cohort. At the end of follow-up, 64.36% (121/188) of patients experienced recurrence or metastasis. 64.89% (122/188) of patients ended up in cancer-related death. High expression of STK11 was a significant protective factor for NSCLC patients, both in terms of PFS [HR=0.42, 95% CI= (0.29-0.61), P<0.001] and OS [HR=0.36, 95% CI= (0.25, 0.53), P<0.001], which was consistent with the finding in TCGA cohorts [HR=0.76, 95%CI= (0.65, 0.88), P<0.001 HR=0.76, 95%CI= (0.65, 0.88), P<0.001]. In TCGA cohort, STK11 mutation was a significant risk factor for NSCLC in both lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) histology in terms of OS [HR=6.81, 95%CI= (2.16, 21.53), P<0.001; HR=1.50, 95%CI= (1.00, 2.26), P=0.051, respectively]. Furthermore, 7 IRGs, namely CALCA, BMP6, S100P, THPO, CGA, PCSK1 and MUC5AC, were found significantly overexpressed in STK11-mutated NSCLC in both LUSC and LUAD histology. Conclusions: Low STK11 expression at protein level and presence of STK11 mutation were associated with poor prognosis in NSCLC, and mutated STK11 might probably alter the expression IRGs profiling.


Subject(s)
AMP-Activated Protein Kinase Kinases , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mutation , Protein Serine-Threonine Kinases , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Female , Male , Protein Serine-Threonine Kinases/genetics , Prognosis , Middle Aged , Aged , Biomarkers, Tumor/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Adult , Kaplan-Meier Estimate
10.
Nat Commun ; 15(1): 3743, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702316

ABSTRACT

Arteriovenous fistulas (AVFs) are the most common vascular access points for hemodialysis (HD), but they have a high incidence of postoperative dysfunction, mainly due to excessive neointimal hyperplasia (NIH). Our previous studies have revealed a highly conserved LncRNA-LncDACH1 as an important regulator of cardiomyocyte and fibroblast proliferation. Herein, we find that LncDACH1 regulates NIH in AVF in male mice with conditional knockout of smooth muscle cell-specific LncDACH1 and in male mice model of AVF with LncDACH1 overexpression by adeno-associated virus. Mechanistically, silence of LncDACH1 activates p-AKT through promoting the expression of heat shock protein 90 (HSP90) and serine/arginine-rich splicing factor protein kinase 1 (SRPK1). Moreover, LncDACH1 is transcriptionally activated by transcription factor KLF9 that binds directly to the promoter region of the LncDACH1 gene. In this work, during AVF NIH, LncDACH1 is downregulated by KLF9 and promotes NIH through the HSP90/ SRPK1/ AKT signaling axis.


Subject(s)
HSP90 Heat-Shock Proteins , Hyperplasia , Kruppel-Like Transcription Factors , Myocytes, Smooth Muscle , Neointima , Proto-Oncogene Proteins c-akt , RNA, Long Noncoding , Animals , Humans , Male , Mice , Arteriovenous Fistula/metabolism , Arteriovenous Fistula/genetics , Arteriovenous Fistula/pathology , Cell Proliferation , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/pathology , Neointima/metabolism , Phenotype , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction
11.
Commun Biol ; 7(1): 533, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710747

ABSTRACT

Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Membrane Proteins , Protein Serine-Threonine Kinases , Signal Transduction , Tumor Suppressor Proteins , Wings, Animal , Animals , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Apoptosis , Drosophila/genetics , Drosophila/growth & development , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Gene Expression Regulation, Developmental , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Wings, Animal/growth & development , Wings, Animal/metabolism
12.
Arch Virol ; 169(5): 116, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722402

ABSTRACT

In this study, we investigated the role of serum/glucocorticoid-regulated kinase 1 (SGK1) in varicella-zoster virus (VZV) replication. VZV DNA replication and plaque formation were inhibited by SGK1 knockout and treatment with an SGK1 inhibitor. Furthermore, SGK1 inhibition suppressed the increase in cyclin B1 expression induced by VZV infection. These results suggest that VZV infection induces SGK1 activation, which is required for efficient viral proliferation through the expression of cyclin B1. This is the first study to report that SGK1 is involved in the VZV life cycle.


Subject(s)
Cyclin B1 , Herpesvirus 3, Human , Immediate-Early Proteins , Protein Serine-Threonine Kinases , Virus Replication , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Humans , Herpesvirus 3, Human/genetics , Herpesvirus 3, Human/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cyclin B1/metabolism , Cyclin B1/genetics , Cell Line , DNA Replication
13.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38728007

ABSTRACT

Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.


