Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
J Med Chem ; 67(16): 13534-13549, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39110625

ABSTRACT

As an oncogenic phosphatase, SHP2 acts as a converging node in the RTK-RAS-MAPK signaling pathway in cancer cells and suppresses antitumor immunity by passing signals downstream of PD-1. Here, we utilized the extra druggable pocket outside the previously identified SHP2 allosteric tunnel site by the (6,5 fused), 6 spirocyclic system. The optimized compound, JAB-3312, exhibited a SHP2 binding Kd of 0.37 nM, SHP2 enzymatic IC50 of 1.9 nM, KYSE-520 antiproliferative IC50 of 7.4 nM and p-ERK inhibitory IC50 of 0.23 nM. For JAB-3312, an oral dose of 1.0 mg/kg QD was sufficient to achieve 95% TGI in KYSE-520 xenograft model of mouse. JAB-3312 was well-tolerated in animal models, and a close correlation was observed between the plasma concentration of JAB-3312 and the p-ERK inhibition in tumors. Currently, JAB-3312 is undergoing clinical trials as a potential anticancer agent.


Subject(s)
Antineoplastic Agents , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Humans , Animals , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemical synthesis , Mice , Allosteric Regulation/drug effects , Cell Line, Tumor , Structure-Activity Relationship , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Mice, Nude , Female , Neoplasms/drug therapy
2.
Bioorg Chem ; 151: 107661, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39067422

ABSTRACT

SHP2 (Src homology-2-containing protein tyrosine phosphatase 2) plays an important role in cell proliferation, survival, migration by affecting RAS-ERK, PI3K-AKT, JAK-STAT signaling pathways and so on. Overexpression or gene mutation of SHP2 is closely linked with a variety of cancers, making it a potential therapeutic target for cancer disease. In this paper, 30 target compounds bearing pyrido[1,2-a]pyrimidin-4-one core were synthesized via two-round design strategy by means of scaffold hopping protocol. It was evaluated the in vitro enzymatic inhibition and cell antiproliferation assay of these targets. 13a, designed in the first round, presented relatively good inhibitory activity, but its molecular rigidity might limit further improvement by hindering the formation of the desired "bidentate ligand", as revealed by molecular docking studies. In our second-round design, S atom as a linker was inserted into the core and the 7-aryl group to enhance the flexibility of the structure. The screening result revealed that 14i could exhibit high enzymatic activity against full-length SHP2 (IC50 = 0.104 µM), while showing low inhibitory effect on SHP2-PTP (IC50 > 50 µM). 14i also demonstrated high antiproliferative activity against the Kyse-520 cells (IC50 = 1.06 µM) with low toxicity against the human brain microvascular endothelial cells HBMEC (IC50 = 30.75 µM). 14i also displayed stronger inhibitory activities on NCI-H358 and MIA-PaCa2 cells compared to that of SHP099. Mechanistic studies revealed that 14i could induce cell apoptosis, arrest the cell cycle at the G0/G1 phase and downregulate the phosphorylation levels of Akt and Erk1/2 in Kyse-520 cells. Molecular docking and molecular dynamics studies displayed more detailed information on the binding mode and binding mechanism of 14i and SHP2. These data suggest that 14i has the potential to be a promising lead compound for our further investigation of SHP2 inhibitors.


Subject(s)
Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Humans , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Allosteric Regulation/drug effects , Pyrimidinones/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis
3.
J Med Chem ; 67(15): 13305-13323, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39066713

ABSTRACT

SHP2 plays a critical role in modulating tumor growth and PD-1-related signaling pathway, thereby serving as an attractive antitumor target. To date, no antitumor drugs targeting SHP2 have been approved, and hence, the search of SHP2 inhibitors with new chemical scaffolds is urgently needed. Herein, we developed a novel SHP2 allosteric inhibitor SDUY038 with a furanyl amide scaffold, demonstrating potent binding affinity (KD = 0.29 µM), enzymatic activity (IC50 = 1.2 µM) and similar binding interactions to SHP099. At the cellular level, SDUY038 exhibited pan-antitumor activity (IC50 = 7-24 µM) by suppressing pERK expression. Furthermore, SDUY038 significantly inhibited tumor growth in both xenograft and organoid models. Additionally, SDUY038 displayed acceptable bioavailability (F = 14%) and half-life time (t1/2 = 3.95 h). Conclusively, this study introduces the furanyl amide scaffold as a novel class of SHP2 allosteric inhibitors, offering promising lead compounds for further development of new antitumor therapies targeting SHP2.


