Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 981
Filter
1.
J Cell Mol Med ; 28(18): e70096, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39289804

ABSTRACT

Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide, characterized by excess lipid deposition. Insulin resistance (IR) serves as a fundamental pathogenic factor in MAFLD. However, currently, there are no approved specific agents for its treatment. Farrerol, a novel compound with antioxidant and anti-inflammatory effects, has garnered significant attention in recent years due to its hepatoprotective properties. Despite this, the precise underlying mechanisms of action remain unclear. In this study, a network pharmacology approach predicted protein tyrosine phosphatase non-receptor type 1 (PTPN1) as a potential target for farrerol's action in the liver. Subsequently, the administration of farrerol improved insulin sensitivity and glucose tolerance in MAFLD mice. Furthermore, farrerol alleviated lipid accumulation by binding to PTPN1 and reducing the dephosphorylation of the insulin receptor (INSR) in HepG2 cells and MAFLD mice. Thus, the phosphoinositide 3-kinase/serine/threonine-protein kinases (PI3K/AKT) signalling pathway was active, leading to downstream protein reduction. Overall, the study demonstrates that farrerol alleviates insulin resistance and hepatic steatosis of MAFLD by targeting PTPN1.


Subject(s)
Insulin Resistance , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Animals , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Humans , Mice , Hep G2 Cells , Male , Signal Transduction/drug effects , Fatty Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/pathology , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Liver/metabolism , Liver/drug effects , Liver/pathology , Phosphatidylinositol 3-Kinases/metabolism , Receptor, Insulin/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Lipid Metabolism/drug effects , Phosphorylation/drug effects
2.
Nutrients ; 16(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39275157

ABSTRACT

As part of our ongoing research on new anti-diabetic compounds from ethnopharmacologically consumed plants, two previously undescribed lupane-type triterpenoids (1 and 2) with dicarboxylic groups, an undescribed nor-taraxastane-type triterpenoid (3), and 14 known compounds (4-17) were isolated from the leaves of Cleistocalyx operculatus. Extensive spectroscopic analysis (IR, HRESIMS, 1D, and 2D NMR) was used for structure elucidation, while the known compounds were compared to reference data reported in the scientific literature. All the isolates (1-17) were evaluated for their inhibitory effects on the protein tyrosine phosphatase 1B (PTP1B) enzyme. Compounds 6, 9, and 17 showed strong PTP1B inhibitory activities. The mechanism of PTP1B inhibition was studied through enzyme kinetic experiments. A non-competitive mechanism of inhibition was determined using Lineweaver-Burk plots for compounds 6, 9, and 17. Additionally, Dixon plots were employed to determine the inhibition constant. Further insights were gained through a structure-activity relationship study and molecular docking analysis of isolated compounds with the PTP1B crystal structure. Moreover, all isolates (1-17) were tested for their stimulatory effects on the uptake of 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) in differentiated 3T3-L1 adipocyte cells. Compounds 6, 13, and 17 exhibited strong glucose absorption stimulation activity in a dose-dependent manner.


Subject(s)
3T3-L1 Cells , Glucose , Molecular Docking Simulation , Plant Leaves , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Plant Leaves/chemistry , Mice , Animals , Glucose/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Syzygium/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Structure-Activity Relationship , Computer Simulation
3.
Int Immunopharmacol ; 140: 112802, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39088924

