Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 390
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733774

ABSTRACT

Olanzapine (OLA) is a highly obesogenic second-generation antipsychotic (SGA). Recently we demonstrated that, contrarily to OLA oral treatment, intraperitoneal (i.p.) administration resulted in weight loss and absence of hepatic steatosis in wild-type (WT) and protein tyrosine phosphatase 1B (PTP1B)-deficient (KO) male mice. This protection relied on two central-peripheral axes connecting hypothalamic AMPK with brown/inguinal white adipose tissue (BAT/iWAT) uncoupling protein-1 (UCP-1) and hypothalamic JNK with hepatic fatty acid synthase (FAS). Herein, we addressed OLA i.p. treatment effects in WT and PTP1B-KO female mice. Contrarily to our previous results in WT females receiving OLA orally, the i.p. treatment did not induce weight gain or hyperphagia. Molecularly, in females OLA failed to diminish hypothalamic phospho-AMPK or elevate BAT UCP-1 and energy expenditure (EE) despite the preservation of iWAT browning. Conversely, OLA i.p. treatment in ovariectomized mice reduced hypothalamic phospho-AMPK, increased BAT/iWAT UCP-1 and EE, and induced weight loss as occurred in males. Pretreatment of hypothalamic neurons with 17ß-estradiol (E2) abolished OLA effects on AMPK. Moreover, neither hypothalamic JNK activation nor hepatic FAS upregulation were found in WT and PTP1B-KO females receiving OLA via i.p. Importantly, this axis was reestablished upon ovariectomy. In this line, E2 prevented OLA-induced phospho-JNK in hypothalamic neurons. These results support the role of estrogens in sex-related dimorphism in OLA treatment. This study evidenced the benefit of OLA i.p. administration in preventing its obesogenic effects in female mice that could offer clinical value.


Subject(s)
Adipose Tissue, Brown , Estrogens , Hypothalamus , Liver , Mice, Knockout , Olanzapine , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Uncoupling Protein 1 , Animals , Female , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Hypothalamus/metabolism , Hypothalamus/drug effects , Mice , Liver/metabolism , Liver/drug effects , Estrogens/metabolism , Estrogens/pharmacology , Olanzapine/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Energy Metabolism/drug effects , Injections, Intraperitoneal , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Mice, Inbred C57BL , Estradiol/pharmacology , Ovariectomy
2.
Circ Res ; 134(10): e93-e111, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38563147

ABSTRACT

BACKGROUND: Endothelial activation promotes the release of procoagulant extracellular vesicles and inflammatory mediators from specialized storage granules. Endothelial membrane exocytosis is controlled by phosphorylation. We hypothesized that the absence of PTP1B (protein tyrosine phosphatase 1B) in endothelial cells promotes venous thromboinflammation by triggering endothelial membrane fusion and exocytosis. METHODS: Mice with inducible endothelial deletion of PTP1B (End.PTP1B-KO) underwent inferior vena cava ligation to induce stenosis and venous thrombosis. Primary endothelial cells from transgenic mice and human umbilical vein endothelial cells were used for mechanistic studies. RESULTS: Vascular ultrasound and histology showed significantly larger venous thrombi containing higher numbers of Ly6G (lymphocyte antigen 6 family member G)-positive neutrophils in mice with endothelial PTP1B deletion, and intravital microscopy confirmed the more pronounced neutrophil recruitment following inferior vena cava ligation. RT2 PCR profiler array and immunocytochemistry analysis revealed increased endothelial activation and adhesion molecule expression in primary End.PTP1B-KO endothelial cells, including CD62P (P-selectin) and VWF (von Willebrand factor). Pretreatment with the NF-κB (nuclear factor kappa B) kinase inhibitor BAY11-7082, antibodies neutralizing CD162 (P-selectin glycoprotein ligand-1) or VWF, or arginylglycylaspartic acid integrin-blocking peptides abolished the neutrophil adhesion to End.PTP1B-KO endothelial cells in vitro. Circulating levels of annexin V+ procoagulant endothelial CD62E+ (E-selectin) and neutrophil (Ly6G+) extracellular vesicles were also elevated in End.PTP1B-KO mice after inferior vena cava ligation. Higher plasma MPO (myeloperoxidase) and Cit-H3 (citrullinated histone-3) levels and neutrophil elastase activity indicated neutrophil activation and extracellular trap formation. Infusion of End.PTP1B-KO extracellular vesicles into C57BL/6J wild-type mice most prominently enhanced the recruitment of endogenous neutrophils, and this response was blunted in VWF-deficient mice or by VWF-blocking antibodies. Reduced PTP1B binding and tyrosine dephosphorylation of SNAP23 (synaptosome-associated protein 23) resulting in increased VWF exocytosis and neutrophil adhesion were identified as mechanisms, all of which could be restored by NF-κB kinase inhibition using BAY11-7082. CONCLUSIONS: Our findings show that endothelial PTP1B deletion promotes venous thromboinflammation by enhancing SNAP23 phosphorylation, endothelial VWF exocytosis, and neutrophil recruitment.


