Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.460
Filter
1.
Biomolecules ; 14(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38785981

ABSTRACT

The quality prediction of quaternary structure models of a protein complex, in the absence of its true structure, is known as the Estimation of Model Accuracy (EMA). EMA is useful for ranking predicted protein complex structures and using them appropriately in biomedical research, such as protein-protein interaction studies, protein design, and drug discovery. With the advent of more accurate protein complex (multimer) prediction tools, such as AlphaFold2-Multimer and ESMFold, the estimation of the accuracy of protein complex structures has attracted increasing attention. Many deep learning methods have been developed to tackle this problem; however, there is a noticeable absence of a comprehensive overview of these methods to facilitate future development. Addressing this gap, we present a review of deep learning EMA methods for protein complex structures developed in the past several years, analyzing their methodologies, data and feature construction. We also provide a prospective summary of some potential new developments for further improving the accuracy of the EMA methods.


Subject(s)
Deep Learning , Protein Structure, Quaternary , Proteins , Proteins/chemistry , Models, Molecular , Humans
2.
Nat Commun ; 15(1): 3775, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710701

ABSTRACT

SAMHD1 regulates cellular nucleotide homeostasis, controlling dNTP levels by catalysing their hydrolysis into 2'-deoxynucleosides and triphosphate. In differentiated CD4+ macrophage and resting T-cells SAMHD1 activity results in the inhibition of HIV-1 infection through a dNTP blockade. In cancer, SAMHD1 desensitizes cells to nucleoside-analogue chemotherapies. Here we employ time-resolved cryogenic-EM imaging and single-particle analysis to visualise assembly, allostery and catalysis by this multi-subunit enzyme. Our observations reveal how dynamic conformational changes in the SAMHD1 quaternary structure drive the catalytic cycle. We capture five states at high-resolution in a live catalytic reaction, revealing how allosteric activators support assembly of a stable SAMHD1 tetrameric core and how catalysis is driven by the opening and closing of active sites through pairwise coupling of active sites and order-disorder transitions in regulatory domains. This direct visualisation of enzyme catalysis dynamics within an allostery-stabilised platform sets a precedent for mechanistic studies into the regulation of multi-subunit enzymes.


Subject(s)
Catalytic Domain , Cryoelectron Microscopy , SAM Domain and HD Domain-Containing Protein 1 , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/chemistry , SAM Domain and HD Domain-Containing Protein 1/genetics , Allosteric Regulation , Humans , Protein Structure, Quaternary , Catalysis , Biocatalysis , HIV-1/metabolism , Models, Molecular
3.
Biochim Biophys Acta Gen Subj ; 1868(6): 130618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621595

ABSTRACT

The oligomerization of proteins is an important biological control mechanism and has several functions in activity and stability of enzymes, structural proteins, ion channels and transcription factors. The determination of the relevant oligomeric states in terms of geometry (spatial extent), oligomer size (monomer or dimer or oligomer) and affinity (amounts of monomer, dimer and oligomer) is a challenging biophysical problem. Förster resonance energy transfer and fluorescence fluctuation spectroscopy are powerful tools that are sensitive to proximity and oligomerization respectively. Here it is proposed to combine image-based lifetime-detected Forster resonance energy transfer with image correlation spectroscopy and photobleaching to determine distances, oligomer sizes and oligomer distributions. Simulations for simple oligomeric forms illustrate the potential to improve the discrimination between different quaternary states in the cellular milieu.


Subject(s)
Fluorescence Resonance Energy Transfer , Photobleaching , Fluorescence Resonance Energy Transfer/methods , Protein Multimerization , Protein Structure, Quaternary , Humans , Computer Simulation
4.
Nature ; 628(8008): 657-663, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509367