ABSTRACT

BACKGROUND: Formononetin (FNT) is an isoflavone known for its anti-inflammatory properties and has been shown to reduce insulin resistance in Type 2 Diabetes Mellitus (T2DM). However, its effects and the underlying mechanisms in diabetic liver injury remain largely unexplored. METHODS: We established a T2DM-induced liver injury mouse model by feeding high-fat diet, followed by injecting streptozotocin. The mice were then treated with FNT and the liver function in these mice was assessed. Macrophage markers in FNT-treated T2DM mice or human THP-1 cells were evaluated using flow cytometry, RT-qPCR, and Western blotting. The expression of PTP1B and STAT6 in mouse liver tissues and THP-1 cells was analyzed. Molecular docking predicted the interaction between PTP1B and STAT6, which was validated via co-immunoprecipitation (Co-IP) and phos-tag analysis. Microscale thermophoresis (MST) assessed the binding affinity of FNT to PTP1B. RESULTS: FNT treatment significantly ameliorated blood glucose levels, hepatocyte apoptosis, inflammatory response, and liver dysfunction in T2DM mice. Moreover, FNT facilitated M2 macrophage polarization in both T2DM mice and high glucose (HG)-induced THP-1-derived macrophages. The PTP1B/STAT6 axis, deregulated in T2DM mice, was normalized by FNT treatment, which counteracted the T2DM-induced upregulation of PTP1B and downregulation of phosphorylated STAT6. Molecular docking and subsequent analyses revealed that PTP1B binds to and dephosphorylates STAT6 at the S325A site. In contrast, FNT strongly binds to PTP1B and influences its expression at the K116A site, promoting M2 polarization of THP-1 cells via downregulation of PTP1B. CONCLUSION: Formononetin mitigates diabetic hepatic injury by fostering M2 macrophage polarization via the PTP1B/STAT6 axis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Isoflavones , Macrophages , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Animals , Humans , Male , Mice , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Isoflavones/pharmacology , Isoflavones/therapeutic use , Liver/drug effects , Liver/pathology , Liver/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Signal Transduction/drug effects , STAT6 Transcription Factor/metabolism , Streptozocin , THP-1 Cells
4.
Nat Commun ; 15(1): 6947, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138174

ABSTRACT

Fluxes in human copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate. We herein apply an unbiased temporal evaluation of the signaling and whole genome transcriptional activities modulated by copper level fluctuations to identify potential copper sensor proteins responsible for driving these activities. We find that fluctuations in physiologically relevant copper levels modulate EGFR signal transduction and activation of the transcription factor CREB. Both intracellular and extracellular assays support Cu1+ inhibition of the EGFR phosphatase PTPN2 (and potentially PTPN1)-via ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism. We additionally show i) copper supplementation drives weak transcriptional repression of the copper importer CTR1 and ii) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper stimulated EGFR/CREB signaling and CTR1 expression.


Subject(s)
Copper Transporter 1 , Copper , Cyclic AMP Response Element-Binding Protein , ErbB Receptors , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/genetics , Copper/metabolism , Humans , Cyclic AMP Response Element-Binding Protein/metabolism , Copper Transporter 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Transcription, Genetic/drug effects
5.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 9): 210-219, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39177701

ABSTRACT

Protein tyrosine phosphatase non-receptor type 2 (PTPN2) has recently been recognized as a promising target for cancer immunotherapy. Despite extensive structural and functional studies of other protein tyrosine phosphatases, there is limited structural understanding of PTPN2. Currently, there are only five published PTPN2 structures and none are truly unbound due to the presence of a mutation, an inhibitor or a loop (related to crystal packing) in the active site. In this report, a novel crystal packing is revealed that resulted in a true apo PTPN2 crystal structure with an unbound active site, allowing the active site to be observed in a native apo state for the first time. Key residues related to accommodation in the active site became identifiable upon comparison with previously published PTPN2 structures. Structures of PTPN2 in complex with an established PTPN1 active-site inhibitor and an allosteric inhibitor were achieved through soaking experiments using these apo PTPN2 crystals. The increased structural understanding of apo PTPN2 and the ability to soak in inhibitors will aid the development of future PTPN2 inhibitors.


