Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 822
Filter
1.
Int J Biol Macromol ; 268(Pt 2): 131902, 2024 May.
Article in English | MEDLINE | ID: mdl-38692532

ABSTRACT

Vitamin B12 is a group of biologically active cobalamin compounds. In this study, we investigated the inhibitory effects of methylcobalamin (MeCbl) and hydroxocobalamin acetate (OHCbl Acetate) on protein tyrosine phosphatase 1B (PTP1B). MeCbl and OHCbl Acetate exhibited an IC50 of approximately 58.390 ± 2.811 µM and 8.998 ± 0.587 µM, respectively. The Ki values of MeCbl and OHCbl Acetate were 25.01 µM and 4.04 µM respectively. To elucidate the inhibition mechanism, we conducted a 500 ns Gaussian accelerated molecular dynamics (GaMD) simulation. Utilizing PCA and tICA, we constructed Markov state models (MSM) to examine secondary structure changes during motion. Our findings revealed that the α-helix at residues 37-42 remained the most stable in the PTP1B-OHCbl Acetate system. Furthermore, upon binding of OHCbl Acetate or MeCbl, the WPD loop of PTP1B moved inward to the active pocket, forming a closed conformation and potentially obstructs substrate entry. Protein-ligand interaction analysis and MM-PBSA showed that OHCbl Acetate exhibited lower binding free energy and engaged in more residue interactions with PTP1B. In summary, our study confirmed the substantial inhibitory activity of OHCbl Acetate against PTP1B, with its inhibitory potency notably surpassing that of MeCbl. We demonstrated potential molecular mechanisms of OHCbl Acetate inhibiting PTP1B.


Subject(s)
Molecular Dynamics Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Vitamin B 12 , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Vitamin B 12/chemistry , Vitamin B 12/analogs & derivatives , Vitamin B 12/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Protein Binding , Kinetics , Structure-Activity Relationship
2.
J Med Chem ; 67(10): 8406-8419, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38723203

ABSTRACT

Forty-one 1,3,4-thiadiazolyl-containing thiazolidine-2,4-dione derivatives (MY1-41) were designed and synthesized as protein tyrosine phosphatase 1B (PTP1B) inhibitors with activity against diabetes mellitus (DM). All synthesized compounds (MY1-41) presented potential PTP1B inhibitory activities, with half-maximal inhibitory concentration (IC50) values ranging from 0.41 ± 0.05 to 4.68 ± 0.61 µM, compared with that of the positive control lithocholic acid (IC50 = 9.62 ± 0.14 µM). The most potent compound, MY17 (IC50 = 0.41 ± 0.05 µM), was a reversible, noncompetitive inhibitor of PTP1B. Circular dichroism spectroscopy and molecular docking were employed to analyze the binding interaction between MY17 and PTP1B. In HepG2 cells, MY17 treatment could alleviate palmitic acid (PA)-induced insulin resistance by upregulating the expression of phosphorylated insulin receptor substrate and protein kinase B. In vivo, oral administration of MY17 could reduce the fasting blood glucose level and improve glucose tolerance and dyslipidemia in mice suffering from DM.


Subject(s)
Diabetes Mellitus, Experimental , Hypoglycemic Agents , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Thiazolidinediones , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Animals , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/therapeutic use , Hep G2 Cells , Mice , Thiazolidinediones/pharmacology , Thiazolidinediones/chemistry , Thiazolidinediones/chemical synthesis , Diabetes Mellitus, Experimental/drug therapy , Structure-Activity Relationship , Male , Thiadiazoles/pharmacology , Thiadiazoles/chemistry , Thiadiazoles/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Insulin Resistance , Blood Glucose/drug effects , Blood Glucose/analysis , Blood Glucose/metabolism
3.
Protein Sci ; 33(6): e5024, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801229