Subject(s)
Amides , Antineoplastic Agents , Drug Design , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Animals , Allosteric Regulation/drug effects , Amides/pharmacology , Amides/chemistry , Amides/chemical synthesis , Mice , Cell Line, Tumor , Structure-Activity Relationship , Furans/pharmacology , Furans/chemistry , Furans/chemical synthesis , Xenograft Model Antitumor Assays , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Cell Proliferation/drug effects , Mice, Nude
4.
Sci Transl Med ; 16(753): eadj1597, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924432

ABSTRACT

Congenital pseudarthrosis of the tibia (CPT) is a severe pathology marked by spontaneous bone fractures that fail to heal, leading to fibrous nonunion. Half of patients with CPT are affected by the multisystemic genetic disorder neurofibromatosis type 1 (NF1) caused by mutations in the NF1 tumor suppressor gene, a negative regulator of RAS-mitogen-activated protein kinase (MAPK) signaling pathway. Here, we analyzed patients with CPT and Prss56-Nf1 knockout mice to elucidate the pathogenic mechanisms of CPT-related fibrous nonunion and explored a pharmacological approach to treat CPT. We identified NF1-deficient Schwann cells and skeletal stem/progenitor cells (SSPCs) in pathological periosteum as affected cell types driving fibrosis. Whereas NF1-deficient SSPCs adopted a fibrotic fate, NF1-deficient Schwann cells produced critical paracrine factors including transforming growth factor-ß and induced fibrotic differentiation of wild-type SSPCs. To counteract the elevated RAS-MAPK signaling in both NF1-deficient Schwann cells and SSPCs, we used MAPK kinase (MEK) and Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) inhibitors. Combined MEK-SHP2 inhibition in vivo prevented fibrous nonunion in the Prss56-Nf1 knockout mouse model, providing a promising therapeutic strategy for the treatment of fibrous nonunion in CPT.


Subject(s)
Mice, Knockout , Neurofibromin 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Pseudarthrosis , Schwann Cells , Animals , Female , Humans , Male , Mice , Cell Differentiation/drug effects , Fibrosis , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neurofibromatosis 1/pathology , Neurofibromatosis 1/metabolism , Neurofibromatosis 1/complications , Neurofibromin 1/metabolism , Neurofibromin 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pseudarthrosis/pathology , Pseudarthrosis/metabolism , Pseudarthrosis/congenital , Schwann Cells/metabolism , Schwann Cells/drug effects , Schwann Cells/pathology , Stem Cells/metabolism , Stem Cells/drug effects , Tibia/pathology
5.
Expert Opin Ther Pat ; 34(5): 383-396, 2024 May.
Article in English | MEDLINE | ID: mdl-38842843

ABSTRACT

INTRODUCTION: SHP2 (Src homology region 2-containing protein tyrosine phosphatase 2) is a target of interest for cancer therapy due to its key role in the regulation of the RAS/MAPK signal transduction pathway downstream of Receptor Tyrosine Kinases (RTKs). Moreover, SHP2 can inhibit T cells via the PD-1/PD-L1 pathway. SHP2 plays a critical role in numerous physiological and pathological cellular processes, such as cell proliferation, survival, and migration. AREAS COVERED: This review examines SHP2 allosteric inhibitors reported in patents published in Espacenet and Scifinder databases from 2018 to present. An overview of claimed structures is conducted, focusing attention on structural modifications compared to SHP099, the first described allosteric inhibitor of SHP2. EXPERT OPINION: Multiple potent allosteric SHP2 inhibitors have been discovered, disclosed, and tested in a variety of preclinical cancer models with strong evidence of efficacy. Fifteen compounds are currently in clinical development, but none of them have been approved for marketing. Until now, long-term benefit of SHP2 inhibitors as monotherapy agents have not been demonstrated due to acquired mechanisms of resistance and/or lack of efficacy. However, combination therapies with a variety of agents, such as MEK, BRAF, EGFR, RAS-G12C and PDL-1 inhibitors, have high potential and are currently an extensive area of investigation.