Subject(s)
Catalytic Domain , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Humans , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Binding Sites , Models, Molecular , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Crystallization , Apoenzymes/chemistry , Apoenzymes/metabolism , Apoenzymes/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
6.
Bioorg Med Chem Lett ; 111: 129904, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39069105

ABSTRACT

During the search for protein tyrosine phosphatase 1B (PTP1B) inhibitory compounds from the natural resources, two new serratane triterpenes, 3-O-dihydro-p-coumaroyltohogenol (1) and 21-O-acetyltohogenol (2), along with four known serratane triterpenes (3-6), were isolated from the whole plant of Huperzia serrata. The chemical structures of compounds 1 and 2 were determined by NMR study, HRMS analysis, and chemical modification. All isolates were evaluated for their PTP1B inhibitory activities. Among the isolates, compounds 1, 3, 5 and 6 exhibit moderate inhibitory activities against PTP1B. Kinetic studies demonstrated that they are competitive inhibitors. Molecular docking studies support these experimental results by showing that compounds 1, 3, 5 and 6 interact with the active site of PTP1B, clarifying the structure-activity relationship. This study suggests that serratane triterpenes from H. serrata have potential as starting skeletons for anti-diabetes or anti-obesity agents.


Subject(s)
Enzyme Inhibitors , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Triterpenes , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Structure-Activity Relationship , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Humans , Molecular Structure , Dose-Response Relationship, Drug
7.
Biochem Biophys Res Commun ; 730: 150387, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39002201

ABSTRACT

Uvaol (UV), a pentacyclic triterpene found in olives and virgin olive oil, is known for its anti-inflammatory and antioxidant effects in various disease models. While olive oil is reported to reduce obesity and insulin resistance, the specific impact of UV on liver lipid metabolism and its molecular mechanisms are not fully understood. In this study, hepatic lipid accumulation was measured using oil red O staining, and protein expression levels in liver cells were assessed via Western blot analysis. Apoptosis was evaluated through cell viability and caspase 3 activity assays. UV treatment reduced lipid accumulation, fatty acid uptake, apoptosis, and ER stress in palmitate-treated liver cells. Additionally, UV enhanced fatty acid oxidation. Mechanistically, increased SIRT6 expression and autophagy were observed in UV-treated cells. SIRT6-targeted siRNA or 3-methyladenine blocked the effects of UV in hyperlipidemic cells. In conclusion, UV improves SIRT6/autophagy signaling, reducing lipid deposition and apoptosis in liver cells under high lipid conditions. This in vitro study provides strong evidence for potential therapeutic strategies for hepatic steatosis.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Hepatocytes , Hyperlipidemias , Lipid Metabolism , Signal Transduction , Sirtuins , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/radiation effects , Lipid Metabolism/drug effects , Signal Transduction/drug effects , Endoplasmic Reticulum Stress/drug effects , Hyperlipidemias/metabolism , Hyperlipidemias/drug therapy , Sirtuins/metabolism , Sirtuins/genetics , Apoptosis/drug effects , Apoptosis/radiation effects , Autophagy/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Humans , Animals , Pentacyclic Triterpenes/pharmacology
8.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000142

ABSTRACT

Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Neoplasms/metabolism , Neoplasms/enzymology , Neoplasms/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/enzymology , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacology , Metabolic Diseases/metabolism , Metabolic Diseases/enzymology , Animals , Signal Transduction
9.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000313

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor tyrosine phosphatase best known for its role in regulating insulin and leptin signalling. Recently, knowledge on the role of PTP1B as a major regulator of multiple signalling pathways involved in cell growth, proliferation, viability and metabolism has expanded, and PTP1B is recognised as a therapeutic target in several human disorders, including diabetes, obesity, cardiovascular diseases and hematopoietic malignancies. The function of PTP1B in the immune system was largely overlooked until it was discovered that PTP1B negatively regulates the Janus kinase-a signal transducer and activator of the transcription (JAK/STAT) signalling pathway, which plays a significant role in modulating immune responses. PTP1B is now known to determine the magnitude of many signalling pathways that drive immune cell activation and function. As such, PTP1B inhibitors are being developed and tested in the context of inflammation and autoimmune diseases. Here, we provide an up-to-date summary of the molecular role of PTP1B in regulating immune cell function and how targeting its expression and/or activity has the potential to change the outcomes of immune-mediated and inflammatory disorders.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Signal Transduction , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Animals , Inflammation/metabolism , Inflammation/immunology , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism
10.
J Agric Food Chem ; 72(28): 15704-15714, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38976778