Subject(s)
Autophagy-Related Proteins , Mitophagy , Protein Serine-Threonine Kinases , Ubiquitin-Protein Ligases , rab7 GTP-Binding Proteins , Humans , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , HEK293 Cells , HeLa Cells , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mitochondria/metabolism , Mitochondria/genetics , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
14.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732261

ABSTRACT

Abiotic stressors, including drought, salt, cold, and heat, profoundly impact plant growth and development, forcing elaborate cellular responses for adaptation and resilience. Among the crucial orchestrators of these responses is the CBL-CIPK pathway, comprising calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs). While CIPKs act as serine/threonine protein kinases, transmitting calcium signals, CBLs function as calcium sensors, influencing the plant's response to abiotic stress. This review explores the intricate interactions between the CBL-CIPK pathway and plant hormones such as ABA, auxin, ethylene, and jasmonic acid (JA). It highlights their role in fine-tuning stress responses for optimal survival and acclimatization. Building on previous studies that demonstrated the enhanced stress tolerance achieved by upregulating CBL and CIPK genes, we explore the regulatory mechanisms involving post-translational modifications and protein-protein interactions. Despite significant contributions from prior research, gaps persist in understanding the nuanced interplay between the CBL-CIPK system and plant hormone signaling under diverse abiotic stress conditions. In contrast to broader perspectives, our review focuses on the interaction of the pathway with crucial plant hormones and its implications for genetic engineering interventions to enhance crop stress resilience. This specialized perspective aims to contribute novel insights to advance our understanding of the potential of the CBL-CIPK pathway to mitigate crops' abiotic stress.


Subject(s)
Plant Growth Regulators , Signal Transduction , Stress, Physiological , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Plants/metabolism , Plants/genetics
15.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724987

ABSTRACT

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Subject(s)
Diabetic Cardiomyopathies , Dynamins , Endothelial Cells , Mice, Inbred C57BL , Signal Transduction , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/etiology , Humans , Dynamins/metabolism , Dynamins/genetics , Male , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/enzymology , Endothelial Cells/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Ferroptosis/drug effects , Disease Models, Animal , Cells, Cultured , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/enzymology , Mice , Protein Processing, Post-Translational , Coronary Circulation , Intracellular Signaling Peptides and Proteins
16.
Cells ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38727283

ABSTRACT

The unfolded protein response is an intricate system of sensor proteins in the endoplasmic reticulum (ER) that recognizes misfolded proteins and transmits information via transcription factors to either regain proteostasis or, depending on the severity, to induce apoptosis. The main transmembrane sensor is IRE1α, which contains cytoplasmic kinase and RNase domains relevant for its activation and the mRNA splicing of the transcription factor XBP1. Mast cell leukemia (MCL) is a severe form of systemic mastocytosis. The inhibition of IRE1α in the MCL cell line HMC-1.2 has anti-proliferative and pro-apoptotic effects, motivating us to elucidate the IRE1α interactors/regulators in HMC-1.2 cells. Therefore, the TurboID proximity labeling technique combined with MS analysis was applied. Gene Ontology and pathway enrichment analyses revealed that the majority of the enriched proteins are involved in vesicle-mediated transport, protein stabilization, and ubiquitin-dependent ER-associated protein degradation pathways. In particular, the AAA ATPase VCP and the oncoprotein MTDH as IRE1α-interacting proteins caught our interest for further analyses. The pharmacological inhibition of VCP activity resulted in the increased stability of IRE1α and MTDH as well as the activation of IRE1α. The interaction of VCP with both IRE1α and MTDH was dependent on ubiquitination. Moreover, MTDH stability was reduced in IRE1α-knockout cells. Hence, pharmacological manipulation of IRE1α-MTDH-VCP complex(es) might enable the treatment of MCL.