Subject(s)
Antineoplastic Agents , Drug Development , Neoplasms , Patents as Topic , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/enzymology , Allosteric Regulation/drug effects , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects
6.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892388

ABSTRACT

SHP2, a pivotal component downstream of both receptor and non-receptor tyrosine kinases, has been underscored in the progression of various human cancers and neurodevelopmental disorders. Allosteric inhibitors have been proposed to regulate its autoinhibition. However, oncogenic mutations, such as E76K, convert SHP2 into its open state, wherein the catalytic cleft becomes fully exposed to its ligands. This study elucidates the dynamic properties of SHP2 structures across different states, with a focus on the effects of oncogenic mutation on two known binding sites of allosteric inhibitors. Through extensive modeling and simulations, we further identified an alternative allosteric binding pocket in solution structures. Additional analysis provides insights into the dynamics and stability of the potential site. In addition, multi-tier screening was deployed to identify potential binders targeting the potential site. Our efforts to identify a new allosteric site contribute to community-wide initiatives developing therapies using multiple allosteric inhibitors to target distinct pockets on SHP2, in the hope of potentially inhibiting or slowing tumor growth associated with SHP2.


Subject(s)
Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Humans , Allosteric Regulation/drug effects , Allosteric Site , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Binding Sites , Molecular Dynamics Simulation , Mutation , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry
7.
Eur J Med Chem ; 275: 116579, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38889611

ABSTRACT

SHP2 is a non-receptor tyrosine phosphatase encoded by PTPN11, which performs the functions of regulating cell proliferation, differentiation, apoptosis, and survival through removing tyrosine phosphorylation and modulating various signaling pathways. The overexpression of SHP2 or its mutations is related to developmental diseases and several cancers. Numerous allosteric inhibitors with striking inhibitory potency against SHP2 allosteric pockets have recently been identified, and several SHP2 tunnel allosteric inhibitors have been applied in clinical trials to treat cancers. However, based on clinical results, the efficacy of single-agent treatments has been proven to be suboptimal. Most clinical trials involving SHP2 inhibitors have adopted drug combination strategies. This review briefly discusses the research progress on SHP2 allosteric inhibitors and pathway-dependent drug combination strategies for SHP2 in cancer therapy. In addition, we summarize the current bifunctional molecules of SHP2 and elaborate on the design and structural optimization strategies of these bifunctional molecules in detail, offering further direction for the research on novel SHP2 inhibitors.


Subject(s)
Enzyme Inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Humans , Allosteric Regulation/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Structure-Activity Relationship , Animals
8.
J Clin Invest ; 134(15)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842946

ABSTRACT

Aberrant activation of RAS/MAPK signaling is common in cancer, and efforts to inhibit pathway components have yielded drugs with promising clinical activities. Unfortunately, treatment-provoked adaptive resistance mechanisms inevitably develop, limiting their therapeutic potential. As a central node essential for receptor tyrosine kinase-mediated RAS activation, SHP2 has emerged as an attractive cancer target. Consequently, many SHP2 allosteric inhibitors are now in clinical testing. Here we discovered a previously unrecognized off-target effect associated with SHP2 allosteric inhibitors. We found that these inhibitors accumulate in the lysosome and block autophagic flux in an SHP2-independent manner. We showed that off-target autophagy inhibition by SHP2 allosteric inhibitors contributes to their antitumor activity. We also demonstrated that SHP2 allosteric inhibitors harboring this off-target activity not only suppress oncogenic RAS signaling but also overcome drug resistance such as MAPK rebound and protective autophagy in response to RAS/MAPK pathway blockage. Finally, we exemplified a therapeutic framework that harnesses both the on- and off-target activities of SHP2 allosteric inhibitors for improved treatment of mutant RAS-driven and drug-resistant malignancies such as pancreatic and colorectal cancers.