ABSTRACT

Pueraria lobata (Willd.) Ohwi, known as kudzu and used as a "longevity powder" in China, is an edible plant which is rich in flavonoids and believed to be useful for regulating blood sugar and treating diabetes, although the modes of action are unknown. Here, a total of 53 flavonoids including 6 novel compounds were isolated from kudzu using multidimensional preparative liquid chromatography. The flavonoid components were found to lower blood sugar levels, promote urine sugar levels in mice, and reduce the urine volume. Molecular docking and in vitro assays suggested that the antidiabetic effect of kudzu was attributed to at least three targets: sodium-dependent glucose transporter 2 (SGLT2), protein tyrosine phosphatase-1B (PTP1B), and alpha-glucosidase (AG). This study suggests a possible mechanism for the antidiabetic effect that may involve the synergistic action of multiple active compounds from kudzu.


Subject(s)
Flavonoids , Hypoglycemic Agents , Plant Extracts , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Pueraria , Pueraria/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Flavonoids/chemistry , Animals , Mice , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Molecular Docking Simulation , Male , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Blood Glucose/metabolism , Plants, Edible/chemistry
11.
Chem Biodivers ; 21(8): e202400699, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38860322

ABSTRACT

Astragalus kurdicus Boiss. roots are used in folk medicine for antidiabetic purposes. Different Astragalus plant metabolites have a notable potential for antidiabetic activity through varying mechanisms. Herein, this study is designed to assess the antidiabetic activity of Astragalus kurdicus total (AKM: methanol extract, yield: 14.53 %) and sub-extracts (AKB: n-butanol, AKC: chloroform, AKW: water, AKH: hexane extracts), utilizing a range of diabetes-related in vitro methodologies, and to investigate the chemical composition of the plant. The highest astragaloside and saponin content was seen in AKB extract. Among the measured saponins, the abundance of Astragaloside IV (27.41 µg/mg in AKM) was the highest in high-performance thin-layer chromatography (HPTLC) analysis. Furthermore, flavonoid-rich AKC was found to be mostly responsible for the high antioxidant activity. According to the results of the activity tests, AKW was the most active extract in protein tyrosine phosphatase 1 B (PTP1B), dipeptidyl peptidase IV (DPP4), and α-amylase inhibition tests (percent inhibitions are: 87.17 %, 82.4 %, and 91.49 % respectively, at 1 mg/mL). AKM and AKW demonstrated the highest efficacy in stimulating the growth of prebiotic microorganisms and preventing the formation of advanced glycation end products (AGEs). Thus, for the first time, the antidiabetic activity of A. kurdicus was evaluated from various perspectives.


Subject(s)
Astragalus Plant , Hypoglycemic Agents , Plant Extracts , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Astragalus Plant/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Saponins/pharmacology , Saponins/chemistry , Saponins/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification
12.
Nature ; 631(8020): 415-423, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38867038

ABSTRACT

Directed cell migration is driven by the front-back polarization of intracellular signalling1-3. Receptor tyrosine kinases and other inputs activate local signals that trigger membrane protrusions at the front2,4-6. Equally important is a long-range inhibitory mechanism that suppresses signalling at the back to prevent the formation of multiple fronts7-9. However, the identity of this mechanism is unknown. Here we report that endoplasmic reticulum-plasma membrane (ER-PM) contact sites are polarized in single and collectively migrating cells. The increased density of these ER-PM contacts at the back provides the ER-resident PTP1B phosphatase more access to PM substrates, which confines receptor signalling to the front and directs cell migration. Polarization of the ER-PM contacts is due to microtubule-regulated polarization of the ER, with more RTN4-rich curved ER at the front and more CLIMP63-rich flattened ER at the back. The resulting ER curvature gradient leads to small and unstable ER-PM contacts only at the front. These contacts flow backwards and grow to large and stable contacts at the back to form the front-back ER-PM contact gradient. Together, our study suggests that the structural polarity mediated by ER-PM contact gradients polarizes cell signalling, directs cell migration and prolongs cell migration.


Subject(s)
Cell Membrane , Cell Movement , Endoplasmic Reticulum , Humans , Cell Line , Cell Membrane/metabolism , Cell Polarity , Endoplasmic Reticulum/metabolism , Microtubules/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Signal Transduction
13.
Structure ; 32(8): 1231-1238.e4, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38861991

ABSTRACT

Due to their low binding affinities, detecting small-molecule fragments bound to protein structures from crystallographic datasets has been a challenge. Here, we report a trove of 65 new fragment hits for PTP1B, an "undruggable" therapeutic target enzyme for diabetes and cancer. These structures were obtained from computational analysis of data from a large crystallographic screen, demonstrating the power of this approach to elucidate many (∼50% more) "hidden" ligand-bound states of proteins. Our new structures include a fragment hit found in a novel binding site in PTP1B with a unique location relative to the active site, one that links adjacent allosteric sites, and, perhaps most strikingly, a fragment that induces long-range allosteric protein conformational responses. Altogether, our research highlights the utility of computational analysis of crystallographic data, makes publicly available dozens of new ligand-bound structures of a high-value drug target, and identifies novel aspects of ligandability and allostery in PTP1B.


Subject(s)
Allosteric Site , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Crystallography, X-Ray , Humans , Ligands , Catalytic Domain , Models, Molecular , Allosteric Regulation , Binding Sites , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/metabolism , Small Molecule Libraries/chemistry , Protein Conformation
14.
Talanta ; 277: 126399, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38876030

ABSTRACT

The misregulation of protein phosphatases is a key factor in the development of many human diseases, notably cancers. Here, based on a 100 MHz quartz crystal microbalance (QCM) biosensing platform, the dephosphorylation process of phosphopeptide (P-peptide) caused by protein tyrosine phosphatase 1B (PTP1B) was monitored in real time for the first time and PTP1B activity was assayed rapidly and sensitively. The QCM chip, coated with a gold (Au) film, was used to immobilized thiol-labeled single-stranded 5'-phosphate-DNAs (P-DNA) through Au-S bond. The P-peptide, specific to PTP1B, was then connected to the P-DNA via chelation between Zr4+ and phosphate groups. When PTP1B was injected into the QCM flow cell where the P-peptide/Zr4+/MCH/P-DNA/Au chip was placed, the P-peptide was dephosphorylated and released from the Au chip surface, resulting in an increase in the frequency of the QCM Au chip. This allowed the real-time monitoring of the P-peptide dephosphorylation process and sensitive detection of PTP1B activity within 6 min with a linear detection range of 0.01-100 pM and a detection limit of 0.008 pM. In addition, the maximum inhibitory ratios of inhibitors were evaluated using this proposed 100 MHz QCM biosensor. The developed 100 MHz QCM biosensing platform shows immense potential for early diagnosis of diseases related to protein phosphatases and the development of drugs targeting protein phosphatases.


Subject(s)
Biosensing Techniques , Phosphopeptides , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Quartz Crystal Microbalance Techniques , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/analysis , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Quartz Crystal Microbalance Techniques/methods , Phosphopeptides/analysis , Biosensing Techniques/methods , Phosphorylation , Humans , Zirconium/chemistry , Time Factors , Gold/chemistry , Enzyme Assays/methods
15.
PLoS One ; 19(6): e0306039, 2024.
Article in English | MEDLINE | ID: mdl-38924022

ABSTRACT

BACKGROUND: Spilanthes filicaulis (Schumach. & Thonn.) C. D Adam is a shrubby plant of the Asteraceae family that has medicinal benefits for the pharmaceutical and cosmetic industries. PURPOSE: The purpose of this study was to assess the effectiveness of Spilanthes filicaulis leaf extract in a streptozotocin (STZ)-induced rat model and the associated signaling pathways. METHODS: A sample of 25 male Wistar rats was randomly assigned to groups I, II, III, IV, and V. Each group included five animals, i.e., control rats, diabetic control rats, diabetic rats treated with metformin, and diabetic rats treated with 150 mg/kg/bw and 300 mg/kg/bw of the methanolic extract of S. filicaulis leaves (MESFL). Treatment was administered for 15 successive days via oral gavage. After 15 days, the rats were evaluated for fasting blood glucose (FBG), glycated hemoglobin (HbA1c), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (MDA), hexokinase, and glucose-6-phosphatase activities. Gene expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPAR-γ), kelch-like ECH-associated protein 1 (Keap1), protein tyrosine phosphatase 1B (PTP1B) and the antiapoptotic protein caspase-3 were examined. RESULTS: MESFL was administered to diabetic rats, and changes in body weight, fasting blood glucose (FBG) and HbA1c were restored. Furthermore, in diabetic rats, S. filicaulis significantly reduced the levels of triglycerides (TGs), total cholesterol (TC), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) and significantly increased HDL. S. filicaulis improved ALT, AST, and ALP enzyme activity in diabetic rats. MDA levels decreased considerably with increasing activity of antioxidant enzymes, such as GST, SOD, CAT and GSH, in diabetic liver rats treated with S. filicaulis. Diabetic rats treated with MESFL and metformin exhibited upregulated mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Kelch-like ECH-associated protein 1 (Keap1) and protein tyrosine phosphatase 1B (PTP1B) mRNA expression in the liver was downregulated in diabetic rats treated with MESFL and metformin. In addition, MESFL downregulated the mRNA expression of caspase-3 in diabetic rats. CONCLUSION: It can be concluded from the data presented in this study that MESFL exerts a protective effect on diabetic rats due to its antidiabetic, antioxidant, antihyperlipidemic and antiapoptotic effects and may be considered a treatment for T2DM.


Subject(s)
Diabetes Mellitus, Experimental , Kelch-Like ECH-Associated Protein 1 , Liver , NF-E2-Related Factor 2 , Oxidative Stress , PPAR gamma , Plant Extracts , Plant Leaves , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Rats, Wistar , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Male , Plant Extracts/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress/drug effects , Plant Leaves/chemistry , Signal Transduction/drug effects , Rats , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Liver/drug effects , Liver/metabolism , Liver/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Asteraceae/chemistry , Streptozocin , Hypoglycemic Agents/pharmacology
16.
J Enzyme Inhib Med Chem ; 39(1): 2360063, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38873930

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease mainly caused by insulin resistance, which can lead to a series of complications such as cardiovascular disease, retinopathy, and its typical clinical symptom is hyperglycaemia. Glucosidase inhibitors, including Acarbose, Miglitol, are commonly used in the clinical treatment of hypoglycaemia. In addition, Protein tyrosine phosphatase 1B (PTP1B) is also an important promising target for the treatment of T2DM. Gynostemma pentaphyllum is a well-known oriental traditional medicinal herbal plant, and has many beneficial effects on glucose and lipid metabolism. In the present study, three new and nine known dammarane triterpenoids isolated from G. pentaphyllum, and their structures were elucidated by spectroscopic methods including HR-ESI-MS,1H and 13C NMR and X-ray crystallography. All these compounds were evaluated for inhibitory activity against α-glucosidase, α-amylase and PTP1B. The results suggested that compounds 7∼10 were potential antidiabetic agents with significantly inhibition activity against PTP1B in a dose-dependent manner.


Subject(s)
Dose-Response Relationship, Drug , Enzyme Inhibitors , Gynostemma , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Gynostemma/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Molecular Structure , Structure-Activity Relationship , alpha-Glucosidases/metabolism , Humans , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Models, Molecular , Crystallography, X-Ray , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification
17.
Anal Chem ; 96(25): 10408-10415, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38863215

ABSTRACT

The abnormal expression of protein tyrosine phosphatase 1B (PTP1B) is highly related to several serious human diseases. Therefore, an accurate PTP1B activity assay is beneficial to the diagnosis and treatment of these diseases. In this study, a dual-mode biosensing platform that enabled the sensitive and accurate assay of PTP1B activity was constructed based on the high-frequency (100 MHz) quartz crystal microbalance (QCM) and dual-signaling electrochemical (EC) ratiometric strategy. Covalent-organic framework@gold nanoparticles@ferrocene@single-strand DNA (COF@Au@Fc-S0) was introduced onto the QCM Au chip via the chelation between Zr4+ and phosphate groups (phosphate group of the phosphopeptide (P-peptide) on the QCM Au chip and the phosphate group of thiol-labeled single-stranded DNA (S0) on COF@Au@Fc-S0) and used as a signal reporter. When PTP1B was present, the dephosphorylation of the P-peptide led to the release of COF@Au@Fc-S0 from the QCM Au chip, resulting in an increase in the frequency of the QCM. Meanwhile, the released COF@Au@Fc-S0 hybridized with thiol/methylene blue (MB)-labeled hairpin DNA (S1-MB) on the Au NPs-modified indium-tin oxide (ITO) electrode. This caused MB to be far away from the electrode surface and Fc to be close to the electrode, leading to a decrease in the oxidation peak current of MB and an increase in the oxidation peak current of Fc. Thus, PTP1B-induced dephosphorylation of the P-peptide was monitored in real time by QCM, and PTP1B activity was detected sensitively and reliably using this innovative QCM-EC dual-mode sensing platform with an ultralow detection limit. This platform is anticipated to serve as a robust tool for the analysis of protein phosphatase activity and the discovery of drugs targeting protein phosphatase.


Subject(s)
Electrochemical Techniques , Ferrous Compounds , Gold , Metal-Organic Frameworks , Metallocenes , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Quartz Crystal Microbalance Techniques , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/analysis , Gold/chemistry , Humans , Metal-Organic Frameworks/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Zirconium/chemistry , Enzyme Assays/methods
18.
Molecules ; 29(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930797

ABSTRACT

Pueraria lobata (P. lobata), a traditional anti-diabetic medicine mainly composed of flavonoids and isoflavones, has a long history in diabetes treatment in China. However, the anti-diabetic active component is still unclear. Recently, protein tyrosine phosphatase 1B (PTP1B) has been a hot therapeutic target by negatively regulating insulin signaling pathways. In this study, the spectrum-effect relationship analysis method was first used to identify the active components of P. lobata that inhibit PTP1B. The fingerprints of 12 batches of samples were established using high-performance liquid chromatography (HPLC), and sixty common peaks were identified. Meanwhile, twelve components were identified by a comparison with the standards. The inhibition of PTP1B activity was studied in vitro by using the p-nitrophenol method, and the partial least squares discriminant analysis, grey relational analysis, bivariate correlation analysis, and cluster analysis were used to analyze the bioactive compounds in P. lobata. Peaks 6, 9 (glycitin), 11 (genistin), 12 (4'-methoxypuerarin), 25, 34, 35, 36, 53, and 59 were considered as potentially active substances that inhibit PTP1B. The in vitro PTP1B inhibitory activity was confirmed by glycitin, genistin, and 4'-methoxypuerarin. The IC50s of the three compounds were 10.56 ± 0.42 µg/mL, 16.46 ± 0.29 µg/mL, and 9.336 ± 0.56 µg/mL, respectively, indicating the obvious PTP1B inhibitory activity. In brief, we established an effective method to identify PTP1B enzyme inhibitors in P. lobata, which is helpful in clarifying the material basis of P. lobata on diabetes. Additionally, it is evident that the spectrum-effect relationship method serves as an efficient approach for identifying active compounds, and this study can also serve as a reference for screening bioactive constituents in traditional Chinese medicine.


Subject(s)
Enzyme Inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Pueraria , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Pueraria/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Chromatography, High Pressure Liquid , Isoflavones/pharmacology , Isoflavones/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Humans
19.
FEBS Lett ; 598(15): 1811-1838, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38724486

ABSTRACT

Tyrosine protein phosphatase non-receptor type 1 (PTP1B; also known as protein tyrosine phosphatase 1B) is a member of the protein tyrosine phosphatase (PTP) family and is a soluble enzyme that plays an essential role in different physiological processes, including the regulation of metabolism, specifically in insulin and leptin sensitivity. PTP1B is crucial in the pathogenesis of type 2 diabetes mellitus and obesity. These biological functions have made PTP1B validated as an antidiabetic and anti-obesity, and potentially anticancer, molecular target. Four main approaches aim to inhibit PTP1B: orthosteric, allosteric, bidentate inhibition, and PTPN1 gene silencing. Developing a potent and selective PTP1B inhibitor is still challenging due to the enzyme's ubiquitous expression, subcellular location, and structural properties. This article reviews the main advances in the study of PTP1B since it was first isolated in 1988, as well as recent contextual information related to the PTP family to which this protein belongs. Furthermore, we offer an overview of the role of PTP1B in diabetes and obesity, and the challenges to developing selective, effective, potent, bioavailable, and cell-permeable compounds that can inhibit the enzyme.


Subject(s)
Diabetes Mellitus, Type 2 , Enzyme Inhibitors , Hypoglycemic Agents , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/genetics , Animals , Obesity/drug therapy , Obesity/metabolism , Obesity/enzymology , Obesity/genetics
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167227, 2024 06.
Article in English | MEDLINE | ID: mdl-38733774

ABSTRACT

Olanzapine (OLA) is a highly obesogenic second-generation antipsychotic (SGA). Recently we demonstrated that, contrarily to OLA oral treatment, intraperitoneal (i.p.) administration resulted in weight loss and absence of hepatic steatosis in wild-type (WT) and protein tyrosine phosphatase 1B (PTP1B)-deficient (KO) male mice. This protection relied on two central-peripheral axes connecting hypothalamic AMPK with brown/inguinal white adipose tissue (BAT/iWAT) uncoupling protein-1 (UCP-1) and hypothalamic JNK with hepatic fatty acid synthase (FAS). Herein, we addressed OLA i.p. treatment effects in WT and PTP1B-KO female mice. Contrarily to our previous results in WT females receiving OLA orally, the i.p. treatment did not induce weight gain or hyperphagia. Molecularly, in females OLA failed to diminish hypothalamic phospho-AMPK or elevate BAT UCP-1 and energy expenditure (EE) despite the preservation of iWAT browning. Conversely, OLA i.p. treatment in ovariectomized mice reduced hypothalamic phospho-AMPK, increased BAT/iWAT UCP-1 and EE, and induced weight loss as occurred in males. Pretreatment of hypothalamic neurons with 17ß-estradiol (E2) abolished OLA effects on AMPK. Moreover, neither hypothalamic JNK activation nor hepatic FAS upregulation were found in WT and PTP1B-KO females receiving OLA via i.p. Importantly, this axis was reestablished upon ovariectomy. In this line, E2 prevented OLA-induced phospho-JNK in hypothalamic neurons. These results support the role of estrogens in sex-related dimorphism in OLA treatment. This study evidenced the benefit of OLA i.p. administration in preventing its obesogenic effects in female mice that could offer clinical value.


Subject(s)
Adipose Tissue, Brown , Estrogens , Hypothalamus , Liver , Mice, Knockout , Olanzapine , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Uncoupling Protein 1 , Animals , Female , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Hypothalamus/metabolism , Hypothalamus/drug effects , Mice , Liver/metabolism , Liver/drug effects , Estrogens/metabolism , Estrogens/pharmacology , Olanzapine/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Energy Metabolism/drug effects , Injections, Intraperitoneal , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Mice, Inbred C57BL , Estradiol/pharmacology , Ovariectomy
SELECTION OF CITATIONS
SEARCH DETAIL