Subject(s)
Exocytosis , Mice, Knockout , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Venous Thrombosis , von Willebrand Factor , Animals , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/deficiency , Humans , Mice , von Willebrand Factor/metabolism , von Willebrand Factor/genetics , Venous Thrombosis/metabolism , Venous Thrombosis/genetics , Venous Thrombosis/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/metabolism , Inflammation/genetics , Mice, Inbred C57BL , Neutrophils/metabolism , Endothelial Cells/metabolism , Cells, Cultured , Vena Cava, Inferior/metabolism , Vena Cava, Inferior/pathology , Male , Neutrophil Infiltration , NF-kappa B/metabolism
3.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119590, 2024 01.
Article in English | MEDLINE | ID: mdl-37730132

ABSTRACT

Glomerular podocytes are instrumental for the barrier function of the kidney, and podocyte injury contributes to proteinuria and the deterioration of renal function. Protein tyrosine phosphatase 1B (PTP1B) is an established metabolic regulator, and the inactivation of this phosphatase mitigates podocyte injury. However, there is a paucity of data regarding the substrates that mediate PTP1B actions in podocytes. This study aims to uncover novel substrates of PTP1B in podocytes and validate a leading candidate. To this end, using substrate-trapping and mass spectroscopy, we identified putative substrates of this phosphatase and investigated the actin cross-linking cytoskeletal protein alpha-actinin4. PTP1B and alpha-actinin4 co-localized in murine and human glomeruli and transiently transfected E11 podocyte cells. Additionally, podocyte PTP1B deficiency in vivo and culture was associated with elevated tyrosine phosphorylation of alpha-actinin4. Conversely, reconstitution of the knockdown cells with PTP1B attenuated alpha-actinin4 tyrosine phosphorylation. We demonstrated co-association between alpha-actinin4 and the PTP1B substrate-trapping mutant, which was enhanced upon insulin stimulation and disrupted by vanadate, consistent with an enzyme-substrate interaction. Moreover, we identified alpha-actinin4 tandem tyrosine residues 486/487 as mediators of its interaction with PTP1B. Furthermore, knockdown studies in E11 cells suggest that PTP1B and alpha-actinin4 are modulators of podocyte motility. These observations indicate that PTP1B and alpha-actinin4 are likely interacting partners in a signaling node that modulates podocyte function. Targeting PTP1B and plausibly this one of its substrates may represent a new therapeutic approach for podocyte injury that warrants additional investigation.


Subject(s)
Podocytes , Humans , Animals , Mice , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Epithelial Cells , Phosphoric Monoester Hydrolases , Tyrosine
4.
Front Immunol ; 14: 1232047, 2023.
Article in English | MEDLINE | ID: mdl-37936713

ABSTRACT

Background: Protein tyrosine phosphatase non-receptor type 1 (PTPN1), a member of the protein tyrosine phosphatase superfamily, has been identified as an oncogene and therapeutic target in various cancers. However, its precise role in determining the prognosis of human cancer and immunological responses remains elusive. This study investigated the relationship between PTPN1 expression and clinical outcomes, immune infiltration, and drug sensitivity in human cancers, which will improve understanding regarding its prognostic value and immunological role in pan-cancer. Methods: The PTPN1 expression profile was obtained from The Cancer Genome Atlas and Cancer Cell Line Encyclopedia databases. Kaplan-Meier, univariate Cox regression, and time-dependent receiver operating characteristic curve analyses were utilized to clarify the relationship between PTPN1 expression and the prognosis of pan-cancer patients. The relationships between PTPN1 expression and the presence of tumor-infiltrated immune cells were analyzed using Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data and Tumor Immune Estimation Resource. The cell counting kit-8 (CCK-8) assay was performed to examine the effects of PTPN1 level on the sensitivity of breast cancer cells to paclitaxel. Immunohistochemistry and immunoblotting were used to investigate the relationship between PTPN1 expression, immune cell infiltration, and immune checkpoint gene expression in human breast cancer tissues and a mouse xenograft model. Results: The pan-cancer analysis revealed that PTPN1 was frequently up-regulated in various cancers. High PTPN1 expression was associated with poor prognosis in most cancers. Furthermore, PTPN1 expression correlated highly with the presence of tumor-infiltrating immune cells and the expression of immune checkpoint pathway marker genes in different cancers. Furthermore, PTPN1 significantly predicted the prognosis for patients undergoing immunotherapy. The results of the CCK-8 viability assay revealed that PTPN1 knockdown increased the sensitivity of MDA-MB-231 and MCF-7 cells to paclitaxel. Finally, our results demonstrated that PTPN1 was associated with immune infiltration and immune checkpoint gene expression in breast cancer. Conclusion: PTPN1 was overexpressed in multiple cancer types and correlated with the clinical outcome and tumor immunity, suggesting it could be a valuable potential prognostic and immunological biomarker for pan-cancer.