Subject(s)
Endoribonucleases , Leukemia, Mast-Cell , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Endoribonucleases/metabolism , Cell Line, Tumor , Leukemia, Mast-Cell/metabolism , Leukemia, Mast-Cell/pathology , Endoplasmic Reticulum-Associated Degradation , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Membrane Proteins/metabolism
17.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739166

ABSTRACT

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Subject(s)
Disease Models, Animal , Down Syndrome , Neurogenesis , Animals , Down Syndrome/drug therapy , Down Syndrome/pathology , Down Syndrome/metabolism , Down Syndrome/complications , Down Syndrome/genetics , Neurogenesis/drug effects , Mice , Female , Pregnancy , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Dyrk Kinases , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Male , Cognition Disorders/drug therapy , Cognition Disorders/pathology
18.
BMC Cancer ; 24(1): 587, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741073

ABSTRACT

YAP and TAZ, the Hippo pathway terminal transcriptional activators, are frequently upregulated in cancers. In tumor cells, they have been mainly associated with increased tumorigenesis controlling different aspects from cell cycle regulation, stemness, or resistance to chemotherapies. In fewer cases, they have also been shown to oppose cancer progression, including by promoting cell death through the action of the p73/YAP transcriptional complex, in particular after chemotherapeutic drug exposure. Using HCT116 cells, we show here that oxaliplatin treatment led to core Hippo pathway down-regulation and nuclear accumulation of TAZ. We further show that TAZ was required for the increased sensitivity of HCT116 cells to oxaliplatin, an effect that appeared independent of p73, but which required the nuclear relocalization of TAZ. Accordingly, Verteporfin and CA3, two drugs affecting the activity of YAP and TAZ, showed antagonistic effects with oxaliplatin in co-treatments. Importantly, using several colorectal cell lines, we show that the sensitizing action of TAZ to oxaliplatin is dependent on the p53 status of the cells. Our results support thus an early action of TAZ to sensitize cells to oxaliplatin, consistent with a model in which nuclear TAZ in the context of DNA damage and p53 activity pushes cells towards apoptosis.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Hippo Signaling Pathway , Organoplatinum Compounds , Oxaliplatin , Protein Serine-Threonine Kinases , Signal Transduction , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Tumor Suppressor Protein p53 , Humans , Oxaliplatin/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , HCT116 Cells , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/therapeutic use , Antineoplastic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Verteporfin/pharmacology , Verteporfin/therapeutic use , Cell Line, Tumor , Tumor Protein p73/metabolism , Tumor Protein p73/genetics , YAP-Signaling Proteins/metabolism , Porphyrins/pharmacology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects
19.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38695876

ABSTRACT

Platinum-based chemotherapy drugs can lead to the development of anorexia, a detrimental effect on the overall health of cancer patients. However, managing chemotherapy-induced anorexia and subsequent weight loss remains challenging due to limited effective therapeutic strategies. Growth differentiation factor 15 (GDF15) has recently gained significant attention in the context of chemotherapy-induced anorexia. Here, we report that hepatic GDF15 plays a crucial role in regulating body weight in response to chemo drugs cisplatin and doxorubicin. Cisplatin and doxorubicin treatments induce hepatic Gdf15 expression and elevate circulating GDF15 levels, leading to hunger suppression and subsequent weight loss. Mechanistically, selective activation by chemotherapy of hepatic IRE1α-XBP1 pathway of the unfolded protein response (UPR) upregulates Gdf15 expression. Genetic and pharmacological inactivation of IRE1α is sufficient to ameliorate chemotherapy-induced anorexia and body weight loss. These results identify hepatic IRE1α as a molecular driver of GDF15-mediated anorexia and suggest that blocking IRE1α RNase activity offers a therapeutic strategy to alleviate the adverse anorexia effects in chemotherapy.


Subject(s)
Anorexia , Doxorubicin , Endoribonucleases , Growth Differentiation Factor 15 , Liver , Protein Serine-Threonine Kinases , Weight Loss , X-Box Binding Protein 1 , Animals , Humans , Mice , Anorexia/chemically induced , Anorexia/metabolism , Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Doxorubicin/adverse effects , Endoribonucleases/metabolism , Endoribonucleases/genetics , Growth Differentiation Factor 15/adverse effects , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Unfolded Protein Response/drug effects , Weight Loss/drug effects , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics
20.
Proc Natl Acad Sci U S A ; 121(20): e2321919121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713625

ABSTRACT

Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/ß-catenin signaling along the AP axis and, functions synergistically with the ß-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.


Subject(s)
Body Patterning , Planarians , Protein Serine-Threonine Kinases , Regeneration , Wnt Signaling Pathway , p21-Activated Kinases , Animals , Regeneration/physiology , Planarians/physiology , Planarians/genetics , Planarians/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Wnt Signaling Pathway/physiology , Body Patterning/genetics , Body Patterning/physiology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...