Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55.817
Filter
1.
BMC Biol ; 22(1): 130, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825681

ABSTRACT

BACKGROUND: Hydrogenosomes are a specific type of mitochondria that have adapted for life under anaerobiosis. Limited availability of oxygen has resulted in the loss of the membrane-associated respiratory chain, and consequently in the generation of minimal inner membrane potential (Δψ), and inefficient ATP synthesis via substrate-level phosphorylation. The changes in energy metabolism are directly linked with the organelle biogenesis. In mitochondria, proteins are imported across the outer membrane via the Translocase of the Outer Membrane (TOM complex), while two Translocases of the Inner Membrane, TIM22, and TIM23, facilitate import to the inner membrane and matrix. TIM23-mediated steps are entirely dependent on Δψ and ATP hydrolysis, while TIM22 requires only Δψ. The character of the hydrogenosomal inner membrane translocase and the mechanism of translocation is currently unknown. RESULTS: We report unprecedented modification of TIM in hydrogenosomes of the human parasite Trichomonas vaginalis (TvTIM). We show that the import of the presequence-containing protein into the hydrogenosomal matrix is mediated by the hybrid TIM22-TIM23 complex that includes three highly divergent core components, TvTim22, TvTim23, and TvTim17-like proteins. The hybrid character of the TvTIM is underlined by the presence of both TvTim22 and TvTim17/23, association with small Tim chaperones (Tim9-10), which in mitochondria are known to facilitate the transfer of substrates to the TIM22 complex, and the coupling with TIM23-specific ATP-dependent presequence translocase-associated motor (PAM). Interactome reconstruction based on co-immunoprecipitation (coIP) and mass spectrometry revealed that hybrid TvTIM is formed with the compositional variations of paralogs. Single-particle electron microscopy for the 132-kDa purified TvTIM revealed the presence of a single ring of small Tims complex, while mitochondrial TIM22 complex bears twin small Tims hexamer. TvTIM is currently the only TIM visualized outside of Opisthokonta, which raised the question of which form is prevailing across eukaryotes. The tight association of the hybrid TvTIM with ADP/ATP carriers (AAC) suggests that AAC may directly supply ATP for the protein import since ATP synthesis is limited in hydrogenosomes. CONCLUSIONS: The hybrid TvTIM in hydrogenosomes represents an original structural solution that evolved for protein import when Δψ is negligible and remarkable example of evolutionary adaptation to an anaerobic lifestyle.


Subject(s)
Protein Transport , Trichomonas vaginalis , Trichomonas vaginalis/metabolism , Protozoan Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondria/metabolism , Organelles/metabolism
2.
Plant Signal Behav ; 19(1): 2350869, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38722963

ABSTRACT

Fungal pathogens deliver effector proteins into living plant cells to suppress plant immunity and control plant processes that are needed for infection. During plant infection, the devastating rice blast fungus, Magnaporthe oryzae, forms the specialized biotrophic interfacial complex (BIC), which is essential for effector translocation. Cytoplasmic effectors are first focally secreted into BICs, and subsequently packaged into dynamic membranous effector compartments (MECs), then translocated via clathrin-mediated endocytosis (CME) into the host cytoplasm. This study demonstrates that clathrin-heavy chain inhibitors endosidin-9 (ES9) and endosidin-9-17 (ES9-17) blocked the internalization of the fluorescently labeled effectors Bas1 and Pwl2 in rice cells, leading to swollen BICs lacking MECs. In contrast, ES9-17 treatment had no impact on the localization pattern of the apoplastic effector Bas4. This study provides further evidence that cytoplasmic effector translocation occurs by CME in BICs, suggesting a potential role for M. oryzae effectors in co-opting plant endocytosis.


Subject(s)
Endocytosis , Oryza , Oryza/microbiology , Oryza/metabolism , Plant Diseases/microbiology , Ascomycota , Host-Pathogen Interactions , Protein Transport , Fungal Proteins/metabolism , Clathrin/metabolism
3.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38700903

ABSTRACT

Collectively migrating cells consist of leaders and followers with different features. In this issue, Kim et al. (https://doi.org/10.1083/jcb.202401057) characterize the leader and follower cells in collective glioma migration and uncover important roles of YAP1/TAZ-mediated regulation of N-cadherin in the leader cells.