Subject(s)
Breast Neoplasms , Humans , Animals , Mice , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Prognosis , Oncogenes , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Protein Tyrosine Phosphatases , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
5.
Mol Cell Biol ; 43(12): 631-649, 2023.
Article in English | MEDLINE | ID: mdl-38014992

ABSTRACT

PTP1B plays a key role in developing different types of cancer. However, the molecular mechanism underlying this effect is unclear. To identify molecular targets of PTP1B that mediate its role in tumorigenesis, we undertook a SILAC-based phosphoproteomic approach, which allowed us to identify Cdk3 as a novel PTP1B substrate. Substrate trapping experiments and docking studies revealed stable interactions between the PTP1B catalytic domain and Cdk3. In addition, we observed that PTP1B dephosphorylates Cdk3 at tyrosine residue 15 in vitro and interacts with it in human glioblastoma cells. Next, we found that pharmacological inhibition of PTP1B or its depletion with siRNA leads to cell cycle arrest with diminished activity of Cdk3, hypophosphorylation of Rb, and the downregulation of E2F target genes Cdk1, Cyclin A, and Cyclin E1. Finally, we observed that the expression of a constitutively active Cdk3 mutant bypasses the requirement of PTP1B for cell cycle progression and expression of E2F target genes. These data delineate a novel signaling pathway from PTP1B to Cdk3 required for efficient cell cycle progression in an Rb-E2F dependent manner in human GB cells.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Cell Division , Signal Transduction , Cell Cycle Checkpoints , Cell Cycle/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
6.
J Mol Neurosci ; 73(11-12): 932-945, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37882913

ABSTRACT

Alzheimer's disease (AD) is a prevalently neurodegenerative disease characterized by neuronal damage which is associated with amyloid-ß (Aß) accumulation. Hederagenin is a triterpenoid saponin, exerting anti-apoptotic, anti-oxidative, anti-inflammatory, anti-tumoral, and neuroprotective activities. However, its role in AD progression is still obscure. The aim of this study was to explore the influences of hederagenin on Aß-caused neuronal injury in vitro. Neuronal cells were treated with Aß25-35 (Aß) to establish a cellular model of AD. Cell viability was assessed using cell counting kit-8 (CCK-8). Oxidative stress was evaluated by detecting reactive oxygen species (ROS) generation and superoxide dismutase (SOD) activity. Apoptosis was investigated using TUNEL staining and caspase-3 activity assays. Protein tyrosine phosphatase nonreceptor type 1 (PTPN1) was screened by bioinformatics analysis. Protein levels of PTPN1 and protein kinase B (Akt) were measured by western blotting. Hederagenin (2.5, 5, and 10 µM) alone did not affect viability of neuronal cells, but relieved Aß-induced viability reduction. Hederagenin mitigated Aß-induced increase in ROS accumulation and decrease in SOD activity. Hederagenin attenuated Aß-induced increase in apoptotic rate and caspase-3 activity. PTPN1 was screened as a target of hederagenin against AD by bioinformatics analysis. Hederagenin treatment resisted Aß-induced decrease in PTPN1 mRNA and protein levels in neuronal cells. PTPN1 silencing attenuated the suppressive functions of hederagenin in Aß-stimulated oxidative stress and apoptosis. Hederagenin mitigated Aß-induced Akt signaling inactivation by upregulating PTPN1 expression. In conclusion, hederagenin attenuates oxidative stress and apoptosis in neuronal cells stimulated with Aß by promoting PTPN1/Akt signaling activation.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Humans , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Neurodegenerative Diseases/drug therapy , Phosphoric Monoester Hydrolases , Caspase 3/metabolism , Oxidative Stress , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Apoptosis , Superoxide Dismutase-1/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Peptide Fragments/toxicity , Peptide Fragments/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/therapeutic use
7.
J Endocrinol ; 259(1)2023 09 01.
Article in English | MEDLINE | ID: mdl-37466473