ABSTRACT

In response to pathogen infection, gasdermin (GSDM) proteins form membrane pores that induce a host cell death process called pyroptosis1-3. Studies of human and mouse GSDM pores have revealed the functions and architectures of assemblies comprising 24 to 33 protomers4-9, but the mechanism and evolutionary origin of membrane targeting and GSDM pore formation remain unknown. Here we determine a structure of a bacterial GSDM (bGSDM) pore and define a conserved mechanism of pore assembly. Engineering a panel of bGSDMs for site-specific proteolytic activation, we demonstrate that diverse bGSDMs form distinct pore sizes that range from smaller mammalian-like assemblies to exceptionally large pores containing more than 50 protomers. We determine a cryo-electron microscopy structure of a Vitiosangium bGSDM in an active 'slinky'-like oligomeric conformation and analyse bGSDM pores in a native lipid environment to create an atomic-level model of a full 52-mer bGSDM pore. Combining our structural analysis with molecular dynamics simulations and cellular assays, our results support a stepwise model of GSDM pore assembly and suggest that a covalently bound palmitoyl can leave a hydrophobic sheath and insert into the membrane before formation of the membrane-spanning ß-strand regions. These results reveal the diversity of GSDM pores found in nature and explain the function of an ancient post-translational modification in enabling programmed host cell death.


Subject(s)
Gasdermins , Myxococcales , Cryoelectron Microscopy , Gasdermins/chemistry , Gasdermins/metabolism , Gasdermins/ultrastructure , Hydrophobic and Hydrophilic Interactions , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Molecular Dynamics Simulation , Myxococcales/chemistry , Myxococcales/cytology , Myxococcales/ultrastructure , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/metabolism , Proteolysis , Pyroptosis
5.
Nature ; 629(8011): 467-473, 2024 May.
Article in English | MEDLINE | ID: mdl-38471529

ABSTRACT

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Subject(s)
Bacillus cereus , Bacterial Proteins , Bacteriophages , Cryoelectron Microscopy , Immunity, Innate , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/ultrastructure , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Apoproteins/chemistry , Apoproteins/immunology , Apoproteins/metabolism , Apoproteins/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Bacteriophages/immunology , DNA/metabolism , DNA/chemistry , DNA Cleavage , Magnesium/chemistry , Magnesium/metabolism , Models, Molecular , Protein Binding , Protein Domains , Microbial Viability , Bacillus cereus/chemistry , Bacillus cereus/immunology , Bacillus cereus/metabolism , Bacillus cereus/ultrastructure , Protein Structure, Quaternary , DNA Primase/chemistry , DNA Primase/metabolism , DNA Primase/ultrastructure , DNA Topoisomerases/chemistry , DNA Topoisomerases/metabolism , DNA Topoisomerases/ultrastructure
6.
J Biol Chem ; 300(4): 107166, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490435

ABSTRACT

Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader replication factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the Escherichia coli clamp loader at high resolution using cryo-electron microscopy. We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how the clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.


Subject(s)
DNA Replication , Escherichia coli , Cryoelectron Microscopy , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Protein Conformation , Replication Protein C/metabolism , Replication Protein C/chemistry , Replication Protein C/genetics , Models, Molecular , Protein Structure, Quaternary
7.
J Biol Chem ; 300(4): 107197, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508314

ABSTRACT

Cell polarity oscillations in Myxococcus xanthus motility are driven by a prokaryotic small Ras-like GTPase, mutual gliding protein A (MglA), which switches from one cell pole to the other in response to extracellular signals. MglA dynamics is regulated by MglB, which functions both as a GTPase activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. With an aim to dissect the asymmetric role of the two MglB protomers in the dual GAP and GEF activities, we generated a functional MglAB complex by coexpressing MglB with a linked construct of MglA and MglB. This strategy enabled us to generate mutations of individual MglB protomers (MglB1 or MglB2 linked to MglA) and delineate their role in GEF and GAP activities. We establish that the C-terminal helix of MglB1, but not MglB2, stimulates nucleotide exchange through a site away from the nucleotide-binding pocket, confirming an allosteric mechanism. Interaction between the N-terminal ß-strand of MglB1 and ß0 of MglA is essential for the optimal GEF activity of MglB. Specific residues of MglB2, which interact with Switch-I of MglA, partially contribute to its GAP activity. Thus, the role of the MglB2 protomer in the GAP activity of MglB is limited to restricting the conformation of MglA active site loops. The direct demonstration of the allosteric mechanism of GEF action provides us new insights into the regulation of small Ras-like GTPases, a feature potentially present in many uncharacterized GEFs.


