Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.127
Filter
1.
Structure ; 32(6): 647-649, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848680

ABSTRACT

In this issue of Structure, Yin et al.1 present the CryoEM structure of the HisRS-like domain of human GCN2 and demonstrate that it is a pseudoenzyme, which binds uncharged tRNA in a different manner than HisRS and does not bind histidine and ATP.


Subject(s)
Adenosine Triphosphate , Humans , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Cryoelectron Microscopy , RNA, Transfer/metabolism , RNA, Transfer/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Catalysis , Models, Molecular , Histidine/chemistry , Histidine/metabolism
2.
Nat Commun ; 15(1): 3725, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697971

ABSTRACT

Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell receptor signaling and as such is an attractive target for cancer immunotherapy. Although the role of the HPK1 kinase domain (KD) has been extensively characterized, the function of its citron homology domain (CHD) remains elusive. Through a combination of structural, biochemical, and mechanistic studies, we characterize the structure-function of CHD in relationship to KD. Crystallography and hydrogen-deuterium exchange mass spectrometry reveal that CHD adopts a seven-bladed ß-propellor fold that binds to KD. Mutagenesis associated with binding and functional studies show a direct correlation between domain-domain interaction and negative regulation of kinase activity. We further demonstrate that the CHD provides stability to HPK1 protein in cells as well as contributes to the docking of its substrate SLP76. Altogether, this study highlights the importance of the CHD in the direct and indirect regulation of HPK1 function.


Subject(s)
Adaptor Proteins, Signal Transducing , Protein Serine-Threonine Kinases , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/chemistry , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/chemistry , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Binding , Protein Domains , Crystallography, X-Ray , HEK293 Cells
3.
Protein Sci ; 33(6): e5004, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723164

ABSTRACT

Dysregulation of RNA splicing processes is intricately linked to tumorigenesis in various cancers, especially breast cancer. Cdc2-like kinase 2 (CLK2), an oncogenic RNA-splicing kinase pivotal in breast cancer, plays a significant role, particularly in the context of triple-negative breast cancer (TNBC), a subtype marked by substantial medical challenges due to its low survival rates. In this study, we employed a structure-based virtual screening (SBVS) method to identify potential CLK2 inhibitors with novel chemical structures for treating TNBC. Compound 670551 emerged as a novel CLK2 inhibitor with a 50% inhibitory concentration (IC50) value of 619.7 nM. Importantly, Compound 670551 exhibited high selectivity for CLK2 over other protein kinases. Functionally, this compound significantly reduced the survival and proliferation of TNBC cells. Results from a cell-based assay demonstrated that this inhibitor led to a decrease in RNA splicing proteins, such as SRSF4 and SRSF6, resulting in cell apoptosis. In summary, we identified a novel CLK2 inhibitor as a promising potential treatment for TNBC therapy.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Female , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Molecular Docking Simulation , Cell Proliferation/drug effects
4.
Science ; 384(6698): 885-890, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781365

ABSTRACT

Men or mice with homozygous serine/threonine kinase 33 (STK33) mutations are sterile owing to defective sperm morphology and motility. To chemically evaluate STK33 for male contraception with STK33-specific inhibitors, we screened our multibillion-compound collection of DNA-encoded chemical libraries, uncovered potent STK33-specific inhibitors, determined the STK33 kinase domain structure bound with a truncated hit CDD-2211, and generated an optimized hit CDD-2807 that demonstrates nanomolar cellular potency (half-maximal inhibitory concentration = 9.2 nanomolar) and favorable metabolic stability. In mice, CDD-2807 exhibited no toxicity, efficiently crossed the blood-testis barrier, did not accumulate in brain, and induced a reversible contraceptive effect that phenocopied genetic STK33 perturbations without altering testis size. Thus, STK33 is a chemically validated, nonhormonal contraceptive target, and CDD-2807 is an effective tool compound.


Subject(s)
Contraception , Contraceptive Agents, Male , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Small Molecule Libraries , Animals , Humans , Male , Mice , Blood-Testis Barrier/metabolism , Contraceptive Agents, Male/chemistry , Contraceptive Agents, Male/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Testis/drug effects , Contraception/methods , Structure-Activity Relationship
5.
Biochem Biophys Res Commun ; 710: 149871, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38579538

ABSTRACT

Brassinosteroid activated kinase 1 (BAK1) is a cell-surface coreceptor which plays multiple roles in innate immunity of plants. HopF2 is an effector secreted by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 into Arabidopsis and suppresses host immune system through interaction with BAK1 as well as its downstream kinase MKK5. The association mechanism of HopF2 to BAK1 remains unclear, which prohibits our understanding and subsequent interfering of their interaction for pathogen management. Herein, we found the kinase domain of BAK1 (BAK1-KD) is sufficient for HopF2 association. With a combination of hydrogen/deuterium exchange mass spectrometry and mutational assays, we found a region of BAK1-KD N-lobe and a region of HopF2 head subdomain are critical for intermolecular interaction, which is also supported by unbiased protein-protein docking with ClusPro and kinase activity assay. Collectively, this research presents the interaction mechanism between Arabidopsis BAK1 and P. syringae HopF2, which could pave the way for bactericide development that blocking the functioning of HopF2 toward BAK1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Pseudomonas syringae/physiology , Brassinosteroids , Bacterial Proteins/chemistry , Arabidopsis Proteins/physiology , Plant Diseases/microbiology , Protein Serine-Threonine Kinases/chemistry
6.
Trends Biochem Sci ; 49(6): 494-505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565496

ABSTRACT

Autophagy - a highly regulated intracellular degradation process - is pivotal in maintaining cellular homeostasis. Liquid-liquid phase separation (LLPS) is a fundamental mechanism regulating the formation and function of membrane-less compartments. Recent research has unveiled connections between LLPS and autophagy, suggesting that phase separation events may orchestrate the spatiotemporal organization of autophagic machinery and cargo sequestration. The Unc-51-like kinase (ULK)/autophagy-related 1 (Atg1) family of proteins is best known for its regulatory role in initiating autophagy, but there is growing evidence that the functional spectrum of ULK/Atg1 extends beyond autophagy regulation. In this review, we explore the spatial and temporal regulation of the ULK/Atg1 family of kinases, focusing on their recruitment to LLPS-driven compartments, and highlighting their multifaceted functions beyond their traditional role.


Subject(s)
Autophagy-Related Protein-1 Homolog , Autophagy , Humans , Autophagy-Related Protein-1 Homolog/metabolism , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry
7.
J Biol Chem ; 300(5): 107201, 2024 May.
Article in English | MEDLINE | ID: mdl-38508313

ABSTRACT

The salt-inducible kinases (SIKs) 1 to 3, belonging to the AMPK-related kinase family, serve as master regulators orchestrating a diverse set of physiological processes such as metabolism, bone formation, immune response, oncogenesis, and cardiac rhythm. Owing to its key regulatory role, the SIK kinases have emerged as compelling targets for pharmacological intervention across a diverse set of indications. Therefore, there is interest in developing SIK inhibitors with defined selectivity profiles both to further dissect the downstream biology and for treating disease. However, despite a large pharmaceutical interest in the SIKs, experimental structures of SIK kinases are scarce. This is likely due to the challenges associated with the generation of proteins suitable for structural studies. By adopting a rational approach to construct design and protein purification, we successfully crystallized and subsequently solved the structure of SIK3 in complex with HG-9-91-01, a potent SIK inhibitor. To enable further SIK3-inhibitor complex structures we identified an antibody fragment that facilitated crystallization and enabled a robust protocol suitable for structure-based drug design. The structures reveal SIK3 in an active conformation, where the ubiquitin-associated domain is shown to provide further stabilization to this active conformation. We present four pharmacologically relevant and distinct SIK3-inhibitor complexes. These detail the key interaction for each ligand and reveal how different regions of the ATP site are engaged by the different inhibitors to achieve high affinity. Notably, the structure of SIK3 in complex with a SIK3 specific inhibitor offers insights into isoform selectivity.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Crystallography, X-Ray , Protein Binding , Protein Conformation , Models, Molecular , Protein Kinases
8.
Structure ; 32(6): 795-811.e6, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38531363

ABSTRACT

GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.


Subject(s)
Protein Binding , Protein Serine-Threonine Kinases , RNA, Transfer , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , RNA, Transfer/metabolism , RNA, Transfer/chemistry , Binding Sites , Protein Domains , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Cryoelectron Microscopy , Molecular Docking Simulation , Models, Molecular , Adenosine Triphosphate/metabolism , Saccharomyces cerevisiae/metabolism , Humans , Histidine/metabolism , Histidine/chemistry , Phosphorylation
9.
Physiol Plant ; 176(1): e14155, 2024.
Article in English | MEDLINE | ID: mdl-38342490

ABSTRACT

Leucine-rich repeat receptor kinases (LRR-RKs) play a pivotal role in diverse aspects of growth, development, and immunity in plants by sensing extracellular signals. Typically, LRR-RKs are activated through the ligand-induced interaction with a SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) coreceptor, triggering downstream signaling. ROOT MERISTEM GROWTH FACTOR1 (RGF1) INSENSITIVEs (RGIs) LRR-RLK receptors promote primary root meristem activity while inhibiting lateral root (LR) development in response to RGF peptide. In this study, we employed rapamycin-induced dimerization (RiD) and BAK1-INTERACTING RECEPTOR-LIKE KINASE3 (BIR3) chimera approaches to explore the gain-of-function of RGI1, RGI4, and RGI5. Rapamycin induced the association of cytosolic kinase domains (CKDs) of RGI1 and the BAK1 coreceptor, activating both mitogen-activated protein kinase 3 (MPK3) and MPK6. Rapamycin significantly inhibited LR formation in RiD-RGI1/RGI4/RGI5-BAK1 plants. Using transgenic Arabidopsis expressing RGI1CKD fused to the BIR3-LRR chimera under estradiol control, we observed a substantial reduction in LR density upon ß-estradiol treatment. Additionally, we identified a decrease in root gravitropism in BIR3 chimera plants. In contrast, RiD-RGI/BAK1 plants did not exhibit defects in root gravitropism, implying the importance of combinatorial interactions between RGIs and SERK coreceptors in the inhibition of root gravitropism. Constitutive activation of RGIs with BAK1 in RiD-RGI/BAK1 plants by rapamycin treatment resulted in the inhibition of primary root growth, resembling the inhibitory effects observed with high concentrations of phytohormones on primary root elongation. Our findings highlight that the interactions between CKDs of RGIs and BAK1, constitutively induced by rapamycin or BIR3 chimera, efficiently control LR development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/pharmacology , Arabidopsis Proteins/metabolism , Dimerization , Plants/metabolism , Estradiol/metabolism , Estradiol/pharmacology
10.
J Mol Biol ; 436(3): 168433, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38182104

ABSTRACT

The ligand-regulated PAS domains are one of the most diverse signal-integrating domains found in proteins from prokaryotes to humans. By biochemically connecting cellular processes with their environment, PAS domains facilitate an appropriate cellular response. PAS domain-containing Kinase (PASK) is an evolutionarily conserved protein kinase that plays important signaling roles in mammalian stem cells to establish stem cell fate. We have shown that the nuclear translocation of PASK is stimulated by differentiation signaling cues in muscle stem cells. However, the mechanistic basis of the regulation of PASK nucleo-cytoplasmic translocation remains unknown. Here, we show that the PAS-A domain of PASK contains a putative monopartite nuclear localization sequence (NLS) motif. This NLS is inhibited in cells through intramolecular association with a short linear motif, termed the PAS Interacting Motif (PIM), found upstream of the kinase domain. This interaction serves to retain PASK in the cytosol in the absence of signaling cues. Consistent with that, we show that metabolic inputs induce PASK nuclear import, likely by disrupting this association. We suggest that a route for such linkage may occur through the PAS-A ligand binding cavity. We show that PIM recruitment and artificial ligand binding to the PAS-A domain occur at neighboring locations that could facilitate metabolic control of the PAS-PIM interaction. Thus, the intramolecular interaction in PASK integrates metabolic signaling cues for nuclear translocation and could be targeted to control the balance between self-renewal and differentiation in stem cells.


Subject(s)
Nuclear Localization Signals , Protein Serine-Threonine Kinases , Animals , Humans , Active Transport, Cell Nucleus , Cell Differentiation , Ligands , Phosphorylation , Signal Transduction , Nuclear Localization Signals/chemistry , Protein Domains , Protein Serine-Threonine Kinases/chemistry
11.
Pharmacol Res ; 200: 107059, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38216005

ABSTRACT

Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 80 FDA-approved therapeutic agents that target about two dozen different protein kinases and seven of these drugs were approved in 2023. Of the approved drugs, thirteen target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), twenty block nonreceptor protein-tyrosine kinases, and 43 inhibit receptor protein-tyrosine kinases. The data indicate that 69 of these drugs are prescribed for the treatment of neoplasms. Six drugs (abrocitinib, baricitinib, deucravacitinib, ritlecitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, rheumatoid arthritis, psoriasis, alopecia areata, and ulcerative colitis). Of the 80 approved drugs, nearly two dozen are used in the treatment of multiple diseases. The following seven drugs received FDA approval in 2023: capivasertib (HER2-positive breast cancer), fruquintinib (metastatic colorectal cancer), momelotinib (myelofibrosis), pirtobrutinib (mantle cell lymphoma, chronic lymphocytic leukemia, small lymphocytic lymphoma), quizartinib (Flt3-mutant acute myelogenous leukemia), repotrectinib (ROS1-positive lung cancer), and ritlecitinib (alopecia areata). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 80 FDA-approved small molecule protein kinase inhibitors including the molecular weight, number of hydrogen bond donors/acceptors, polar surface area, potency, solubility, lipophilic efficiency, and ligand efficiency.


Subject(s)
Alopecia Areata , Neoplasms , Humans , Adult , Protein Kinase Inhibitors/pharmacology , Alopecia Areata/drug therapy , Protein-Tyrosine Kinases , Proto-Oncogene Proteins , Protein Serine-Threonine Kinases/chemistry , Protein Kinases , Neoplasms/drug therapy , Neoplasms/metabolism
12.
Discov Med ; 36(180): 129-139, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273753

ABSTRACT

BACKGROUND: TANK-binding kinase 1 (TBK1) is an important serine/threonine kinase involved in inflammatory signaling pathways, influencing cellular processes such as proliferation, programmed cell death, autophagy, and immune response regulation. Dysregulation of TBK1 has been linked to cancer progression and neurodegenerative disorders, making it an attractive target for therapeutic development. This study aimed to identify potential TBK1 inhibitors using a structure-based virtual screening approach. METHODS: We conducted a comprehensive screening of the ZINC database to identify compounds with high binding affinity for TBK1, employing molecular docking as the primary selection criterion. The top candidates were then subjected to extensive 200 ns molecular dynamics (MD) simulations to assess the conformational dynamics of TBK1 and the stability of the protein-ligand complexes, with a focus on ZINC02095133 and ZINC02130647. RESULTS: The findings revealed that TBK1 forms stable complexes with ZINC02095133 and ZINC02130647, demonstrating consistent interactions throughout the MD simulations. This suggests that these compounds hold promise as potential lead molecules for future therapies targeting TBK1. CONCLUSIONS: This study identifies ZINC02095133 and ZINC02130647 as promising TBK1 inhibitors with therapeutic potential. However, further experimental validation and optimization are required to develop novel inhibitors for diseased conditions associated with TBK1 signaling. These findings pave the way for future investigations into the clinical utility of these compounds in combating TBK1-related pathologies.


Subject(s)
Neoplasms , Protein Serine-Threonine Kinases , Humans , Molecular Docking Simulation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Molecular Dynamics Simulation , Neoplasms/drug therapy
13.
J Biomol Struct Dyn ; 42(4): 1846-1857, 2024.
Article in English | MEDLINE | ID: mdl-37104027

ABSTRACT

Raf proto-oncogene serine/threonine kinase 1 (RAF1 or c-Raf) is a serine/threonine protein kinase crucial in regulating cell growth, differentiation, and survival. Any disruption or overexpression of RAF1 can result in neoplastic transformation and other disorders such as cardiomyopathy, Noonan syndrome, leopard syndrome, etc. RAF1 has been identified as a potential therapeutic target in drug development against various complex diseases, including cancer, due to its remarkable role in disease progression. Here, we carried out a multitier virtual screening study involving different in-silico approaches to discover potential inhibitors of RAF1. After applying the Lipinski rule of five, we retrieved all phytocompounds from the IMPPAT database based on their physicochemical properties. We performed a molecular docking-based virtual screening and got top hits with the best binding affinity and ligand efficiency. Then we screened out the selected hits using the PAINS filter, ADMET properties, and other druglike features. Eventually, PASS evaluation identifies two phytocompounds, Moracin C and Tectochrysin, with appreciable anti-cancerous properties. Finally, all-atom molecular dynamics simulation (MDS) followed by interaction analysis was performed on the elucidated compounds in complex with RAF1 for 200 ns to investigate their time-evolution dynamics and interaction mechanism. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and Dynamical Cross-Correlation Matrix (DCCM) analyses then followed these results from the simulated trajectories. According to the results, the elucidated compounds stabilize the RAF1 structure and lead to fewer conformational alterations. The results of the current study indicated that Moracin C and Tectochrysin could serve as potential inhibitors of RAF1 after required validation.Communicated by Ramaswamy H. Sarma.


Subject(s)
Benzofurans , Molecular Dynamics Simulation , Protein Serine-Threonine Kinases , Stilbenes , Protein Serine-Threonine Kinases/chemistry , Molecular Docking Simulation , Drug Development , Serine
14.
J Mol Recognit ; 37(1): e3067, 2024 01.
Article in English | MEDLINE | ID: mdl-37956676

ABSTRACT

Mitogen-activated protein kinase 7 (MAPK7) is a serine/threonine protein kinase that belongs to the MAPK family and plays a vital role in various cellular processes such as cell proliferation, differentiation, gene transcription, apoptosis, metabolism, and cell survival. The elevated expression of MAPK7 has been associated with the onset and progression of multiple aggressive tumors in humans, underscoring the potential of targeting MAPK7 pathways in therapeutic research. This pursuit holds promise for the advancement of anticancer drug development by developing potential MAPK7 inhibitors. To look for potential MAPK7 inhibitors, we exploited structure-based virtual screening of natural products from the ZINC database. First, the Lipinski rule of five criteria was used to filter a large library of ~90,000 natural compounds, followed by ADMET and pan-assay interference compounds (PAINS) filters. Then, top hits were chosen based on their strong binding affinity as determined by molecular docking. Further, interaction analysis was performed to find effective and specific compounds that can precisely bind to the binding pocket of MAPK7. Consequently, two compounds, ZINC12296700 and ZINC02123081, exhibited significant binding affinity and demonstrated excellent drug-like properties. All-atom molecular dynamics simulations for 200 ns confirmed the stability of MAPK7-ZINC12296700 and MAPK7-ZINC02123081 docked complexes. According to the molecular mechanics Poisson-Boltzmann surface area investigation, the binding affinities of both complexes were considerable. Overall, the result suggests that ZINC12296700 and ZINC02123081 might be used as promising leads to develop novel MAPK7 inhibitors. Since these compounds would interfere with the kinase activity of MAPK7, therefore, may be implemented to control cell growth and proliferation in cancer after required validations.


Subject(s)
Biological Products , Humans , Biological Products/pharmacology , Biological Products/chemistry , Mitogen-Activated Protein Kinase 7/genetics , Mitogen-Activated Protein Kinase 7/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Serine-Threonine Kinases/chemistry , Protein Kinase Inhibitors/chemistry
15.
J Biol Chem ; 300(1): 105559, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097187

ABSTRACT

Bub1 is a conserved mitotic kinase involved in signaling of the spindle assembly checkpoint. Multiple phosphorylation sites on Bub1 have been characterized, yet it is challenging to understand the interplay between the multiple phosphorylation sites due to the limited availability of phosphospecific antibodies. In addition, phosphoregulation of Bub1 in Schizosaccharomyces pombe is poorly understood. Here we report the identification of a new Mph1/Mps1-mediated phosphorylation site, i.e., Ser532, of Bub1 in Schizosaccharomyces pombe. A phosphospecific antibody against phosphorylated Bub1-Ser532 was developed. Using the phosphospecific antibody, we demonstrated that phosphorylation of Bub1-Ser352 was mediated specifically by Mph1/Mps1 and took place during early mitosis. Moreover, live-cell microscopy showed that inhibition of the phosphorylation of Bub1 at Ser532 impaired the localization of Bub1, Mad1, and Mad2 to the kinetochore. In addition, inhibition of the phosphorylation of Bub1 at Ser532 caused anaphase B lagging chromosomes. Hence, our study constitutes a model in which Mph1/Mps1-mediated phosphorylation of fission yeast Bub1 promotes proper kinetochore localization of Bub1 and faithful chromosome segregation.


Subject(s)
Chromosome Segregation , Kinetochores , Protein Serine-Threonine Kinases , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Signal Transduction , Anaphase , Antibodies, Phospho-Specific/immunology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Kinetochores/metabolism , Mitosis , Phosphorylation , Phosphoserine/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Protein Serine-Threonine Kinases/metabolism , Protein Transport , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/immunology , Schizosaccharomyces pombe Proteins/metabolism , Spindle Apparatus/metabolism
16.
Drug Res (Stuttg) ; 74(2): 81-88, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134918

ABSTRACT

BACKGROUND: Endoplasmic Reticulum (ER) stress and Unfolded Protein Response (UPR) play a key role in cancer progression. The aggregation of incorrectly folded proteins in the ER generates ER stress, which in turn activates the UPR as an adaptive mechanism to fix ER proteostasis. Inositol-requiring enzyme 1 (IRE1) is the most evolutionary conserved ER stress sensor, which plays a pro-tumoral role in various cancers. Targeting its' active sites is one of the most practical approaches for the treatment of cancers. OBJECTIVE: In this study, we aimed to use the structure of 4µ8C as a template to produce newly designed compounds as IRE1 inhibitors. METHODS: Various functional groups were added to the 4µ8C, and their binding affinity to the target sites was assessed by conducting a covalent molecular docking study. The potential of the designed compound for further in vitro and in vivo studies was evaluated using ADMET analysis. RESULTS: Based on the obtained results, the addition of hydroxyl groups to 4µ8C enhanced the binding affinity of the designed compound to the target efficiently. Compound 17, which was constructed by the addition of one hydroxyl group to the structure of 4µ8C, can construct a strong covalent bond with Lys907. The outcomes of ADMET analysis indicated that compound 17 could be considered a drug-like molecule. CONCLUSION: Our results revealed that designed compound 17 could inhibit IRE1 activity. Therefore, this designed compound is a remarkable inhibitor of IRE1 and introduces a promising therapeutic strategy for cancer treatment.


Subject(s)
Iohexol/analogs & derivatives , Neoplasms , Protein Serine-Threonine Kinases , Molecular Docking Simulation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoplasmic Reticulum Stress , Unfolded Protein Response , Neoplasms/drug therapy
17.
Cell Rep ; 42(12): 113535, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38060450

ABSTRACT

The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.


Subject(s)
Protein Serine-Threonine Kinases , Humans , Animals , Mice , Cell Line , Mice, Inbred C57BL , Male , Female , Epinephrine/pharmacology , Enzyme Activation/drug effects , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Gene Deletion , Colforsin/pharmacology , Insulin/metabolism , Phosphorylation/drug effects , Hippo Signaling Pathway/drug effects , Hippo Signaling Pathway/genetics
18.
Nat Commun ; 14(1): 4797, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558661

ABSTRACT

The human leucine-rich repeat kinases (LRRKs), LRRK1 and LRRK2 are large and unusually complex multi-domain kinases, which regulate fundamental cellular processes and have been implicated in human disease. Structures of LRRK2 have recently been determined, but the structure and molecular mechanisms regulating the activity of the LRRK1 as well as differences in the regulation of LRRK1 and LRRK2 remain unclear. Here, we report a cryo-EM structure of the LRRK1 monomer and a lower-resolution cryo-EM map of the LRRK1 dimer. The monomer structure, in which the kinase is in an inactive conformation, reveals key interdomain interfaces that control kinase activity as we validate experimentally. Both the LRRK1 monomer and dimer are structurally distinct compared to LRRK2. Overall, our results provide structural insights into the activation of the human LRRKs, which advance our understanding of their physiological and pathological roles.


Subject(s)
Leucine , Protein Serine-Threonine Kinases , Humans , Phosphorylation , Protein Serine-Threonine Kinases/chemistry
19.
Protein Sci ; 32(9): e4750, 2023 09.
Article in English | MEDLINE | ID: mdl-37572333

ABSTRACT

Control of eukaryotic cellular function is heavily reliant on the phosphorylation of proteins at specific amino acid residues, such as serine, threonine, tyrosine, and histidine. Protein kinases that are responsible for this process comprise one of the largest families of evolutionarily related proteins. Dysregulation of protein kinase signaling pathways is a frequent cause of a large variety of human diseases including cancer, autoimmune, neurodegenerative, and cardiovascular disorders. In this study, we mapped all pathogenic mutations in 497 human protein kinase domains from the ClinVar database to the reference structure of Aurora kinase A (AURKA) and grouped them by the relevance to the disease type. Our study revealed that the majority of mutation hotspots associated with cancer are situated within the catalytic and activation loops of the kinase domain, whereas non-cancer-related hotspots tend to be located outside of these regions. Additionally, we identified a hotspot at residue R371 of the AURKA structure that has the highest number of exclusively non-cancer-related pathogenic mutations (21) and has not been previously discussed.


Subject(s)
Protein Kinases , Protein Serine-Threonine Kinases , Humans , Protein Kinases/chemistry , Protein Serine-Threonine Kinases/chemistry , Aurora Kinase A/genetics , Aurora Kinase A/chemistry , Aurora Kinase A/metabolism , Models, Molecular , Phosphorylation , Mutation
20.
Int J Biol Macromol ; 245: 125364, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37315665

ABSTRACT

Microtubule affinity regulating kinase 4 (MARK4) is known to hyperphosphorylate tau protein, which subsequently causes Alzheimer's disease (AD). MARK4 is a well-validated drug target for AD; thus, we employed its structural features to discover potential inhibitors. On the other hand, complementary and alternative medicines (CAMs) have been used for the treatment of numerous diseases with little side effects. In this regard, Bacopa monnieri extracts have been extensively used to treat neurological disorders because of their neuroprotective roles. The plant extract is used as a memory enhancer and a brain tonic. Bacopaside II is a major component of Bacopa monnieri; thus, we studied its inhibitory effects and binding affinity towards the MARK4. Bacopaside II show a considerable binding affinity for MARK4 (K = 107 M-1) and inhibited kinase activity with an IC50 value of 5.4 µM. To get atomistic insights into the binding mechanism, we performed Molecular dynamics (MD) simulation studies for 100 ns. Bacopaside II binds strongly to the active site pocket residues of MARK4 and a number of hydrogen bonds remain stable throughout the MD trajectory. Our findings provide the basis for the therapeutic implication of Bacopaside and its derivatives in MARK4-related neurodegenerative diseases, especially AD and neuroinflammation.


Subject(s)
Alzheimer Disease , Saponins , Humans , Alzheimer Disease/drug therapy , Saponins/pharmacology , Protein Serine-Threonine Kinases/chemistry , Microtubules
SELECTION OF CITATIONS
SEARCH DETAIL
...