ABSTRACT

Polycystic ovary syndrome (PCOS) is one of the most common causes of infertility in women. Approximately half of the diagnosed individuals also experience the metabolic syndrome. Central and peripheral resistance to the hormones insulin and leptin have been reported to contribute to both metabolic and reproductive dysregulation. In PCOS and preclinical PCOS animal models, circulating insulin and leptin levels are often increased in parallel with the development of hormone resistance; however, it remains uncertain whether these changes contribute to the PCOS state. In this study, we tested whether central actions of protein tyrosine phosphatase 1B (PTP1B) and suppressor of cytokine signaling 3 (SOCS3), negative regulators of insulin and leptin signaling pathways, respectively, play a role in the development of PCOS-like phenotype. A peripubertal dihydrotestosterone (DHT) excess PCOS-like mouse model was used, which exhibits both metabolic and reproductive dysfunction. Mice with knockout of the genes encoding PTP1B and SOCS3 from forebrain neurons were generated, and metabolic and reproductive functions were compared between knockout and control groups. DHT treatment induced mild insulin resistance but not leptin resistance, so the role of SOCS3 could not be tested. As expected, DHT excess abolished estrous cycles and corpora lutea presence and caused increased visceral adiposity and fasting glucose levels. Knockout mice did not show any rescue of reproductive dysfunction but did have reduced adiposity compared to the control DHT mice. These data suggest that negative regulation of central insulin signaling by PTP1B is not responsible for peripubertal DHT excess-induced reproductive impairments but may mediate its increased adiposity effects.


Subject(s)
Polycystic Ovary Syndrome , Animals , Female , Humans , Mice , Dihydrotestosterone/pharmacology , Disease Models, Animal , Insulin , Mice, Knockout , Neurons/metabolism , Obesity/complications , Polycystic Ovary Syndrome/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
8.
Nat Commun ; 14(1): 4524, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37500611

ABSTRACT

The inhibition of protein tyrosine phosphatases 1B (PTP1B) and N2 (PTPN2) has emerged as an exciting approach for bolstering T cell anti-tumor immunity. ABBV-CLS-484 is a PTP1B/PTPN2 inhibitor in clinical trials for solid tumors. Here we have explored the therapeutic potential of a related small-molecule-inhibitor, Compound-182. We demonstrate that Compound-182 is a highly potent and selective active site competitive inhibitor of PTP1B and PTPN2 that enhances T cell recruitment and activation and represses the growth of tumors in mice, without promoting overt immune-related toxicities. The enhanced anti-tumor immunity in immunogenic tumors can be ascribed to the inhibition of PTP1B/PTPN2 in T cells, whereas in cold tumors, Compound-182 elicited direct effects on both tumor cells and T cells. Importantly, treatment with Compound-182 rendered otherwise resistant tumors sensitive to α-PD-1 therapy. Our findings establish the potential for small molecule inhibitors of PTP1B and PTPN2 to enhance anti-tumor immunity and combat cancer.


Subject(s)
Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Mice , Animals , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Phosphoric Monoester Hydrolases , Neoplasms/drug therapy , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , T-Lymphocytes/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
9.
J Biol Chem ; 299(5): 104731, 2023 05.
Article in English | MEDLINE | ID: mdl-37080392

ABSTRACT

The identification of substrates for protein tyrosine phosphatases (PTPs) is critical for a complete understanding of how these enzymes function. In a recent study in the JBC, Bonham et al. developed a modified method combining substrate-trapping mutations with proximity-labeling MS to identify the protein substrates and interactors of PTP1B. This method revealed interaction networks in breast cancer cell models and discovered novel targets of PTP1B that regulate HER2 signaling pathways. This strategy represents a versatile new tool for identifying the functional interactions between PTPs and their substrates.


Subject(s)
Protein Tyrosine Phosphatases , Signal Transduction , Phosphorylation , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Proteins/metabolism , Mutation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Substrate Specificity
10.
J Healthc Eng ; 2023: 1533794, 2023.
Article in English | MEDLINE | ID: mdl-36741874

ABSTRACT

Recently, PTP1B was identified as a novel immune checkpoint whose removal can unleash T cell responses. However, research on the influence of PTP1B as an immune regulator on liver cancer is limited. This study aimed to investigate the immunological correlation and function of PTP1B in liver cancer. The expression profiles and corresponding clinical information of liver cancer patients were obtained from the TCGA and ICGC databases. GSE146115 and GSE98638 retrieved from the GEO database were used for the single-cell RNA-seq analysis. The mRNA expression of PTP1B (PTPN1) was increased in patients with most malignancies (all p < 0.05), including liver cancer (p < 0.001). Furthermore, up-regulated PTPN1 was connected to advanced tumor stage (p < 0.05) and worse prognosis (p < 0.01) in liver cancer. Through Cox regression analysis, PTPN1 was considered as an independent prognosis factor of overall survival (p < 0.05) and acted as a high-risk factor (hazard ratio > 1). Gene function and pathway analysis suggested PTPN1 was involved in T cell-related immune responses. Moreover, a close relationship was also found between PTPN1 expression and immune checkpoints as well as immune cells, especially with T cell-related checkpoints (all p < 0.001) and T cells (all p < 0.001). Single-cell RNA-seq analysis further illustrated that the enrichment of PTPN1 in the T cell population may be linked to its exhaustion in the liver cancer microenvironment. Overall, PTPN1 (PTP1B) closely related to T cell may function as an immunotherapy target for liver cancer.