Subject(s)
Autophagy , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , ras Proteins , Animals , Humans , Mice , Allosteric Regulation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Cell Line, Tumor , MAP Kinase Signaling System/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/enzymology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , ras Proteins/metabolism , ras Proteins/genetics , Xenograft Model Antitumor Assays
9.
Int Rev Cell Mol Biol ; 386: 167-222, 2024.
Article in English | MEDLINE | ID: mdl-38782499

ABSTRACT

Historically, KRAS has been considered 'undruggable' inspite of being one of the most frequently altered oncogenic proteins in solid tumors, primarily due to the paucity of pharmacologically 'druggable' pockets within the mutant isoforms. However, pioneering developments in drug design capable of targeting the mutant KRAS isoforms especially KRASG12C-mutant cancers, have opened the doors for emergence of combination therapies comprising of a plethora of inhibitors targeting different signaling pathways. SHP2 signaling pathway, primarily known for activation of intracellular signaling pathways such as KRAS has come up as a potential target for such combination therapies as it emerged to be the signaling protein connecting KRAS and the immune signaling pathways and providing the link for understanding the overlapping regions of RAS/ERK/MAPK signaling cascade. Thus, SHP2 inhibitors having potent tumoricidal activity as well as role in immunomodulation have generated keen interest in researchers to explore its potential as combination therapy in KRAS mutant solid tumors. However, the excitement with these combination therapies need to overcome challenges thrown up by drug resistance and enhanced toxicity. In this review, we will discuss KRAS and SHP2 signaling pathways and their roles in immunomodulation and regulation of tumor microenvironment and also analyze the positive effects and drawbacks of the different combination therapies targeted at these signaling pathways along with their present and future potential to treat solid tumors.


Subject(s)
Immunomodulation , Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Signal Transduction/drug effects , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Immunomodulation/drug effects , Animals , Treatment Outcome , Molecular Targeted Therapy
10.
J Phys Chem B ; 128(21): 5175-5187, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38747619

ABSTRACT

SHP2 is a positive regulator of the EGFR-dependent Ras/MAPK pathway. It dephosphorylates a regulatory phosphorylation site in EGFR that serves as the binding site to RasGAP (RASA1 or p120RasGAP). RASA1 is activated by binding to the EGFR phosphate group. Active RASA1 deactivates Ras by hydrolyzing Ras-bound GTP to GDP. Thus, SHP2 dephosphorylation of EGFR effectively prevents RASA1-mediated deactivation of Ras, thereby stimulating proliferation. Despite knowledge of this vital regulation in cell life, mechanistic in-depth structural understanding of the involvement of SHP2, EGFR, and RASA1 in the Ras/MAPK pathway has largely remained elusive. Here we elucidate the interactions, the factors influencing EGFR's recruitment of RASA1, and SHP2's recognition of the substrate site in EGFR. We reveal that RASA1 specifically interacts with the DEpY992LIP motif in EGFR featuring a proline residue at the +3 position C-terminal to pY primarily through its nSH2 domain. This interaction is strengthened by the robust attraction of two acidic residues, E991 and D990, of EGFR to two basic residues in the BC-loop near the pY-binding pocket of RASA1's nSH2. In the stable precatalytic state of SHP2 with EGFR (DADEpY992LIPQ), the E-loop of SHP2's active site favors the interaction with the (-2)-position D990 and (-4)-position D988 N-terminal to pY992 in EGFR, while the pY-loop constrains the (+4)-position Q996 C-terminal to pY992. These specific interactions not only provide a structural basis for identifying negative regulatory sites in other RTKs but can inform selective, high-affinity active-site SHP2 inhibitors tailored for SHP2 mutants.