Subject(s)
Bacterial Proteins , GTPase-Activating Proteins , Myxococcus xanthus , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Enzyme Activation , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Myxococcus xanthus/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/enzymology , Protein Multimerization , Models, Molecular , Protein Structure, Quaternary
8.
Adv Mater ; 36(19): e2308837, 2024 May.
Article in English | MEDLINE | ID: mdl-38351715

ABSTRACT

As large molecular tertiary structures, some proteins can act as small robots that find, bind, and chaperone target protein clients, showing the potential to serve as smart building blocks in self-assembly fields. Instead of using such intrinsic functions, most self-assembly methodologies for proteins aim for de novo-designed structures with accurate geometric assemblies, which can limit procedural flexibility. Here, a strategy enabling polymorphic clustering of quaternary proteins, exhibiting simplicity and flexibility of self-assembling paths for proteins in forming monodisperse quaternary cage particles is presented. It is proposed that the enzyme protomer DegQ, previously solved at low resolution, may potentially be usable as a threefold symmetric building block, which can form polyhedral cages incorporated by the chaperone action of DegQ in the presence of protein clients. To obtain highly monodisperse cage particles, soft, and hence, less resistive client proteins, which can program the inherent chaperone activity of DegQ to efficient formations of polymorphic cages, depending on the size of clients are utilized. By reconstructing the atomic resolution cryogenic electron microscopy DegQ structures using obtained 12- and 24-meric clusters, the polymorphic clustering of DegQ enzymes is validated in terms of soft and rigid domains, which will provide effective routes for protein self-assemblies with procedural flexibility.


Subject(s)
Protein Structure, Quaternary , Models, Molecular , Cryoelectron Microscopy , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism
9.
Toxins (Basel) ; 16(2)2024 01 23.
Article in English | MEDLINE | ID: mdl-38393141

ABSTRACT

Naja nivea (N. nivea) is classed as a category one snake by the World Health Organization since its envenomation causes high levels of mortality and disability annually. Despite this, there has been little research into the venom composition of N. nivea, with only one full venom proteome published to date. Our current study separated N. nivea venom using size exclusion chromatography before utilizing a traditional bottom-up proteomics approach to unravel the composition of the venom proteome. As expected by its clinical presentation, N. nivea venom was found to consist mainly of neurotoxins, with three-finger toxins (3FTx), making up 76.01% of the total venom proteome. Additionally, cysteine-rich secretory proteins (CRISPs), vespryns (VESPs), cobra venom factors (CVFs), 5'-nucleotidases (5'NUCs), nerve growth factors (NGFs), phospholipase A2s (PLA2), acetylcholinesterases (AChEs), Kunitz-type serine protease inhibitor (KUN), phosphodiesterases (PDEs), L-amino acid oxidases (LAAOs), hydrolases (HYDs), snake venom metalloproteinases (SVMPs), and snake venom serine protease (SVSP) toxins were also identified in decreasing order of abundance. Interestingly, contrary to previous reports, we find PLA2 toxins in N. nivea venom. This highlights the importance of repeatedly profiling the venom of the same species to account for intra-species variation. Additionally, we report the first evidence of covalent protein complexes in N. nivea venom, which likely contribute to the potency of this venom.


Subject(s)
Naja , Proteomics , Toxins, Biological , Venomous Snakes , Proteomics/methods , Proteome/analysis , Protein Structure, Quaternary , Elapid Venoms/chemistry , Toxins, Biological/analysis , Snake Venoms , Phospholipases A2/metabolism , Antivenins/pharmacology
10.
Science ; 383(6685): 870-876, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38305685

ABSTRACT

Microtubules are essential for intracellular organization and chromosome segregation. They are nucleated by the γ-tubulin ring complex (γTuRC). However, isolated vertebrate γTuRC adopts an open conformation that deviates from the microtubule structure, raising the question of the nucleation mechanism. In this study, we determined cryo-electron microscopy structures of human γTuRC bound to a nascent microtubule. Structural changes of the complex into a closed conformation ensure that γTuRC templates the 13-protofilament microtubules that exist in human cells. Closure is mediated by a latch that interacts with incorporating tubulin, making it part of the closing mechanism. Further rearrangements involve all γTuRC subunits and the removal of the actin-containing luminal bridge. Our proposed mechanism of microtubule nucleation by human γTuRC relies on large-scale structural changes that are likely the target of regulation in cells.


Subject(s)
Microtubules , Tubulin , Humans , Cryoelectron Microscopy , Microtubules/chemistry , Protein Structure, Quaternary , Tubulin/metabolism
11.
J Biol Chem ; 300(3): 105688, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280431

ABSTRACT

Cytochrome b5 (b5) is known to stimulate some catalytic activities of cytochrome P450 (P450, CYP) enzymes, although mechanisms still need to be defined. The reactions most strongly enhanced by b5 are the 17,20-lyase reactions of P450 17A1 involved in steroid biosynthesis. We had previously used a fluorescently labeled human b5 variant (Alexa 488-T70C-b5) to characterize human P450 17A1-b5 interactions, but subsequent proteomic analyses indicated that lysines in b5 were also modified with Alexa 488 maleimide in addition to Cys-70, due to disulfide dimerization of the T70C mutant. A series of b5 variants were constructed with Cys replacements for the identified lysine residues and labeled with the dye. Fluorescence attenuation and the function of b5 in the steroid lyase reaction depended on the modified position. Apo-b5 (devoid of heme group) studies revealed the lack of involvement of the b5 heme in the fluorescence attenuation. A structural model of b5 with P450 17A1 was predicted using AlphaFold-Multimer algorithms/Rosetta docking, based upon the individual structures, which predicted several new contacts not previously reported, that is, interactions of b5 Glu-48:17A1 Arg-347, b5 Glu-49:17A1 Arg-449, b5 Asp-65:17A1 Arg-126, b5 Asp-65:17A1 Arg-125, and b5 Glu-61:17A1 Lys-91. Fluorescence polarization assays with two modified b5 variants yielded Kd values (for b5-P450 17A1) of 120 to 380 nM, the best estimate of binding affinity. We conclude that both monomeric and dimeric b5 can bind to P450 17A1 and stimulate activity. Results with the mutants indicate that several Lys residues in b5 are sensitive to the interaction with P450 17A1, including Lys-88 and Lys-91.


Subject(s)
Cytochromes b5 , Models, Molecular , Steroid 17-alpha-Hydroxylase , Humans , Cytochromes b5/genetics , Cytochromes b5/metabolism , Fluorescence , Heme , Proteomics , Steroid 17-alpha-Hydroxylase/chemistry , Steroid 17-alpha-Hydroxylase/metabolism , Protein Binding/genetics , Enzyme Activation/genetics , Protein Structure, Quaternary , Mutation
12.
J Biol Chem ; 300(2): 105635, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199576

ABSTRACT

Microbial epoxide hydrolases, cis-epoxysuccinate hydrolases (CESHs), have been utilized for commercial production of enantiomerically pure L(+)- and D(-)-tartaric acids for decades. However, the stereo-catalytic mechanism of CESH producing L(+)-tartaric acid (CESH[L]) remains unclear. Herein, the crystal structures of two CESH[L]s in ligand-free, product-complexed, and catalytic intermediate forms were determined. These structures revealed the unique specific binding mode for the mirror-symmetric substrate, an active catalytic triad consisting of Asp-His-Glu, and an arginine providing a proton to the oxirane oxygen to facilitate the epoxide ring-opening reaction, which has been pursued for decades. These results provide the structural basis for the rational engineering of these industrial biocatalysts.


Subject(s)
Biocatalysis , Epoxide Hydrolases , Hydrolases , Epoxide Hydrolases/metabolism , Hydrolases/chemistry , Hydrolases/genetics , Hydrolases/metabolism , Tartrates/metabolism , Models, Molecular , Protein Structure, Tertiary , Protein Structure, Quaternary
13.
J Biol Chem ; 300(2): 105639, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199565

ABSTRACT

Translation elongation factor 1A (eEF1A) is an essential and highly conserved protein required for protein synthesis in eukaryotes. In both Saccharomyces cerevisiae and human, five different methyltransferases methylate specific residues on eEF1A, making eEF1A the eukaryotic protein targeted by the highest number of dedicated methyltransferases after histone H3. eEF1A methyltransferases are highly selective enzymes, only targeting eEF1A and each targeting just one or two specific residues in eEF1A. However, the mechanism of this selectivity remains poorly understood. To reveal how S. cerevisiae elongation factor methyltransferase 4 (Efm4) specifically methylates eEF1A at K316, we have used AlphaFold-Multimer modeling in combination with crosslinking mass spectrometry (XL-MS) and enzyme mutagenesis. We find that a unique beta-hairpin motif, which extends out from the core methyltransferase fold, is important for the methylation of eEF1A K316 in vitro. An alanine mutation of a single residue on this beta-hairpin, F212, significantly reduces Efm4 activity in vitro and in yeast cells. We show that the equivalent residue in human eEF1A-KMT2 (METTL10), F220, is also important for its activity towards eEF1A in vitro. We further show that the eEF1A guanine nucleotide exchange factor, eEF1Bα, inhibits Efm4 methylation of eEF1A in vitro, likely due to competitive binding. Lastly, we find that phosphorylation of eEF1A at S314 negatively crosstalks with Efm4-mediated methylation of K316. Our findings demonstrate how protein methyltransferases can be highly selective towards a single residue on a single protein in the cell.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Methylation , Methyltransferases/metabolism , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/chemistry , Peptide Elongation Factor 1/metabolism , Phosphorylation , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Models, Molecular , Protein Structure, Tertiary , Protein Structure, Quaternary
14.
J Biol Chem ; 300(2): 105642, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199566

ABSTRACT

Imine reductases (IREDs) and reductive aminases have been used in the synthesis of chiral amine products for drug manufacturing; however, little is known about their biological contexts. Here we employ structural studies and site-directed mutagenesis to interrogate the mechanism of the IRED RedE from the biosynthetic pathway to the indolocarbazole natural product reductasporine. Cocrystal structures with the substrate-mimic arcyriaflavin A reveal an extended active site cleft capable of binding two indolocarbazole molecules. Site-directed mutagenesis of a conserved aspartate in the primary binding site reveals a new role for this residue in anchoring the substrate above the NADPH cofactor. Variants targeting the secondary binding site greatly reduce catalytic efficiency, while accumulating oxidized side-products. As indolocarbazole biosynthetic intermediates are susceptible to spontaneous oxidation, we propose the secondary site acts to protect against autooxidation, and the primary site drives catalysis through precise substrate orientation and desolvation effects. The structure of RedE with its extended active site can be the starting point as a new scaffold for engineering IREDs and reductive aminases to intercept large substrates relevant to industrial applications.


Subject(s)
Imines , Oxidoreductases , Binding Sites , Catalysis , Crystallography, X-Ray , Imines/chemistry , Imines/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Protein Structure, Tertiary , Protein Structure, Quaternary , Models, Molecular
15.
J Biol Chem ; 300(1): 105539, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072054

ABSTRACT

L-ergothioneine is widely distributed among various microbes to regulate their physiology and pathogenicity within complex environments. One of the key steps in the ergothioneine-biosynthesis pathway, the C-S bond cleavage reaction, uses the pyridoxal 5'-phosphate dependent C-S lyase to produce the final product L-ergothioneine. Here, we present the crystallographic structure of the ergothioneine-biosynthesis C-S lyase EgtE from Mycobacterium smegmatis (MsEgtE) represents the first published structure of ergothioneine-biosynthesis C-S lyases in bacteria and shows the effects of active site residues on the enzymatic reaction. The MsEgtE and the previously reported ergothioneine-biosynthesis C-S lyase Egt2 from Neurospora crassa (NcEgt2) fold similarly. However, discrepancies arise in terms of substrate recognition, as observed through sequence and structure comparison of MsEgtE and NcEgt2. The structural-based sequence alignment of the ergothioneine-biosynthesis C-S lyase from fungi and bacteria shows clear distinctions among the recognized substrate residues, but Arg348 is critical and an extremely conserved residue for substrate recognition. The α14 helix is exclusively found in the bacteria EgtE, which represent the most significant difference between bacteria EgtE and fungi Egt2, possibly resulting from the convergent evolution of bacteria and fungi.


Subject(s)
Ergothioneine , Lyases , Mycobacterium , Ergothioneine/chemistry , Ergothioneine/metabolism , Fungi/metabolism , Lyases/chemistry , Lyases/metabolism , Mycobacterium/metabolism , Mycobacterium smegmatis/chemistry , Mycobacterium smegmatis/enzymology , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary
16.
Immunotherapy ; 16(1): 21-28, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38054258

ABSTRACT

Aim: To compare the protein-protein interactions of antibodies targeting PD-1 and its ligand (PD-L1) with their targets in an attempt to explain the antibodies' binding affinity. Materials & methods: The structural features of complexes between pembrolizumab, nivolumab, durvalumab, atezolizumab, avelumab and PD-1/PD-L1 are described, with the use of software and based on crystallographic data. Results: Pembrolizumab has more structural features, including the number and type of the bonds and total binding surface area, which could rationalize its different clinical behavior compared with nivolumab. Similarly, protein-protein interactions with PD-L1 differ among durvalumab, atezolizumab and avelumab. Conclusion: Differential protein-protein interactions between antibodies and PD-1/PD-L1 may indicate differential clinical activity; however, further research is needed to provide evidence.


This study looked at different immunotherapy drugs used to treat cancer. These drugs bind to two different proteins, called PD-1 and PD-L1, that are part of our immune system. These proteins usually act as brakes in our immune system. The drugs block the brakes, which boosts the immune system and improves the immune defense against cancer. Using computer images, the authors compared how each drug binds to PD-1/PD-L1. The results showed that these drugs bind to PD-1 and PD-L1 with different chemical bonds. These bonds can be smaller or larger depending on the drug. The drugs' different chemical bonds with PD-1/PD-L1 might show that they do not act exactly the same when they are given to patients. However, further studies are needed for more information.


Subject(s)
Antibodies, Monoclonal, Humanized , B7-H1 Antigen , Models, Molecular , Programmed Cell Death 1 Receptor , B7-H1 Antigen/chemistry , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/chemistry , Programmed Cell Death 1 Receptor/metabolism , Protein Binding , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/metabolism , Protein Structure, Quaternary , Crystallography, X-Ray , Computer Simulation , Humans
17.
J Biol Chem ; 300(1): 105464, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979917

ABSTRACT

Neuronal nitric oxide synthase (nNOS) is a homodimeric cytochrome P450-like enzyme that catalyzes the conversion of L-arginine to nitric oxide in the presence of NADPH and molecular oxygen. The binding of calmodulin (CaM) to a linker region between the FAD/FMN-containing reductase domain, and the heme-containing oxygenase domain is needed for electron transfer reactions, reduction of the heme, and NO synthesis. Due to the dynamic nature of the reductase domain and low resolution of available full-length structures, the exact conformation of the CaM-bound active complex during heme reduction is still unresolved. Interestingly, hydrogen-deuterium exchange and mass spectrometry studies revealed interactions of the FMN domain and CaM with the oxygenase domain for iNOS, but not nNOS. This finding prompted us to utilize covalent crosslinking and mass spectrometry to clarify interactions of CaM with nNOS. Specifically, MS-cleavable bifunctional crosslinker disuccinimidyl dibutyric urea was used to identify thirteen unique crosslinks between CaM and nNOS as well as 61 crosslinks within the nNOS. The crosslinks provided evidence for CaM interaction with the oxygenase and reductase domain residues as well as interactions of the FMN domain with the oxygenase dimer. Cryo-EM studies, which gave a high-resolution model of the oxygenase domain, along with crosslink-guided docking provided a model of nNOS that brings the FMN within 15 Å of the heme in support for a more compact conformation than previously observed. These studies also point to the utility of covalent crosslinking and mass spectrometry in capturing transient dynamic conformations that may not be captured by hydrogen-deuterium exchange and mass spectrometry experiments.


Subject(s)
Calmodulin , Cross-Linking Reagents , Models, Molecular , Nitric Oxide Synthase Type I , Calmodulin/metabolism , Heme/metabolism , Mass Spectrometry , Nitric Oxide Synthase Type I/metabolism , Oxygenases/metabolism , Cross-Linking Reagents/chemistry , Calcium/chemistry , Protein Structure, Quaternary , Protein Binding , Cryoelectron Microscopy
18.
Biochemistry ; 63(2): 194-201, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38154792

ABSTRACT

The protein tau misfolds into disease-specific fibrillar structures in more than 20 neurodegenerative diseases collectively referred to as tauopathies. To understand and prevent disease-specific mechanisms of filament formation, in vitro models for aggregation that robustly yield these different end point structures will be necessary. Here, we used cryo-electron microscopy (cryo-EM) to reconstruct fibril polymorphs taken on by residues 297-391 of tau under conditions previously shown to give rise to the core structure found in Alzheimer's disease (AD). While we were able to reconstitute the AD tau core fold, the proportion of these paired helical filaments (PHFs) was highly variable, and a majority of filaments were composed of PHFs with an additional identical C-shaped protofilament attached near the PHF interface, termed triple helical filaments (THFs). Since the impact of filament layer quaternary structure on the biological properties of tau and other amyloid filaments is not known, the applications for samples of this morphology are presently uncertain. We further demonstrate the variation in the proportion of PHFs and PHF-like fibrils compared to other morphologies as a function of shaking time and AD polymorph-favoring cofactor concentration. This variation in polymorph abundance, even under identical experimental conditions, highlights the variation that can arise both within a lab and in different laboratory settings when reconstituting specific fibril polymorphs in vitro.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , Alzheimer Disease/metabolism , Cryoelectron Microscopy , Neurofibrillary Tangles/chemistry , tau Proteins/chemistry , tau Proteins/genetics , Protein Structure, Quaternary
19.
J Biol Chem ; 300(2): 105608, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159849

ABSTRACT

Phototransduction in retinal rods occurs when the G protein-coupled photoreceptor rhodopsin triggers the activation of phosphodiesterase 6 (PDE6) by GTP-bound alpha subunits of the G protein transducin (GαT). Recently, we presented a cryo-EM structure for a complex between two GTP-bound recombinant GαT subunits and native PDE6, that included a bivalent antibody bound to the C-terminal ends of GαT and the inhibitor vardenafil occupying the active sites on the PDEα and PDEß subunits. We proposed GαT-activated PDE6 by inducing a striking reorientation of the PDEγ subunits away from the catalytic sites. However, questions remained including whether in the absence of the antibody GαT binds to PDE6 in a similar manner as observed when the antibody is present, does GαT activate PDE6 by enabling the substrate cGMP to access the catalytic sites, and how does the lipid membrane enhance PDE6 activation? Here, we demonstrate that 2:1 GαT-PDE6 complexes form with either recombinant or retinal GαT in the absence of the GαT antibody. We show that GαT binding is not necessary for cGMP nor competitive inhibitors to access the active sites; instead, occupancy of the substrate binding sites enables GαT to bind and reposition the PDE6γ subunits to promote catalytic activity. Moreover, we demonstrate by reconstituting GαT-stimulated PDE6 activity in lipid bilayer nanodiscs that the membrane-induced enhancement results from an increase in the apparent binding affinity of GαT for PDE6. These findings provide new insights into how the retinal G protein stimulates rapid catalytic turnover by PDE6 required for dim light vision.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 6 , Models, Molecular , Transducin , Cyclic Nucleotide Phosphodiesterases, Type 6/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Guanosine Triphosphate/metabolism , Retinal Rod Photoreceptor Cells/enzymology , Retinal Rod Photoreceptor Cells/metabolism , Transducin/chemistry , Transducin/genetics , Transducin/metabolism , Animals , Cattle , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Protein Structure, Quaternary , Protein Binding/drug effects , Catalytic Domain , 1-Methyl-3-isobutylxanthine/pharmacology , Lipid Bilayers/metabolism , Enzyme Activation
20.
J Virol ; 97(12): e0099323, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37962355

ABSTRACT

IMPORTANCE: Inactivation of EP300/CREBB paralogous cellular lysine acetyltransferases (KATs) during the early phase of infection is a consistent feature of DNA viruses. The cell responds by stabilizing transcription factor IRF3 which activates transcription of scores of interferon-stimulated genes (ISGs), inhibiting viral replication. Human respiratory adenoviruses counter this by assembling a CUL4-based ubiquitin ligase complex that polyubiquitinylates RUVBL1 and 2 inducing their proteasomal degradation. This inhibits accumulation of active IRF3 and the expression of anti-viral ISGs, allowing replication of the respiratory HAdVs in the face of inhibition of EP300/CBEBBP KAT activity by the N-terminal region of E1A.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Adenovirus E1A Proteins , Carrier Proteins , DNA Helicases , Immunity, Innate , Proteasome Endopeptidase Complex , Stress, Physiological , Humans , Adenovirus E1A Proteins/metabolism , Adenoviruses, Human/enzymology , Adenoviruses, Human/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/metabolism , Cullin Proteins/metabolism , DNA Helicases/metabolism , Interferons/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Structure, Quaternary , Ubiquitin-Protein Ligase Complexes/chemistry , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitination , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...