Subject(s)
Cadherins , Glioma , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Cadherins/metabolism , Cadherins/genetics , Cell Movement , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Protein Transport , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism
4.
Sci Rep ; 14(1): 11250, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755233

ABSTRACT

The patterns of Formin B and of the Arp2/3 complex formed during mitosis were studied in a mutant of Dictyostelium discoideum that produces multinucleate cells, which divide by the ingression of unilateral cleavage furrows. During cytokinesis the cells of this mutant remain spread on a glass surface where they generate a planar pattern based on the sorting-out of actin-binding proteins. During anaphase, Formin B and Arp2/3 became localized to the regions of microtubule asters around the centrosomes; Formin B in particular in the form of round, quite uniformly covered areas. These areas have been shown to be depleted of myosin II and the actin-filament crosslinker cortexillin, and to be avoided by cleavage furrows on their path into the cell.


Subject(s)
Dictyostelium , Microfilament Proteins , Microtubules , Mitosis , Microtubules/metabolism , Dictyostelium/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Actin-Related Protein 2-3 Complex/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protein Transport , Cytokinesis , Actins/metabolism
5.
Elife ; 132024 May 17.
Article in English | MEDLINE | ID: mdl-38757931

ABSTRACT

Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron-sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron-sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.


Subject(s)
Erythropoiesis , Phosphatidylinositol 3-Kinases , Thrombopoiesis , Transcription Factors , Erythropoiesis/physiology , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Phosphatidylinositol 3-Kinases/metabolism , K562 Cells , Thrombopoiesis/physiology , Signal Transduction , Nuclear Proteins/metabolism , Cell Nucleus/metabolism , Protein Transport , Hematopoietic Stem Cells/metabolism , HSC70 Heat-Shock Proteins/metabolism , Active Transport, Cell Nucleus
6.
Bone Res ; 12(1): 29, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744829

ABSTRACT

Mature osteoclasts degrade bone matrix by exocytosis of active proteases from secretory lysosomes through a ruffled border. However, the molecular mechanisms underlying lysosomal trafficking and secretion in osteoclasts remain largely unknown. Here, we show with GeneChip analysis that RUN and FYVE domain-containing protein 4 (RUFY4) is strongly upregulated during osteoclastogenesis. Mice lacking Rufy4 exhibited a high trabecular bone mass phenotype with abnormalities in osteoclast function in vivo. Furthermore, deleting Rufy4 did not affect osteoclast differentiation, but inhibited bone-resorbing activity due to disruption in the acidic maturation of secondary lysosomes, their trafficking to the membrane, and their secretion of cathepsin K into the extracellular space. Mechanistically, RUFY4 promotes late endosome-lysosome fusion by acting as an adaptor protein between Rab7 on late endosomes and LAMP2 on primary lysosomes. Consequently, Rufy4-deficient mice were highly protected from lipopolysaccharide- and ovariectomy-induced bone loss. Thus, RUFY4 plays as a new regulator in osteoclast activity by mediating endo-lysosomal trafficking and have a potential to be specific target for therapies against bone-loss diseases such as osteoporosis.


Subject(s)
Endosomes , Lysosomes , Osteoclasts , Animals , Osteoclasts/metabolism , Lysosomes/metabolism , Endosomes/metabolism , Mice , Mice, Knockout , Bone Resorption/metabolism , Bone Resorption/pathology , Bone Resorption/genetics , Protein Transport , Mice, Inbred C57BL , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Cell Differentiation , Gene Deletion , Cathepsin K/metabolism , Cathepsin K/genetics , Female , rab7 GTP-Binding Proteins
7.
Nat Commun ; 15(1): 4045, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744835

ABSTRACT

Vesicular transport is essential for delivering cargo to intracellular destinations. Evi5 is a Rab11-GTPase-activating protein involved in endosome recycling. In humans, Evi5 is a high-risk locus for multiple sclerosis, a debilitating disease that also presents with excess iron in the CNS. In insects, the prothoracic gland (PG) requires entry of extracellular iron to synthesize steroidogenic enzyme cofactors. The mechanism of peripheral iron uptake in insect cells remains controversial. We show that Evi5-depletion in the Drosophila PG affected vesicle morphology and density, blocked endosome recycling and impaired trafficking of transferrin-1, thus disrupting heme synthesis due to reduced cellular iron concentrations. We show that ferritin delivers iron to the PG as well, and interacts physically with Evi5. Further, ferritin-injection rescued developmental delays associated with Evi5-depletion. To summarize, our findings show that Evi5 is critical for intracellular iron trafficking via transferrin-1 and ferritin, and implicate altered iron homeostasis in the etiology of multiple sclerosis.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Ferritins , Iron , Transferrin , Animals , Iron/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Ferritins/metabolism , Ferritins/genetics , Transferrin/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Endosomes/metabolism , Humans , Protein Transport
8.
Protein Sci ; 33(6): e4996, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747383

ABSTRACT

The Sec61 translocon allows the translocation of secretory preproteins from the cytosol to the endoplasmic reticulum lumen during polypeptide biosynthesis. These proteins possess an N-terminal signal peptide (SP) which docks at the translocon. SP mutations can abolish translocation and cause diseases, suggesting an essential role for this SP/Sec61 interaction. However, a detailed biophysical characterization of this binding is still missing. Here, optical tweezers force spectroscopy was used to characterize the kinetic parameters of the dissociation process between Sec61 and the SP of prepro-alpha-factor. The unbinding parameters including off-rate constant and distance to the transition state were obtained by fitting rupture force data to Dudko-Hummer-Szabo models. Interestingly, the translocation inhibitor mycolactone increases the off-rate and accelerates the SP/Sec61 dissociation, while also weakening the interaction. Whereas the translocation deficient mutant containing a single point mutation in the SP abolished the specificity of the SP/Sec61 binding, resulting in an unstable interaction. In conclusion, we characterize quantitatively the dissociation process between the signal peptide and the translocon, and how the unbinding parameters are modified by a translocation inhibitor.


Subject(s)
Optical Tweezers , SEC Translocation Channels , SEC Translocation Channels/metabolism , SEC Translocation Channels/chemistry , SEC Translocation Channels/genetics , Protein Sorting Signals , Protein Binding , Protein Transport , Kinetics
9.
Commun Biol ; 7(1): 574, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750105

ABSTRACT

Metastases are the major cause of cancer-related death, yet, molecular weaknesses that could be exploited to prevent tumor cells spreading are poorly known. Here, we found that perturbing hydrolase transport to lysosomes by blocking either the expression of IGF2R, the main receptor responsible for their trafficking, or GNPT, a transferase involved in the addition of the specific tag recognized by IGF2R, reduces melanoma invasiveness potential. Mechanistically, we demonstrate that the perturbation of this traffic, leads to a compensatory lysosome neo-biogenesis devoided of degradative enzymes. This regulatory loop relies on the stimulation of TFEB transcription factor expression. Interestingly, the inhibition of this transcription factor playing a key role of lysosome production, restores melanomas' invasive potential in the absence of hydrolase transport. These data implicate that targeting hydrolase transport in melanoma could serve to develop new therapies aiming to prevent metastasis by triggering a physiological response stimulating TFEB expression in melanoma.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Hydrolases , Lysosomes , Melanoma , Humans , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Lysosomes/metabolism , Hydrolases/metabolism , Hydrolases/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Line, Tumor , Receptor, IGF Type 2/metabolism , Receptor, IGF Type 2/genetics , Neoplasm Metastasis , Protein Transport , Gene Expression Regulation, Neoplastic
10.
Front Immunol ; 15: 1404846, 2024.
Article in English | MEDLINE | ID: mdl-38774881

ABSTRACT

Lysosomes and lysosome related organelles (LROs) are dynamic organelles at the intersection of various pathways involved in maintaining cellular hemostasis and regulating cellular functions. Vesicle trafficking of lysosomes and LROs are critical to maintain their functions. The lysosomal trafficking regulator (LYST) is an elusive protein important for the regulation of membrane dynamics and intracellular trafficking of lysosomes and LROs. Mutations to the LYST gene result in Chédiak-Higashi syndrome, an autosomal recessive immunodeficiency characterized by defective granule exocytosis, cytotoxicity, etc. Despite eight decades passing since its initial discovery, a comprehensive understanding of LYST's function in cellular biology remains unresolved. Accumulating evidence suggests that dysregulation of LYST function also manifests in other disease states. Here, we review the available literature to consolidate available scientific endeavors in relation to LYST and discuss its relevance for immunomodulatory therapies, regenerative medicine and cancer applications.


Subject(s)
Lysosomes , Vesicular Transport Proteins , Humans , Lysosomes/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Animals , Chediak-Higashi Syndrome/genetics , Protein Transport , Mutation
11.
Biomolecules ; 14(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38785944

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mainly targets the upper respiratory tract. It gains entry by interacting with the host cell receptor angiotensin-converting enzyme 2 (ACE2) via its heavily glycosylated spike glycoprotein. SARS-CoV-2 can also affect the gastrointestinal tract. Given the significant role of glycosylation in the life cycle of proteins and the multisystem target of SARS-CoV-2, the role of glycosylation in the interaction of S1 with ACE2 in Caco-2 cells was investigated after modulation of their glycosylation patterns using N-butyldeoxynojirimycin (NB-DNJ) and 1-deoxymannojirimycin (dMM), in addition to mutant CHO cells harboring mutations at different stages of glycosylation. The data show a substantial reduction in the interactions between the altered glycosylation forms of S1 and ACE2 in the presence of NB-DNJ, while varied outcomes resulted from dMM treatment. These results highlight the promising effects of NB-DNJ and its potential use as an off-label drug to treat SARS-CoV-2 infections.


Subject(s)
Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Caco-2 Cells , Angiotensin-Converting Enzyme 2/metabolism , Glycosylation , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/drug effects , Animals , CHO Cells , Cricetulus , Protein Transport , COVID-19/metabolism , COVID-19/virology , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives , Protein Binding , Intestinal Mucosa/metabolism , Intestinal Mucosa/virology
12.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786080

ABSTRACT

PCSK9 is implicated in familial hypercholesterolemia via targeting the cell surface PCSK9-LDLR complex toward lysosomal degradation. The M2 repeat in the PCSK9's C-terminal domain is essential for its extracellular function, potentially through its interaction with an unidentified "protein X". The M2 repeat was recently shown to bind an R-x-E motif in MHC-class-I proteins (implicated in the immune system), like HLA-C, and causing their lysosomal degradation. These findings suggested a new role of PCSK9 in the immune system and that HLA-like proteins could be "protein X" candidates. However, the participation of each member of the MHC-I protein family in this process and their regulation of PCSK9's function have yet to be determined. Herein, we compared the implication of MHC-I-like proteins such as HFE (involved in iron homeostasis) and HLA-C on the extracellular function of PCSK9. Our data revealed that the M2 domain regulates the intracellular sorting of the PCSK9-LDLR complex to lysosomes, and that HFE is a new target of PCSK9 that inhibits its activity on the LDLR, whereas HLA-C enhances its function. This work suggests the potential modulation of PCSK9's functions through interactions of HFE and HLA-C.


Subject(s)
HLA-C Antigens , Hemochromatosis Protein , Lysosomes , Proprotein Convertase 9 , Protein Transport , Receptors, LDL , Humans , Receptors, LDL/metabolism , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Hemochromatosis Protein/metabolism , Hemochromatosis Protein/genetics , HLA-C Antigens/metabolism , Lysosomes/metabolism , HEK293 Cells , Protein Binding
13.
Elife ; 132024 May 24.
Article in English | MEDLINE | ID: mdl-38787756

ABSTRACT

Advanced cryo-EM approaches reveal surprising insights into the molecular structure that allows nascent proteins to be inserted into the membrane of the endoplasmic reticulum.


Subject(s)
Cryoelectron Microscopy , Endoplasmic Reticulum , Protein Transport , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/chemistry
14.
PLoS Biol ; 22(5): e3002634, 2024 May.
Article in English | MEDLINE | ID: mdl-38713739

ABSTRACT

Toxoplasma gondii resides in its intracellular niche by employing a series of specialized secretory organelles that play roles in invasion, host cell manipulation, and parasite replication. Rab GTPases are major regulators of the parasite's secretory traffic that function as nucleotide-dependent molecular switches to control vesicle trafficking. While many of the Rab proteins have been characterized in T. gondii, precisely how these Rabs are regulated remains poorly understood. To better understand the parasite's secretory traffic, we investigated the entire family of Tre2-Bub2-Cdc16 (TBC) domain-containing proteins, which are known to be involved in vesicle fusion and secretory protein trafficking. We first determined the localization of all 18 TBC domain-containing proteins to discrete regions of the secretory pathway or other vesicles in the parasite. Second, we use an auxin-inducible degron approach to demonstrate that the protozoan-specific TgTBC9 protein, which localizes to the endoplasmic reticulum (ER), is essential for parasite survival. Knockdown of TgTBC9 results in parasite growth arrest and affects the organization of the ER and mitochondrial morphology. TgTBC9 knockdown also results in the formation of large lipid droplets (LDs) and multi-membranous structures surrounded by ER membranes, further indicating a disruption of ER functions. We show that the conserved dual-finger active site in the TBC domain of the protein is critical for its GTPase-activating protein (GAP) function and that the Plasmodium falciparum orthologue of TgTBC9 can rescue the lethal knockdown. We additionally show by immunoprecipitation and yeast 2 hybrid analyses that TgTBC9 preferentially binds Rab2, indicating that the TBC9-Rab2 pair controls ER morphology and vesicular trafficking in the parasite. Together, these studies identify the first essential TBC protein described in any protozoan and provide new insight into intracellular vesicle trafficking in T. gondii.


Subject(s)
Endoplasmic Reticulum , Protozoan Proteins , Secretory Pathway , Toxoplasma , rab2 GTP-Binding Protein , Toxoplasma/metabolism , Toxoplasma/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Endoplasmic Reticulum/metabolism , rab2 GTP-Binding Protein/metabolism , rab2 GTP-Binding Protein/genetics , Protein Domains , Protein Transport , Lipid Droplets/metabolism , Animals , Humans
15.
Commun Biol ; 7(1): 596, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762629

ABSTRACT

Apicomplexan parasites harbor a complex endomembrane system as well as unique secretory organelles. These complex cellular structures require an elaborate vesicle trafficking system, which includes Rab GTPases and their regulators, to assure the biogenesis and secretory of the organelles. Here we exploit the model apicomplexan organism Toxoplasma gondii that encodes a family of Rab GTPase Activating Proteins, TBC (Tre-2/Bub2/Cdc16) domain-containing proteins. Functional profiling of these proteins in tachyzoites reveals that TBC9 is the only essential regulator, which is localized to the endoplasmic reticulum (ER) in T. gondii strains. Detailed analyses demonstrate that TBC9 is required for normal distribution of proteins targeting to the ER, and the Golgi apparatus in the parasite, as well as for the normal formation of daughter inner membrane complexes (IMCs). Pull-down assays show a strong protein interaction between TBC9 and specific Rab GTPases (Rab11A, Rab11B, and Rab2), supporting the role of TBC9 in daughter IMC formation and early vesicular transport. Thus, this study identifies the only essential TBC domain-containing protein TBC9 that regulates early vesicular transport and IMC formation in T. gondii and potentially in closely related protists.


Subject(s)
Endoplasmic Reticulum , GTPase-Activating Proteins , Protozoan Proteins , Toxoplasma , rab GTP-Binding Proteins , Toxoplasma/metabolism , Toxoplasma/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Endoplasmic Reticulum/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Golgi Apparatus/metabolism , Protein Transport , Animals , Transport Vesicles/metabolism
16.
J Cell Sci ; 137(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38770683

ABSTRACT

Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.


Subject(s)
Carcinogenesis , Cell Membrane , Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Animals , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Endocytosis , Protein Transport , Golgi Apparatus/metabolism
17.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732146

ABSTRACT

The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work. Following a recent study by Ciechanover's group showing that amino acid (AA) starvation in cultured cancer cell lines modulates proteasome intracellular localization and activity, we tested two hypotheses in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs, CMs): (i) AA starvation causes proteasome translocation in CMs, similarly to the observation in cultured cancer cell lines; (ii) manipulation of subcellular proteasomal compartmentalization is associated with electrophysiological abnormalities in the form of arrhythmias, mediated via altered intracellular Ca2+ handling. The major findings are: (i) starving CMs to AAs results in proteasome translocation from the nucleus to the cytoplasm, while supplementation with the aromatic amino acids tyrosine (Y), tryptophan (W) and phenylalanine (F) (YWF) inhibits the proteasome recruitment; (ii) AA-deficient treatments cause arrhythmias; (iii) the arrhythmias observed upon nuclear proteasome sequestration(-AA+YWF) are blocked by KB-R7943, an inhibitor of the reverse mode of the sodium-calcium exchanger NCX; (iv) the retrograde perfusion of isolated rat hearts with AA starvation media is associated with arrhythmias. Collectively, our novel findings describe a newly identified mechanism linking the UPS to arrhythmia generation in CMs and whole hearts.


Subject(s)
Arrhythmias, Cardiac , Calcium , Myocytes, Cardiac , Proteasome Endopeptidase Complex , Myocytes, Cardiac/metabolism , Proteasome Endopeptidase Complex/metabolism , Humans , Calcium/metabolism , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/etiology , Induced Pluripotent Stem Cells/metabolism , Stress, Physiological , Protein Transport , Rats , Amino Acids/metabolism
18.
Nat Commun ; 15(1): 3978, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729926

ABSTRACT

A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants. We characterized the chloride channel (CLC) gene AtCLCf, whose expression is regulated by WRKY transcription factor under salt stress in Arabidopsis thaliana. Loss-of-function atclcf seedlings show increased sensitivity to salt, whereas AtCLCf overexpression confers enhanced resistance to salt stress. Salt stress induces the translocation of GFP-AtCLCf fusion protein to the plasma membrane (PM). Blocking AtCLCf translocation using the exocytosis inhibitor brefeldin-A or mutating the small GTPase gene AtRABA1b/BEX5 (RAS GENES FROM RAT BRAINA1b homolog) increases salt sensitivity in plants. Electrophysiology and liposome-based assays confirm the Cl-/H+ antiport function of AtCLCf. Therefore, we have uncovered a mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of AtCLCf to the PM, thus facilitating Cl- removal at the roots, and increasing the plant's salinity tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Membrane , Chloride Channels , Golgi Apparatus , Salt Stress , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis/drug effects , Cell Membrane/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Golgi Apparatus/metabolism , Chloride Channels/metabolism , Chloride Channels/genetics , Gene Expression Regulation, Plant , Protein Transport/drug effects , Salt Tolerance/genetics , Sodium Chloride/pharmacology , Plants, Genetically Modified
19.
Biochem Biophys Res Commun ; 716: 149991, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704888

ABSTRACT

Cholera toxin (Ctx) is a major virulence factor produced by Vibrio cholerae that can cause gastrointestinal diseases, including severe watery diarrhea and dehydration, in humans. Ctx binds to target cells through multivalent interactions between its B-subunit pentamer and the receptor ganglioside GM1 present on the cell surface. Here, we identified a series of tetravalent peptides that specifically bind to the receptor-binding region of the B-subunit pentamer using affinity-based screening of multivalent random-peptide libraries. These tetravalent peptides efficiently inhibited not only the cell-elongation phenotype but also the elevated cAMP levels, both of which are induced by Ctx treatment in CHO cells or a human colon carcinoma cell line (Caco-2 cells), respectively. Importantly, one of these peptides, NRR-tet, which was highly efficient in these two activities, markedly inhibited fluid accumulation in the mouse ileum caused by the direct injection of Ctx. In consistent, NRR-tet reduced the extensive Ctx-induced damage of the intestinal villi. After NRR-tet bound to Ctx, the complex was incorporated into the cultured epithelial cells and accumulated in the recycling endosome, affecting the retrograde transport of Ctx from the endosome to the Golgi, which is an essential process for Ctx to exert its toxicity in cells. Thus, NRR-tet may be a novel type of therapeutic agent against cholera, which induces the aberrant transport of Ctx in the intestinal epithelial cells, detoxifying the toxin.


Subject(s)
Cholera Toxin , Cricetulus , Cholera Toxin/metabolism , Humans , Animals , Mice , CHO Cells , Caco-2 Cells , Peptides/pharmacology , Peptides/metabolism , Peptides/chemistry , Protein Transport/drug effects , Cholera/drug therapy , Cholera/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
20.
Protein Sci ; 33(6): e5034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801231

ABSTRACT

In eukaryotes, the ubiquitin-proteasome system is responsible for intracellular protein degradation. Proteins tagged with ubiquitin are recognized by ubiquitin receptors on the 19S regulatory particle (RP) of the 26S proteasome, unfolded, routed through the translocation channel of the RP, and are then degraded in the 20S core particle (CP). Aromatic paddles on the pore-1 loops of the RP's Rpt subunits grip the substrate and pull folded domains into the channel, thereby unfolding them. The sequence that the aromatic paddles grip while unfolding a substrate is therefore expected to influence the extent of unfolding, and low complexity sequences have been shown to interfere with grip. However, the detailed spatial requirements for grip while unfolding proteins, particularly from the N-terminus, remain unknown. We determined how the location of glycine-rich tracts relative to a folded domain impairs unfolding. We find that, in contrast to a previous report, inserting glycine-rich sequences closer to the folded domain reduced unfolding ability more than positioning them further away. Locations that have the biggest effect on unfolding map onto the regions where the aromatic paddles are predicted to interact with the substrate. Effects on unfolding from locations up to 67 amino acids away from the folded domain suggest that there are additional interactions between the substrate and the proteasome beyond the aromatic paddles that facilitate translocation of the substrate. In sum, this study deepens understanding of the mechanical interactions within the substrate channel by mapping the spacing of interactions between the substrate and the proteasome during unfolding.


Subject(s)
Proteasome Endopeptidase Complex , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/chemistry , Models, Molecular , Humans , Protein Unfolding , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...