Subject(s)
Liver Neoplasms , T-Lymphocytes , Humans , Prognosis , Biomarkers , Risk Factors , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Tumor Microenvironment , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
11.
Arch Oral Biol ; 147: 105615, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36630765

ABSTRACT

OBJECTIVE: Head and neck squamous cell carcinoma (HNSCC), is one of the malignant tumors with high recurrence and metastasis. The family with sequence similarity (FAM) of non-coding RNAs promoted tumorigenesis and metastasis. But so far, long non-coding RNA (lncRNA) FAM239A's function in HNSCC regulation remains unclear. This study aimed to explore the lncRNA FAM239A function and regulation mechanism in HNSCC cell proliferation and migration. DESIGN: The expression level of lncRNA FAM239A and tyrosine phosphatase Src homology 2 domain-containing phosphatase 2 (SHP2) in HNSCC tumor tissue was tested by quantitative polymerase chain reaction. The cell proliferation and migration were tested by cell counting kit 8, kinetic live cell assay, and wound healing assay. The differential expression of SHP2 and immune infiltration in HNSCC were analyzed in the tumor immune estimation response and human protein atlas databases. And the survival analysis of SHP2 in HNSCC was analyzed in the gene expression profiling interactive analysis 2 databases. The SHP2 expression was tested by western blotting when lncRNA FAM239A overexpression and knockdown. RESULTS: LncRNA FAM239A and SHP2 were ectopically expressed in HNSCC tumor tissue. Cell proliferation and wound healing assays showed that lncRNA FAM239A promoted tumor cell proliferation and migration. SHP2 was overexpressed in HNSCC tumor tissue by database analyses, and the higher SHP2 expression caused poorer overall survival and disease-free survival in HNSCC patients. SHP2 expression was positively regulated by lncRNA FAM239A. CONCLUSIONS: LncRNA FAM239A promoted HNSCC cell proliferation and migration through upregulating SHP2 expression, which potentially provided new regulators for HNSCC.


Subject(s)
Head and Neck Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , RNA, Long Noncoding , Humans , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
12.
Cells ; 12(2)2023 01 14.
Article in English | MEDLINE | ID: mdl-36672250

ABSTRACT

Bone morphogenic protein receptor 2 (BMPR2) expression and signaling are impaired in pulmonary arterial hypertension (PAH). How BMPR2 signaling is decreased in PAH is poorly understood. Protein tyrosine phosphatases (PTPs) play important roles in vascular remodeling in PAH. To identify whether PTPs modify BMPR2 signaling, we used a siRNA-mediated high-throughput screening of 22,124 murine genes in mouse myoblastoma reporter cells using ID1 expression as readout for BMPR2 signaling. We further experimentally validated the top hit, PTPN1 (PTP1B), in healthy human pulmonary arterial endothelial cells (PAECs) either silenced by siRNA or exposed to hypoxia and confirmed its relevance to PAH by measuring PTPN1 levels in blood and PAECs collected from PAH patients. We identified PTPN1 as a novel regulator of BMPR2 signaling in PAECs, which is downregulated in the blood of PAH patients, and documented that downregulation of PTPN1 is linked to endothelial dysfunction in PAECs. These findings point to a potential involvement for PTPN1 in PAH and will aid in our understanding of the molecular mechanisms involved in the disease.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Vascular Diseases , Animals , Humans , Mice , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Endothelial Cells/metabolism , Hypertension, Pulmonary/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/metabolism , RNA, Small Interfering/metabolism , Vascular Diseases/metabolism
13.
Free Radic Biol Med ; 194: 147-159, 2023 01.
Article in English | MEDLINE | ID: mdl-36462629

ABSTRACT

Reactive oxygen species (ROS), released as byproducts of mitochondrial metabolism or as products of NADPH oxidases and other processes, can directly oxidize the active-site cysteine (Cys) residue of protein tyrosine phosphatases (PTPs) in a mammalian cell. Robust degradation of irreversibly oxidized PTPs is essential for preventing accumulation of these permanently inactive enzymes. However, the mechanism underlying the degradation of these proteins was unknown. In this study, we found that the active-site Cys215 of endogenous PTP1B is sulfonated in H9c2 cardiomyocytes under physiological conditions. The sulfonation of Cys215 led PTP1B to exhibit a conformational change, and drive the subsequent ubiquitination and degradation of this protein. We then discovered that Cullin1, an E3 ligase, interacts with the Cys215-sulfonated PTP1B. The functional impairment of Cullin1 prevented PTP1B from oxidation-dependent ubiquitination and degradation in H9c2 cells. Moreover, delivery of the terminally oxidized PTP1B resulted in proteotoxicity-caused injury in the affected cells. In conclusion, we elucidate how sulfonation of the active-site Cys215 can direct turnover of endogenous PTP1B through the engagement of ubiquitin-proteasome system. These data highlight a novel mechanism that maintains PTP homeostasis in cardiomyocytes with constitutive ROS production.