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for obesity, diabetes, and certain types of cancer. In particular, allosteric inhibitors hold potential for therapeutic use, but an incomplete understanding of conformational dynamics and allostery in this protein has hindered their development. Here, we interrogate solution dynamics and allosteric responses in PTP1B using high-resolution hydrogen-deuterium exchange mass spectrometry (HDX-MS), an emerging and powerful biophysical technique. Using HDX-MS, we obtain a detailed map of backbone amide exchange that serves as a proxy for the solution dynamics of apo PTP1B, revealing several flexible loops interspersed among more constrained and rigid regions within the protein structure, as well as local regions that exchange faster than expected from their secondary structure and solvent accessibility. We demonstrate that our HDX rate data obtained in solution adds value to estimates of conformational heterogeneity derived from a pseudo-ensemble constructed from ~200 crystal structures of PTP1B. Furthermore, we report HDX-MS maps for PTP1B with active-site versus allosteric small-molecule inhibitors. These maps suggest distinct and widespread effects on protein dynamics relative to the apo form, including changes in locations distal (>35 Å) from the respective ligand binding sites. These results illuminate that allosteric inhibitors of PTP1B can induce unexpected changes in dynamics that extend beyond the previously understood allosteric network. Together, our data suggest a model of BB3 allostery in PTP1B that combines conformational restriction of active-site residues with compensatory liberation of distal residues that aid in entropic balancing. Overall, our work showcases the potential of HDX-MS for elucidating aspects of protein conformational dynamics and allosteric effects of small-molecule ligands and highlights the potential of integrating HDX-MS alongside other complementary methods, such as room-temperature X-ray crystallography, NMR spectroscopy, and molecular dynamics simulations, to guide the development of new therapeutics.


Subject(s)
Hydrogen Deuterium Exchange-Mass Spectrometry , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Allosteric Regulation , Humans , Molecular Dynamics Simulation , Protein Conformation , Models, Molecular , Catalytic Domain
4.
J Med Chem ; 67(9): 7569-7584, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690687

ABSTRACT

PTP1B, a promising target for insulin sensitizers in type 2 diabetes treatment, can be effectively degraded using proteolysis-targeting chimera (PROTAC). This approach offers potential for long-acting antidiabetic agents. We report potent bifunctional PROTACs targeting PTP1B through the E3 ubiquitin ligase cereblon. Western blot analysis showed significant PTP1B degradation by PROTACs at concentrations from 5 nM to 5 µM after 48 h. Evaluation of five highly potent PROTACs revealed compound 75 with a longer PEG linker (23 atoms), displaying remarkable degradation activity after 48 and 72 h, with DC50 values of 250 nM and 50 nM, respectively. Compound 75 induced selective degradation of PTP1B, requiring engagement with both the target protein and CRBN E3 ligase, in a ubiquitination and proteasome-dependent manner. It significantly reduced blood glucose AUC0-2h to 29% in an oral glucose tolerance test and activated the IRS-1/PI3K/Akt signaling pathway in HepG2 cells, showing promise for long-term antidiabetic therapy.


Subject(s)
Hypoglycemic Agents , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Proteolysis , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Drug Discovery , Hep G2 Cells , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Proteolysis/drug effects , Signal Transduction/drug effects , Ubiquitin-Protein Ligases/metabolism
5.
Nat Rev Endocrinol ; 20(6): 366-378, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519567

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B), a non-transmembrane phosphatase, has a major role in a variety of signalling pathways, including direct negative regulation of classic insulin and leptin signalling pathways, and is implicated in the pathogenesis of several cardiometabolic diseases and cancers. As such, PTP1B has been a therapeutic target for over two decades, with PTP1B inhibitors identified either from natural sources or developed throughout the years. Some of these inhibitors have reached phase I and/or II clinical trials in humans for the treatment of type 2 diabetes mellitus, obesity and/or metastatic breast cancer. In this Review, we summarize the cellular processes and regulation of PTP1B, discuss evidence from in vivo preclinical and human studies of the association between PTP1B and different disorders, and discuss outcomes of clinical trials. We outline challenges associated with the targeting of this phosphatase (which was, until the past few years, viewed as difficult to target), the current state of the field of PTP1B inhibitors (and dual phosphatase inhibitors) and future directions for manipulating the activity of this key metabolic enzyme.


Subject(s)
Drug Development , Metabolic Diseases , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacology , Signal Transduction/drug effects , Obesity/drug therapy , Obesity/metabolism
6.
J Pharm Biomed Anal ; 244: 116125, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38554553

ABSTRACT

As a pivotal enzyme that regulates dephosphorylation in cell activities and participates in the insulin signaling pathway, protein tyrosine phosphatase 1B (PTP1B) is considered to be an important target for the therapy of diabetes. In this work, a rapid and efficient inhibitor screening method of PTP1B was established based on capillary electrophoresis (CE), and used for screening and evaluating the inhibition effect of Traditional Chinese Medicine on PTP1B. Response Surface Methodology was used for optimizing the conditions of analysis. After method validation, the enzyme kinetic study and inhibition test were performed. As a result, the IC50 of PTP1B inhibitors Ⅳ and ⅩⅧ were consistent with reported values measured by a conventional method. It was found that the extracts of Astragalus membranaceus (Fisch) Bunge and Morus alba L. showed prominent inhibition on the activity of PTP1B, which were stronger than the positive controls. Meanwhile, on top of the excellent advantages of CE, the whole analysis time is less than 2 min. Thus, the results demonstrated that a fast and efficient screening method was successfully developed. This method could be a powerful tool for screening inhibitors from complex systems. It can also provide an effective basis for lead compound development in drug discovery.