Subject(s)
ErbB Receptors , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , p120 GTPase Activating Protein , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , Humans , Phosphorylation , p120 GTPase Activating Protein/metabolism , p120 GTPase Activating Protein/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/metabolism , Protein Binding , Binding Sites
11.
Biomed Pharmacother ; 175: 116590, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653109

ABSTRACT

Alcohol-associated liver disease (ALD) is a leading factor of liver-related death worldwide. ALD has various manifestations that include steatosis, hepatitis, and cirrhosis and is currently without approved pharmacotherapies. The Src homology phosphatase 2 (Shp2) is a drug target in some cancers due to its positive regulation of Ras-mitogen-activated protein kinase signaling and cell proliferation. Shp2 pharmacological inhibition yields beneficial outcomes in animal disease models, but its impact on ALD remains unexplored. This study aims to investigate the effects of Shp2 inhibition and its validity using a preclinical mouse model of ALD. We report that the administration of SHP099, a potent and selective allosteric inhibitor of Shp2, partially ameliorated ethanol-induced hepatic injury, inflammation, and steatosis in mice. Additionally, Shp2 inhibition was associated with reduced ethanol-evoked activation of extracellular signal-regulated kinase (ERK), oxidative, and endoplasmic reticulum (ER) stress in the liver. Besides the liver, excessive alcohol consumption induces multi-organ injury and dysfunction, including the intestine. Notably, Shp2 inhibition diminished ethanol-induced intestinal inflammation and permeability, abrogated the reduction in tight junction protein expression, and the activation of ERK and stress signaling in the ileum. Collectively, Shp2 pharmacological inhibition mitigates the deleterious effects of ethanol in the liver and intestine in a mouse model of ALD. Given the multifactorial aspects underlying ALD pathogenesis, additional studies are needed to decipher the utility of Shp2 inhibition alone or as a component in a multitherapeutic regimen to combat this deadly malady.


Subject(s)
Disease Models, Animal , Ethanol , Liver Diseases, Alcoholic , Mice, Inbred C57BL , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Animals , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/enzymology , Liver Diseases, Alcoholic/drug therapy , Mice , Male , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Ethanol/toxicity , Liver/drug effects , Liver/pathology , Liver/enzymology , Liver/metabolism , Endoplasmic Reticulum Stress/drug effects , Oxidative Stress/drug effects
12.
Am J Hematol ; 99(6): 1040-1055, 2024 06.
Article in English | MEDLINE | ID: mdl-38440831

ABSTRACT

Myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocytosis, and primary myelofibrosis, are clonal hematopoietic neoplasms driven by mutationally activated signaling by the JAK2 tyrosine kinase. Although JAK2 inhibitors can improve MPN patients' quality of life, they do not induce complete remission as disease-driving cells persistently survive therapy. ERK activation has been highlighted as contributing to JAK2 inhibitor persistent cell survival. As ERK is a component of signaling by activated RAS proteins and by JAK2 activation, we sought to inhibit RAS activation to enhance responses to JAK2 inhibition in preclinical MPN models. We found the SHP2 inhibitor RMC-4550 significantly enhanced growth inhibition of MPN cell lines in combination with the JAK2 inhibitor ruxolitinib, effectively preventing ruxolitinib persistent growth, and the growth and viability of established ruxolitinib persistent cells remained sensitive to SHP2 inhibition. Both SHP2 and JAK2 inhibition diminished cellular RAS-GTP levels, and their concomitant inhibition enhanced ERK inactivation and increased apoptosis. Inhibition of SHP2 inhibited the neoplastic growth of MPN patient hematopoietic progenitor cells and exhibited synergy with ruxolitinib. RMC-4550 antagonized MPN phenotypes and increased survival of an MPN mouse model driven by MPL-W515L. The combination of RMC-4550 and ruxolitinib, which was safe and tolerated in healthy mice, further inhibited disease compared to ruxolitinib monotherapy, including extending survival. Given SHP2 inhibitors are undergoing clinical evaluation in patients with solid tumors, our preclinical findings suggest that SHP2 is a candidate therapeutic target with potential for rapid translation to clinical assessment to improve current targeted therapies for MPN patients.