Subject(s)
Cysteine , Ubiquitin-Protein Ligases , Animals , Cysteine/metabolism , Reactive Oxygen Species , Protein Tyrosine Phosphatases , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Mammals/metabolism
14.
Pediatr Res ; 93(7): 2036-2044, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36369476

ABSTRACT

BACKGROUND: To study the associations of Protein Tyrosine Phosphatase-N1 (PTPN1) polymorphisms with obesity-related phenotypes in European adolescents, and the influence of physical activity on these relationships. METHODS: Five polymorphisms of PTPN1 were genotyped in 1057 European adolescents (12-18 years old). We measured several phenotypes related to obesity, such as adiposity markers, and biochemical and clinical parameters. Physical activity was objectively measured by accelerometry. RESULTS: The T, A, T, T and G alleles of the rs6067472, rs10485614, rs2143511, rs6020608 and rs968701 polymorphisms, respectively, were associated with lower levels of obesity-related phenotypes (i.e., body mass index, body fat percentage, hip circumference, fat mass index, systolic blood pressure and leptin) in European adolescents. In addition, the TATTG haplotype was associated with lower body fat percentage and fat mass index compared to the AACCA haplotype. Finally, when physical activity levels were considered, alleles of the rs6067472, rs2143511, rs6020608 and rs968701 polymorphisms were only associated with lower adiposity in active adolescents. CONCLUSIONS: PTPN1 polymorphisms were associated with adiposity in European adolescents. Specifically, alleles of these polymorphisms were associated with lower adiposity only in physically active adolescents. Therefore, meeting the recommendations of daily physical activity may reduce obesity risk by modulating the genetic predisposition to obesity. IMPACT: Using gene-phenotype and gene*environment analyses, we detected associations between polymorphisms of the Protein Tyrosine Phosphatase-N1 (PTPN1) gene and obesity-related phenotypes, suggesting a mechanism that can be modulated by physical activity. This study shows that genetic variability of PTPN1 is associated with adiposity, while physical activity seems to modulate the genetic predisposition. This brings insights about the mechanisms by which physical activity positively influences obesity.


Subject(s)
Genetic Predisposition to Disease , Obesity , Humans , Obesity/genetics , Adiposity/genetics , Exercise , Phenotype , Body Mass Index , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
15.
Biomed Khim ; 68(6): 427-436, 2022 Dec.
Article in Russian | MEDLINE | ID: mdl-36573409

ABSTRACT

Functional disorders in obesity are largely due to a decrease in tissue sensitivity to insulin and leptin. One of the ways to restore it is inhibition of protein phosphotyrosine phosphatase 1B (PTP1B) and T-cell protein phosphotyrosine phosphatase (TCPTP), negative regulators of the insulin and leptin signaling. Despite progress in the development of inhibitors of these phosphatases, commercial preparations based on them have not been developed yet, and the mechanisms of action are poorly understood. The aim of the work was to study the effect of new derivatives of 4-oxo-1,4-dihydrocinnoline (PI04, PI06, PI07) on the activity of PTP1B and TCPTP, as well as to study the effect of their five-day administration (i.p., 10 mg/kg/day) to Wistar rats with diet-induced obesity on body weight and fat, metabolic and hormonal parameters, and gene expression of phosphatase and insulin and leptin receptors in the liver. It has been shown that PI04 is a mild, low selective inhibitor of both phosphatases (PTP1B, IC50=3.42(2.60-4.51) µM; TCPTP, IC50=4.16(3.49-4.95) µM), while PI06 and PI07 preferentially inhibit PTP1B (IC50=3.55 (2.63-4.78) µM) and TCPTP (IC50=1.45(1.18-1.78) µM), respectively. PI04 significantly reduced food intake, body weight and fat, attenuated hyperglycemia, normalized glucose tolerance, basal and glucose-stimulated levels of insulin and leptin, and insulin resistance index. Despite the anorexigenic effect, PI06 and PI07 were less effective, having little effect on glucose homeostasis and insulin sensitivity. PI04 significantly increased the expression of the PTP1B and TCPTP genes and decreased the expression of the insulin and leptin receptor genes. PI06 and PI07 had little effect on these indicators. Thus, PI04, the inhibitor of PTP1B and TCPTP phosphatases, restored metabolic and hormonal parameters in obese rats with greater efficiency than inhibitors of PTP1B (PI06) and TCPTP (PI07). This indicates the prospect of creating mixed PTP1B/TCPTP inhibitors for correction of metabolic disorders.