Subject(s)
Drugs, Chinese Herbal , Electrophoresis, Capillary , Hypoglycemic Agents , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Humans , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Electrophoresis, Capillary/methods , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/analysis , Hypoglycemic Agents/pharmacology , Kinetics , Medicine, Chinese Traditional/methods , Morus/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
7.
J Nat Prod ; 87(4): 810-819, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38427823

ABSTRACT

Eight new decahydrofluorene-class alkaloids, microascones A and B (1 and 2), 2,3-epoxyphomapyrrolidone C (3), 14,16-epiascomylactam B (4), 24-hydroxyphomapyrrolidone A (5), and microascones C-E (6-8), along with five known analogs (9-13) were isolated from the marine-derived fungus Microascus sp. SCSIO 41821. Compounds 1 and 2 have an unprecedented complex macrocyclic alkaloid skeleton with a 6/5/6/5/6/5/13 polycyclic system. Their structures and absolute configurations were determined by spectroscopic analysis, quantum chemical calculations of ECD spectra, and 13C NMR chemical shifts. Compounds 10-13 showed selective enzyme inhibitory activity against PTPSig, PTP1B, and CDC25B, and 4, 9, and 10 exhibited strong antibacterial activity against seven tested pathogens. Their structure-bioactivity relationship was discussed, and a plausible biosynthetic pathway for 1-8 was also proposed.


Subject(s)
Alkaloids , Anti-Bacterial Agents , Microbial Sensitivity Tests , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Structure-Activity Relationship , Marine Biology , Ascomycota/chemistry , Fluorenes/pharmacology , Fluorenes/chemistry , Fluorenes/isolation & purification , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
8.
Bioorg Med Chem ; 97: 117545, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38070352

ABSTRACT

In this study, a virtual screening pipeline comprising ligand-based and structure-based approaches was established and applied for the identification of dual PTP1B and ACP1 inhibitors. As a result, a series of benzoic acid derivatives was discovered, and compound H3 and S6 demonstrated PTP1B and ACP1 inhibitory activity, with IC50 values of 3.5 and 8.2 µM for PTP1B, and 2.5 and 5.2 µM for ACP1, respectively. Molecular dynamics simulations illustrated that H3 interacted with critical residues in the active site, such as Cys215 and Arg221 for PTP1B, and Cys17 and Arg18 for ACP1. Enzymatic kinetic research indicated that identified inhibitors competitively inhibited PTP1B and ACP1. Additionally, cellular assays demonstrated that H3 and S6 effectively increased glucose uptake in insulin-resistant HepG2 cells while displaying very limited cytotoxicity at their effective concentrations. In summary, H3 and S6 represent novel dual-target inhibitors for PTP1B and ACP1, warranting further investigation as potential agents for the treatment of diabetes.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Humans , Catalytic Domain , Diabetes Mellitus/drug therapy , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Insulin , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatases/antagonists & inhibitors
10.
Nature ; 622(7984): 850-862, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794185

ABSTRACT

Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.


Subject(s)
Immunotherapy , Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors , Immunotherapy/methods , Interferons/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 2/antagonists & inhibitors , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
11.
J Med Chem ; 66(4): 3030-3044, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36749220

ABSTRACT

Poor medication adherence in patients with type 2 diabetes mellitus has become one of the main causes of suboptimal glycemic control. Once-weekly drugs can markedly improve the convenience, adherence, and quality of life of T2DM patients; thus, they are clinically needed and preferred. PTP1B plays a negative role in both insulin and leptin signaling pathways, which makes it an important target for diabetes. Herein, we design and synthesize 35 analogues of core BimBH3 peptide via lipidation/acylation strategy based on our previous work and evaluate their PTP1B inhibitory activity, obtaining the primary structure-activity relationship. Five compounds with good PPT1B inhibitory activity, target selectivity, and significantly improved stability were selected for molecular docking study and searching candidate molecules with long-acting antidiabetic potential. The in vivo anti-T2DM evaluation validated the once-weekly therapeutic potential of analogues 19, 26, 27, 31, and 33, which were comparable with semaglutide and therefore presented as promising drug candidates.


Subject(s)
Diabetes Mellitus, Type 2 , Drug Design , Enzyme Inhibitors , Hypoglycemic Agents , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Humans , Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
12.
PLoS One ; 18(1): e0278566, 2023.
Article in English | MEDLINE | ID: mdl-36649358

ABSTRACT

Protein tyrosine phosphatase PTP1B is considered as a key metabolic enzyme that has been reported to be associated with insulin resistance onset, and underlying cellular metabolic malfunctions, including ER stress and mitochondrial failure. In this study, effects of selective PTP1B inhibition using MSI-1436 on cellular apoptosis, oxidative stress, mitochondrial dysfunction and ER stress have been assessed using an in vitro model of Tunicamycin induced ER stress in HepG2 cell line. Inhibition of PTP1B using MSI-1436 significantly increased cell viability and reduced the number of apoptotic cells as well as the expression of key apoptosis initiators and effectors. MSI-1436 further mitigated ER stress, by downregulating the expression of IRE1, ATF6 and PERK transcripts, all being key ER stress sensors. Interestingly, MSI-1436 inhibited the XBP1 splicing, and thus its UPR-associated transcriptional activity. PTP1B inhibition further enabled to restore proper mitochondrial biogenesis, by improving transmembrane potential, and diminishing intracellular ROS while restoring of endogenous antioxidant enzymes genes expression. PTP1B inhibition using MSI-1436 could improve cellular apoptosis and metabolic integrity through the mitigation of ER and mitochondrial stress signalling pathways, and excessive ROS accumulation. This strategy may be useful for the treatment of metabolic disorders including IR, NAFLD and diabetes.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Signal Transduction , X-Box Binding Protein 1 , Humans , Cell Line , Reactive Oxygen Species/pharmacology , Tunicamycin/pharmacology , X-Box Binding Protein 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , RNA Splicing
13.
Chem Biodivers ; 19(1): e202100600, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34725898

ABSTRACT

Protein tyrosine phosphatases (PTPs) are essential modulators of signal transduction pathways and has been implicated in many human diseases such as cancer, diabetes, obesity, autoimmune disorders, and neurological diseases, indicating that PTPs are next-generation drug targets. Since PTPN1, PTPN2, and PTPN11 have been reported to be negative regulators of insulin action, the identification of PTP inhibitors may be an effective strategy to develop therapeutic agents for the treatment of type 2 diabetes. In this study, we observed for the first time that nepetin inhibits the catalytic activity of PTPN1, PTPN2, and PTPN11 in vitro, indicating that nepetin acts as a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11. Furthermore, treatment of mature 3T3-L1 adipocytes with 20 µM nepetin stimulates glucose uptake through AMPK activation. Taken together, our findings provide evidence that nepetin, a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11, could be a promising therapeutic candidate for the treatment of type 2 diabetes.


Subject(s)
Enzyme Inhibitors/chemistry , Flavones/chemistry , Protein Tyrosine Phosphatases/antagonists & inhibitors , 3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Animals , Biocatalysis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Flavones/metabolism , Flavones/therapeutic use , Glucose/metabolism , Humans , Insulin Resistance , Mice , Phosphorylation/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatases/metabolism
14.
Mol Divers ; 26(4): 2159-2174, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34655403

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) acts as a therapeutic target for type 2 diabetes. However, the major challenges of PTP1B drug discovery are the poor selectivity and the weak oral bioavailability. In this study, we performed a combined virtual screening approach including multicomplex pharmacophore, molecular docking-based screening, van der Waals energy normalization, pose scaling factor, ADMET evaluation, and molecular dynamics simulation to select PTP1B inhibitors from three databases (PubChem, ChEMBL, and ZINC). We identified three potential PTP1B inhibitors, compounds 1, 4, and 5, with favorable binding energy and good oral bioavailability. The energetic and geometrical analyses show that the three compounds are stably bound to PTP1B, via occupying both the catalytic site (site A) and the proximal noncatalytic site (site B or C). Such occupancy may improve the selectivity. This work not only provided a feasible virtual screening protocol, but also suggested three potential PTP1B inhibitors for the treatment of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Enzyme Inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
15.
J Asian Nat Prod Res ; 24(1): 45-51, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33459052

ABSTRACT

Two new flavonoid glycosides named 6-hydroxy-3-methoxy-apigenin 7-O-α-ʟ-rhamnopyranoside (1) and 3-hydroxyl-apigenin 8-C-ß-ᴅ-xylopyranoside (2), along with five known compounds (3-7), were isolated from Xanthium strumarium. Their structures were elucidated on the basis of spectroscopic and physicochemical analyses. All compounds were evaluated for in vitro inhibitory activity against PTP1B. Among them, compounds 1 and 5 showed significant inhibitory activity on PTP1B with IC50 values of 11.3 ± 1.7 and 8.9 ± 0.7 µM, respectively.


Subject(s)
Flavonoids , Glycosides , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Xanthium , Flavonoids/pharmacology , Glycosides/pharmacology , Molecular Structure , Phytochemicals/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Xanthium/chemistry
16.
Molecules ; 26(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34946519

ABSTRACT

In the present study, we investigated the structure-activity relationship of naturally occurring hesperetin derivatives, as well as the effects of their glycosylation on the inhibition of diabetes-related enzyme systems, protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase. Among the tested hesperetin derivatives, hesperetin 5-O-glucoside, a single-glucose-containing flavanone glycoside, significantly inhibited PTP1B with an IC50 value of 37.14 ± 0.07 µM. Hesperetin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50 = 9.65 ± 0.01 µM). The most active flavanone hesperetin 5-O-glucoside suggested that the position of a sugar moiety at the C-5-position influences the PTP1B inhibition. It was observed that the ability to inhibit PTP1B is dependent on the nature, position, and number of sugar moieties in the flavonoid structure, as well as conjugation. In the kinetic study of PTP1B enzyme inhibition, hesperetin 5-O-glucoside led to mixed-type inhibition. Molecular docking studies revealed that hesperetin 5-O-glucoside had a higher binding affinity with key amino residues, suggesting that this molecule best fits the PTP1B allosteric site cavity. The data reported here support hesperetin 5-O-glucoside as a hit for the design of more potent and selective inhibitors against PTP1B in the search for a new anti-diabetic treatment.


Subject(s)
Enzyme Inhibitors/chemistry , Hesperidin/analogs & derivatives , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Hesperidin/chemistry , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Structure-Activity Relationship
17.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884501

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a critical negative modulator of insulin signaling and has attracted considerable attention in treating type 2 diabetes mellitus (T2DM). Low-molecular-weight polymannuronic acid phosphate (LPMP) was found to be a selective PTP1B inhibitor with an IC50 of 1.02 ± 0.17 µM. Cellular glucose consumption was significantly elevated in insulin-resistant HepG2 cells after LPMP treatment. LPMP could alleviate oxidative stress and endoplasmic reticulum stress, which are associated with the development of insulin resistance. Western blot and polymerase chain reaction (PCR) analysis demonstrated that LPMP could enhance insulin sensitivity through the PTP1B/IRS/Akt transduction pathway. Furthermore, animal study confirmed that LPMP could decrease blood glucose, alleviate insulin resistance, and exert hepatoprotective effects in diabetic mice. Taken together, LPMP can effectively inhibit insulin resistance and has high potential as an anti-diabetic drug candidate to be further developed.


Subject(s)
Alginic Acid/chemistry , Enzyme Inhibitors/pharmacology , Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance , Phosphates/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Animals , Apoptosis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Enzyme Inhibitors/chemistry , Humans , Insulin Receptor Substrate Proteins/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Proto-Oncogene Proteins c-akt/genetics , Tumor Cells, Cultured
18.
Acta Crystallogr C Struct Chem ; 77(Pt 10): 641-648, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34607987

ABSTRACT

The new copper(II) complex dichloridobis(4-{[3-(pyridin-2-yl-κN)-1H-pyrazol-1-yl-κN2]methyl}benzoic acid)copper(II) methanol sesquisolvate hemihydrate, [CuCl2L2]·1.5CH3OH·0.5H2O, (1), has been synthesized from CuCl2·2H2O and the ligand 4-{[3-(pyridin-2-yl)-1H-pyrazol-1-yl]methyl}benzoic acid (L, C15H11N3O2). The complex was characterized by elemental analysis, Fourier transform IR spectroscopy, electrospray ionization mass spectrometry and single-crystal X-ray diffraction. Two chloride ligands and two bidentate L ligands coordinate the CuII centre in 1 in a Jahn-Teller-distorted octahedral geometry of rather unusual configuration: a chloride substituent and a pyrazole N atom of an N,N'-chelating ligand occupy the more distant axial positions. Classical O-H...O hydrogen bonds and O-H...Cl interactions link neighbouring complex molecules and cocrystallized methanol molecules into chains that propagate parallel to the b direction. The title compound shows intriguing bioactivity: the effects of 1 on the enzymatic activity of protein tyrosine phosphatase 1B (PTP1B) and on the viability of human breast cancer cells of cell line MCF7 were evaluated. Complex 1, with an IC50 value of 0.51 µM, can efficiently inhibit PTP1B activity. An enzyme kinetic assay suggests that 1 inhibits PTP1B in a noncompetitive manner. A fluorescence titration assay indicates that 1 has a strong affinity for PTP1B, with a binding constant of 4.39 × 106 M-1. Complex 1 may also effectively decrease the viability of MCF7 cells in an extent comparable to that of cisplatin (IC50 = 6.3 µM). The new copper complex therefore represents a promising PTP1B inhibitor and an efficient antiproliferation reagent against MCF7 cells.


Subject(s)
Copper/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Crystallography, X-Ray , Humans , Hydrogen Bonding , Ligands , MCF-7 Cells , Magnetic Resonance Spectroscopy , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry
19.
Oxid Med Cell Longev ; 2021: 7807046, 2021.
Article in English | MEDLINE | ID: mdl-34707780

ABSTRACT

In this study, a chemical investigation on the fruits of Livistona chinensis (FLC) led to the isolation and identification of 45 polyphenols and 5 alkaloids, including two new compounds (Livischinol (1) and Livischinine A (46)), an undescribed compound (47) and 47 known compounds. FLC was predicted with novel potential antidiabetic function by collecting and analyzing the potential targets of the ingredients. Compound 32 exhibited significant α-glucosidase inhibitory activity (IC50 = 5.71 µM) and 1, 6, and 44 showed the PTP1B inhibitory activity with IC50 values of 9.41-22.19 µM, while that of oleanolic acid was 28.58 µM. The competitive inhibitors of PTP1B (compounds 1 and 44) formed strong binding affinity, with catalytic active sites, proved by kinetic analysis, fluorescence spectra measurements, and computational simulations, and stimulated glucose uptake in the insulin-resistant HepG2 cells at the dose of 50 µM. In addition, FLC was rich in antioxidant and anti-inflammatory bioactive compounds so that they could be developed as nutraceuticals against diabetes.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Arecaceae , Fruit , Glycoside Hydrolase Inhibitors/pharmacology , Network Pharmacology , Plant Extracts/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/isolation & purification , Antioxidants/isolation & purification , Arecaceae/chemistry , Fruit/chemistry , Glucose/metabolism , Glycoside Hydrolase Inhibitors/isolation & purification , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/enzymology , Humans , Insulin Resistance , Kinetics , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Dynamics Simulation , Plant Extracts/isolation & purification , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , RAW 264.7 Cells
20.
Bioorg Med Chem Lett ; 53: 128422, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34710624

ABSTRACT

Three new germacrane-type sesquiterpene lactones (1-3) were isolated alongside seven known related congeners (4-10) from the leaves of Eupatorium chinense L. (Compositae). The planar structures of 1-3 were elucidated by their spectroscopic data, including 1D and 2D NMR spectra. The relative and absolute configurations of 1-3 were determined using NOESY experiments and electronic circular dichroism analyses. Compounds 1, 4, 5, and 7 inhibited protein tyrosine phosphatase (PTP) 1B activity with IC50 values of 25, 11, 28, and 24 µM, respectively. Among these, compound 4 exhibited an inhibitory effect on T-cell PTP (TCPTP) with an IC50 value of 25 µM. To our knowledge, this is the first study demonstrating the PTP inhibitory activity of the germacrane sesquiterpenes. The results show that compound 4 acts as an inhibitor of both PTP1B and TCPTP.


Subject(s)
Enzyme Inhibitors/pharmacology , Eupatorium/chemistry , Plant Leaves/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Sesquiterpenes, Germacrane/pharmacology , Density Functional Theory , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Molecular Structure , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Sesquiterpenes, Germacrane/chemistry , Sesquiterpenes, Germacrane/isolation & purification , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...