Subject(s)
Janus Kinase 2 , Myeloproliferative Disorders , Nitriles , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Pyrazoles , Pyrimidines , Janus Kinase 2/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Animals , Myeloproliferative Disorders/drug therapy , Humans , Mice , Nitriles/therapeutic use , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Cell Line, Tumor , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology
13.
Pharmacol Res ; 201: 107096, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320736

ABSTRACT

The uncontrolled bacterial infection-induced cytokine storm and sequential immunosuppression are commonly observed in septic patients, which indicates that the activation of phagocytic cells and the efficient and timely elimination of bacteria are crucial for combating bacterial infections. However, the role of dysregulated immune cells and their disrupted function in sepsis remains unclear. Here, we found that macrophages exhibited the impaired endocytosis capabilities in sepsis by Single-cell RNA sequencing and bulk RNA sequencing. Caveolae protein Caveolin-1 (Cav-1) of macrophages was inactivated by SHP2 rapidly during Escherichia coli (E.coli) infection. Allosteric inhibitor of SHP2 effectively maintains Cav-1 phosphorylation to enhance macrophage to endocytose and eliminate bacteria. Additionally, TLR4 endocytosis of macrophage was also enhanced upon E.coli infection by SHP099, inducing an increased and rapidly resolved inflammatory response. In vivo, pretreatment or posttreatment with inhibitor of SHP2 significantly reduced the bacterial burden in organs and mortality of mice subjected E.coli infection or CLP-induced sepsis. The cotreatment of inhibitor of SHP2 with an antibiotic conferred complete protection against mortality in mice. Our findings suggest that Cav-1-mediated endocytosis and bacterial elimination may play a critical role in the pathogenesis of sepsis, highlighting inhibitor of SHP2 as a potential therapeutic agent for sepsis.


Subject(s)
Caveolae , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Sepsis , Animals , Humans , Mice , Bacteria , Caveolae/metabolism , Endocytosis , Escherichia coli Infections/drug therapy , Escherichia coli Infections/metabolism , Macrophages , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Sepsis/drug therapy , Sepsis/metabolism
14.
Chem Biodivers ; 21(4): e202301610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38379194

ABSTRACT

BACKGROUND: SHP2 is highly expressed in a variety of cancer and has emerged as a potential target for cancer therapeutic agents. The identification of uncharged pTyr mimics is an important direction for the development of SHP2 orthosteric inhibitors. METHODS: Surface plasmon resonance analysis and cellular thermal shift assay were employed to verify the direct binding of LXQ-217 to SHP2. The inhibitory effect of LXQ-217 was characterized by linear Weaver-Burke enzyme kinetic analysis and BIOVIA Discovery Studio. The inhibition of tumor cell proliferation by LXQ-217 was characterized by cell viability assay, colony formation assays and hoechst 33258 staining. The inhibition of lung cancer proliferation in vivo was studied in nude mice after oral administration of LXQ-217. RESULTS: An electroneutral bromophenol derivative, LXQ-217, was identified as a competitive SHP2 inhibitor. LXQ-217 induced apoptosis and inhibited growth of human pulmonary epithelial cells by affecting the RAS-ERK and PI3 K-AKT signaling pathways. Long-term oral administration of LXQ-217 significantly inhibited the proliferation ability of lung cancer cells in nude mice. Moreover, mice administered LXQ-217 orally at high doses exhibited no mortality or significant changes in vital signs. CONCLUSIONS: Our findings on the uncharged orthosteric inhibitor provide a foundation for further development of a safe and effective anti-lung cancer drug.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Animals , Humans , Mice , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Kinetics , Lung Neoplasms/drug therapy , Mice, Nude , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Phenols/chemical synthesis , Phenols/chemistry , Phenols/pharmacology
15.
Adv Sci (Weinh) ; 11(13): e2308166, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38247197

ABSTRACT

Tumor-associated thrombus (TAT) accounts for a high proportion of venous thromboembolism. Traditional thrombolysis and anticoagulation methods are not effective due to various complications and contraindications, which can easily lead to patients dying from TAT rather than the tumor itself. These clinical issues demonstrate the need to research diverse pathways for adjuvant thrombolysis in antitumor therapy. Previously, the phenotypic and functional transformation of monocytes/macrophages is widely reported to be involved in intratribal collagen regulation. This study finds that myeloid deficiency of the oncogene SHP2 sensitizes Ly6Clow monocyte/macrophage differentiation and can alleviate thrombus organization by increasing thrombolytic Matrix metalloproteinase (MMP) 2/9 activities. Moreover, pharmacologic inhibition by SHP099, examined in mouse lung metastatic tumor models, reduces tumor and thrombi burden in tumor metastatic lung tissues. Furthermore, SHP099 increases intrathrombus Ly6Clow monocyte/macrophage infiltration and exhibits thrombolytic function at high concentrations. To improve the thrombolytic effect of SHP099, NanoSHP099 is constructed to achieve the specific delivery of SHP099. NanoSHP099 is identified to be simultaneously enriched in tumor and thrombus foci, exerting dual tumor-suppression and thrombolysis effects. NanoSHP099 presents a superior thrombus dissolution effect than that of the same dosage of SHP099 because of the higher Ly6Clow monocyte/macrophage proportion and MMP2/MMP9 collagenolytic activities in organized thrombi.