Subject(s)
Insulin Resistance , Leptin , Animals , Rats , Enzyme Inhibitors/pharmacology , Glucose/metabolism , Insulin/metabolism , Leptin/metabolism , Obesity/drug therapy , Obesity/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Rats, Wistar , T-Lymphocytes , Tyrosine
16.
Nat Commun ; 13(1): 6092, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36241662

ABSTRACT

Insulin signaling is mediated via a network of protein phosphorylation. Dysregulation of this network is central to obesity, type 2 diabetes and metabolic syndrome. Here we investigate the role of phosphatase binding protein Alpha4 (α4) that is essential for the serine/threonine protein phosphatase 2A (PP2A) in insulin action/resistance in adipocytes. Unexpectedly, adipocyte-specific inactivation of α4 impairs insulin-induced Akt-mediated serine/threonine phosphorylation despite a decrease in the protein phosphatase 2A (PP2A) levels. Interestingly, loss of α4 also reduces insulin-induced insulin receptor tyrosine phosphorylation. This occurs through decreased association of α4 with Y-box protein 1, resulting in the enhancement of the tyrosine phosphatase protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, adipocyte-specific knockout of α4 in male mice results in impaired adipogenesis and altered mitochondrial oxidation leading to increased inflammation, systemic insulin resistance, hepatosteatosis, islet hyperplasia, and impaired thermogenesis. Thus, the α4 /Y-box protein 1(YBX1)-mediated pathway of insulin receptor signaling is involved in maintaining insulin sensitivity, normal adipose tissue homeostasis and systemic metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Adipocytes/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Homeostasis , Insulin/metabolism , Male , Mice , Phosphorylation , Protein Phosphatase 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Serine/metabolism , Threonine/metabolism , Tyrosine/metabolism
17.
Thromb Haemost ; 122(10): 1814-1826, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36075234

ABSTRACT

BACKGROUND: Smooth muscle cell (SMC) phenotype switching plays a central role during vascular remodeling. Growth factor receptors are negatively regulated by protein tyrosine phosphatases (PTPs), including its prototype PTP1B. Here, we examine how reduction of PTP1B in SMCs affects the vascular remodeling response to injury. METHODS: Mice with inducible PTP1B deletion in SMCs (SMC.PTP1B-KO) were generated by crossing mice expressing Cre.ERT2 recombinase under the Myh11 promoter with PTP1Bflox/flox mice and subjected to FeCl3 carotid artery injury. RESULTS: Genetic deletion of PTP1B in SMCs resulted in adventitia enlargement, perivascular SMA+ and PDGFRß+ myofibroblast expansion, and collagen accumulation following vascular injury. Lineage tracing confirmed the appearance of Myh11-Cre reporter cells in the remodeling adventitia, and SCA1+ CD45- vascular progenitor cells increased. Elevated mRNA expression of transforming growth factor ß (TGFß) signaling components or enzymes involved in extracellular matrix remodeling and TGFß liberation was seen in injured SMC.PTP1B-KO mouse carotid arteries, and mRNA transcript levels of contractile SMC marker genes were reduced already at baseline. Mechanistically, Cre recombinase (mice) or siRNA (cells)-mediated downregulation of PTP1B or inhibition of ERK1/2 signaling in SMCs resulted in nuclear accumulation of KLF4, a central transcriptional repressor of SMC differentiation, whereas phosphorylation and nuclear translocation of SMAD2 and SMAD3 were reduced. SMAD2 siRNA transfection increased protein levels of PDGFRß and MYH10 while reducing ERK1/2 phosphorylation, thus phenocopying genetic PTP1B deletion. CONCLUSION: Chronic reduction of PTP1B in SMCs promotes dedifferentiation, perivascular fibrosis, and adverse remodeling following vascular injury by mechanisms involving an ERK1/2 phosphorylation-driven shift from SMAD2 to KLF4-regulated gene transcription.


Subject(s)
Muscle, Smooth, Vascular , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Vascular System Injuries , Animals , Cells, Cultured , Fibrosis , Mice , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Recombinases/metabolism , Transforming Growth Factor beta/metabolism , Vascular Remodeling , Vascular System Injuries/genetics , Vascular System Injuries/metabolism , Vascular System Injuries/pathology
18.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806064

ABSTRACT

Human protein tyrosine phosphatase 1B (PTP1B) is a ubiquitous non-receptor tyrosine phosphatase that serves as a major negative regulator of tyrosine phosphorylation cascades of metabolic and oncogenic importance such as the insulin, epidermal growth factor receptor (EGFR), and JAK/STAT pathways. Increasing evidence point to a key role of PTP1B-dependent signaling in cancer. Interestingly, genetic defects in PTP1B have been found in different human malignancies. Notably, recurrent somatic mutations and splice variants of PTP1B were identified in human B cell and Hodgkin lymphomas. In this work, we analyzed the molecular and functional levels of three PTP1B mutations identified in primary mediastinal B cell lymphoma (PMBCL) patients and located in the WPD-loop (V184D), P-loop (R221G), and Q-loop (G259V). Using biochemical, enzymatic, and molecular dynamics approaches, we show that these mutations lead to PTP1B mutants with extremely low intrinsic tyrosine phosphatase activity that display alterations in overall protein stability and in the flexibility of the active site loops of the enzyme. This is in agreement with the key role of the active site loop regions, which are preorganized to interact with the substrate and to enable catalysis. Our study provides molecular and enzymatic evidence for the loss of protein tyrosine phosphatase activity of PTP1B active-site loop mutants identified in human lymphoma.


Subject(s)
Lymphoma, B-Cell , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Catalytic Domain , Humans , Lymphoma, B-Cell/genetics , Mutation , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Tyrosine/metabolism
19.
Appl Biochem Biotechnol ; 194(10): 4683-4701, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35819691

ABSTRACT

Insulin resistance (IR) is a condition of impaired response of cells towards insulin. It is marked by excessive blood glucose, dysregulated insulin signalling, altered pathways, damaged pancreatic ß-cells, metabolic disorders, etc. Chronic hyperglycemic conditions leads to type 2 diabetes mellitus (T2DM) which causes excess generation of highly reactive free radicals, causing oxidative stress, further leading to development and progression of complications like vascular dysfunction, damaged cellular proteins, and DNA. One of the causes for IR is dysregulation of protein tyrosine phosphatase 1B (PTP1B). Advancements in drug therapeutics have helped people manage IR by regulating PTP1B, however have been reported to cause side effects. Therefore, there is a growing interest on usage of phytochemical constituents having IR therapeutic properties and aiding to minimize these complications. Medicinal plants have not been utilized to their full potential as a therapeutic drug due to lack of knowledge of their active and effective chemical constituents, mode of action, regulation of IR parameters, and dosage of administration. This review highlights phytochemical constituents present in medicinal plants or spices, their potential effectiveness on proteins (PTP1B) regulating IR, and reported possible mechanism of action studied on in vitro models. The study gives current knowledge and future recommendations on the above aspects and is expected to be beneficial in developing herbal drug using these phytochemical constituents, either alone or in combination, for medication of IR and diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Synthetic Drugs , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Humans , Insulin/metabolism , Phosphoric Monoester Hydrolases/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Synthetic Drugs/therapeutic use
20.
Cell Death Differ ; 29(12): 2362-2380, 2022 12.
Article in English | MEDLINE | ID: mdl-35681014

ABSTRACT

Activation of oval cells (OCs) has been related to hepatocyte injury during chronic liver diseases including non-alcoholic fatty liver disease (NAFLD). However, OCs plasticity can be affected under pathological environments. We previously found protection against hepatocyte cell death by inhibiting protein tyrosine phosphatase 1B (PTP1B). Herein, we investigated the molecular and cellular processes involved in the lipotoxic susceptibility in OCs expressing or not PTP1B. Palmitic acid (PA) induced apoptotic cell death in wild-type (Ptpn1+/+) OCs in parallel to oxidative stress and impaired autophagy. This lipotoxic effect was attenuated in OCs lacking Ptpn1 that showed upregulated antioxidant defences, increased unfolded protein response (UPR) signaling, higher endoplasmic reticulum (ER) content and elevated stearoyl CoA desaturase (Scd1) expression and activity. These effects in Ptpn1-/- OCs concurred with an active autophagy, higher mitochondrial efficiency and a molecular signature of starvation, favoring lipid droplet (LD) formation and dynamics. Autophagy blockade in Ptpn1-/- OCs reduced Scd1 expression, mitochondrial fitness, LD formation and restored lipoapoptosis, an effect also recapitulated by Scd1 silencing. PTP1B immunostaining was detected in OCs from mouse liver and, importantly, LDs were found in OCs from Ptpn1-/- mice with NAFLD. In conclusion, we demonstrated that Ptpn1 deficiency restrains lipoapoptosis in OCs through a metabolic rewiring towards a "starvation-like" fate, favoring autophagy, mitochondrial fitness and LD formation. Dynamic LD-lysosomal interations likely ensure lipid recycling and, overall, these adaptations protect against lipotoxicity. The identification of LDs in OCs from Ptpn1-/- mice with NAFLD opens therapeutic perspectives to ensure OC viability and plasticity under lipotoxic liver damage.


Subject(s)
Non-alcoholic Fatty Liver Disease , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Animals , Mice , Hepatocytes/metabolism , Lipid Droplets/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Palmitic Acid/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Gene Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...