Subject(s)
Monocytes , Thrombosis , Animals , Mice , Leukocytes , Macrophages/drug effects , Macrophages/metabolism , Monocytes/drug effects , Thrombolytic Therapy/methods , Thrombosis/metabolism , Piperidines/pharmacology , Pyrimidines/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors
16.
J Mol Biol ; 435(8): 168010, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36806475

ABSTRACT

SHP2 is a phosphatase/adaptor protein that plays an important role in various signaling pathways. Its mutations are associated with cancers and developmental diseases. SHP2 contains a protein tyrosine phosphatase (PTP) and two SH2 domains. Selective inhibition of these domains has been challenging due to the multitude of homologous proteins in the proteome. Here, we developed a monobody, synthetic binding protein, that bound to and inhibited the SHP2 PTP domain. It was selective to SHP2 PTP over close homologs. A crystal structure of the monobody-PTP complex revealed that the monobody bound both highly conserved residues in the active site and less conserved residues in the periphery, rationalizing its high selectivity. Its epitope overlapped with the interface between the PTP and N-terminal SH2 domains that is formed in auto-inhibited SHP2. By using the monobody as a probe for the accessibility of the PTP active site, we developed a simple, nonenzymatic assay for the allosteric regulation of SHP2. The assay showed that, in the absence of an activating phospho-Tyr ligand, wild-type SHP2 and the "PTP-dead" C459E mutant were predominantly in the closed state in which the PTP active site is inaccessible, whereas the E76K and C459S mutants were in the open, active state. It also revealed that previously developed monobodies to the SH2 domains, ligands lacking a phospho-Tyr, weakly favored the open state. These results provide corroboration for a conformational equilibrium underlying allosteric regulation of SHP2, provide powerful tools for characterizing and controlling SHP2 functions, and inform drug discovery against SHP2.


Subject(s)
Antineoplastic Agents , Enzyme Inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Humans , Allosteric Regulation/drug effects , Mutation , Neoplasms/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Signal Transduction , Protein Domains , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
17.
Int J Mol Sci ; 23(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35457286

ABSTRACT

Despite available treatments, breast cancer is the leading cause of cancer-related death. Knowing that the tyrosine phosphatase SHP2 is a regulator in tumorigenesis, developing inhibitors of SHP2 in breast cells is crucial. Our study investigated the effects of new compounds, purchased from NSC, on the phosphatase activity of SHP2 and the modulation of breast cancer cell lines' proliferation and viability. A combined ligand-based and structure-based virtual screening protocol was validated, then performed, against SHP2 active site. Top ranked compounds were tested via SHP2 enzymatic assay, followed by measuring IC50 values. Subsequently, hits were tested for their anti-breast cancer viability and proliferative activity. Our experiments identified three compounds 13030, 24198, and 57774 as SHP2 inhibitors, with IC50 values in micromolar levels and considerable selectivity over the analogous enzyme SHP1. Long MD simulations of 500 ns showed a very promising binding mode in the SHP2 catalytic pocket. Furthermore, these compounds significantly reduced MCF-7 breast cancer cells' proliferation and viability. Interestingly, two of our hits can have acridine or phenoxazine cyclic system known to intercalate in ds DNA. Therefore, our novel approach led to the discovery of SHP2 inhibitors, which could act as a starting point in the future for clinically useful anticancer agents.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Catalytic Domain , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Female , Humans , MCF-7 Cells , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors
18.
J Med Chem ; 65(9): 6729-6747, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35447031

ABSTRACT

The treatment of triple-negative breast cancer (TNBC) remains a huge clinical challenge and dual-targeted small-molecule drugs might provide new therapeutic options for this type of breast cancer. In this work, we discovered a series of SHP2 and CDK4 dual inhibitors through a fused pharmacophore strategy and structural optimization. Notably, lead compound 10 with excellent SHP2 (IC50 = 4.3 nM) and CDK4 (IC50 = 18.2 nM) inhibitory activities effectively induced G0/G1 arrest to prevent the proliferation of TNBC cell lines. Furthermore, compound 10 showed great in vivo pharmacokinetic properties (F = 45.8%) and exerted significant antitumor efficacy in the EMT6 syngeneic mouse model. Western blotting and immunohistochemical analysis confirmed that 10 effectively targeted on both SHP2 and CDK4 and activated the immune response in tumors. These results indicate that lead compound 10, as the first SHP2 and CDK4 dual inhibitor, merits further development for treating TNBC.


Subject(s)
Antineoplastic Agents , Cyclin-Dependent Kinase 4 , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Triple Negative Breast Neoplasms , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Humans , Mice , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
19.
Adv Cancer Res ; 153: 205-236, 2022.
Article in English | MEDLINE | ID: mdl-35101231

ABSTRACT

The non-receptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) is a critical component of RAS/MAPK signaling by acting upstream of RAS to promote oncogenic signaling and tumor growth. Over three decades, SHP2 was considered "undruggable" because enzymatic active-site inhibitors generally showed off-target inhibition of other proteins and low membrane permeability. More recently, allosteric SHP2 inhibitors with striking inhibitory potency have been developed. These small molecules effectively block the signal transduction between receptor tyrosine kinases (RTKs) and RAS/MAPK signaling and show efficacy in preclinical cancer models. Moreover, clinical evaluation of these allosteric SHP2 inhibitors is ongoing. RAS proteins which harbor transforming properties by gain-of-function mutations are present in various cancer types. While inhibitors of KRASG12C show early clinical promise, resistance remains a challenge and other forms of oncogenic RAS remain to be selectively inhibited. Here, we summarize the role of SHP2 in RAS-driven cancers and the therapeutic potential of allosteric SHP2 inhibitors as a strategy to block RAS-driven cancers.


Subject(s)
Enzyme Inhibitors , Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , ras Proteins , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , ras Proteins/metabolism
20.
Eur J Med Chem ; 230: 114106, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35063735

ABSTRACT

Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by the proto-oncogene PTPN11 is the first identified non-receptor protein tyrosine phosphatase. SHP2 dysregulation contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer therapy. In this article, we report the structure-guided design based on the well-characterized SHP2 inhibitor SHP099, extensive structure-activity relationship studies (SARs) of aminopyrazines, biochemical characterization and cellular potency. These medicinal chemistry efforts lead to the discovery of the lead compound TK-453, which potently inhibits SHP2 (SHP2WT IC50 = 0.023 µM, ΔTm = 7.01 °C) in a reversible and noncompetitive manner. TK-453 exhibits high selectivity over SHP2PTP, SHP1 and PTP1B, and may bind at the "tunnel" allosteric site of SHP2 as SHP099. As the key pharmacophore, the aminopyrazine scaffold not only reorganizes the cationic-π stacking interaction with R111 via the novel hydrogen bond interaction between the S atom of thioether linker and T219, but also mediates a hydrogen bond with E250. In vitro studies indicate that TK-453 inhibits proliferation of HeLa, KYSE-70 and THP-1 cells moderately and induces apoptosis of Hela cells. Further mechanistic studies suggest that TK-453 can decrease the phosphorylation levels of AKT and Erk1/2 in HeLa and KYSE-70 cells. Collectively, TK-453 is a highly potent, selective, and cellularly active allosteric SHP2 inhibitor that modulates the phosphorylation of SHP2-mediated AKT and Erk cell signaling pathways by inhibiting the phosphatase activity of SHP2.


Subject(s)
Enzyme Inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrazines/pharmacology , Allosteric Site , Enzyme Inhibitors/pharmacology , HeLa Cells , Humans , Phosphorylation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL