Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 902
Filter
1.
Int Rev Cell Mol Biol ; 386: 167-222, 2024.
Article in English | MEDLINE | ID: mdl-38782499

ABSTRACT

Historically, KRAS has been considered 'undruggable' inspite of being one of the most frequently altered oncogenic proteins in solid tumors, primarily due to the paucity of pharmacologically 'druggable' pockets within the mutant isoforms. However, pioneering developments in drug design capable of targeting the mutant KRAS isoforms especially KRASG12C-mutant cancers, have opened the doors for emergence of combination therapies comprising of a plethora of inhibitors targeting different signaling pathways. SHP2 signaling pathway, primarily known for activation of intracellular signaling pathways such as KRAS has come up as a potential target for such combination therapies as it emerged to be the signaling protein connecting KRAS and the immune signaling pathways and providing the link for understanding the overlapping regions of RAS/ERK/MAPK signaling cascade. Thus, SHP2 inhibitors having potent tumoricidal activity as well as role in immunomodulation have generated keen interest in researchers to explore its potential as combination therapy in KRAS mutant solid tumors. However, the excitement with these combination therapies need to overcome challenges thrown up by drug resistance and enhanced toxicity. In this review, we will discuss KRAS and SHP2 signaling pathways and their roles in immunomodulation and regulation of tumor microenvironment and also analyze the positive effects and drawbacks of the different combination therapies targeted at these signaling pathways along with their present and future potential to treat solid tumors.


Subject(s)
Immunomodulation , Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Signal Transduction/drug effects , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Immunomodulation/drug effects , Animals , Treatment Outcome , Molecular Targeted Therapy
2.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731468

ABSTRACT

Phosphorylation of tyrosine is the basic mode of protein function and signal transduction in organisms. This process is regulated by protein tyrosine kinases (PTKs) and protein tyrosinases (PTPs). Immunoreceptor tyrosine-based inhibition motif (ITIM) has been considered as regulating the PTP activity through the interaction with the partner proteins in the cell signal pathway. The ITIM sequences need to be phosphorylated first to active the downstream signaling proteins. To explore potential regulatory mechanisms, the ITIM sequences of two transmembrane immunoglobulin proteins, myelin P0 protein-related protein (PZR) and programmed death 1 (PD-1), were analyzed to investigate their interaction with proteins involved in regulatory pathways. We discovered that phosphorylated ITIM sequences can selectively interact with the tyrosine phosphatase SHP2. Specifically, PZR-N-ITIM (pY) may be critical in the interaction between the ITIM and SH2 domains of SHP2, while PD1-C-ITSM (pY) may play a key role in the interaction between the ITIM and SH2 domains of SHP2. Quite a few proteins were identified containing the SH2 domain, exhibiting phosphorylation-mediated interaction with PZR-ITIM. In this study, 14 proteins with SH2 structural domains were identified by GO analysis on 339 proteins associated to the affinity pull-down of PZR-N-ITIM (pY). Through the SH2 domains, these proteins may interact with PZR-ITIM in a phosphorylation-dependent manner.


Subject(s)
Immunoreceptor Tyrosine-Based Inhibition Motif , Protein Binding , Proteomics , Phosphorylation , Humans , Proteomics/methods , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , src Homology Domains , Amino Acid Sequence , Signal Transduction , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/chemistry
3.
Front Immunol ; 15: 1396719, 2024.
Article in English | MEDLINE | ID: mdl-38799432

ABSTRACT

Background: Tumor-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumor microenvironment (TME) that can regulate tumor proliferation and support resistance to therapy, constituting promising targets for the development of novel anticancer agents. Our previous results suggest that SHP2 plays a crucial role in reprogramming the phenotype of TAMs. Thus, we hypothesized that SHP2+ TAM may predict the treatment efficacy of non-small cell lung cancer NSCLC patients as a biomarker. Methods: We analyzed cancer tissue samples from 79 NSCLC patients using multiplex fluorescence (mIF) staining to visualize various SHP-2+ TAM subpopulations (CD68+SHP2+, CD68+CD86+, CD68 + 206+, CD68+ CD86+SHP2+, CD68+ CD206+SHP2+) and T cells (CD8+ Granzyme B +) of immune cells. The immune cells proportions were quantified in the tumor regions (Tumor) and stromal regions (Stroma), as well as in the overall tumor microenvironment (Tumor and Stroma, TME). The analysis endpoint was overall survival (OS), correlating them with levels of cell infiltration or effective density. Cox regression was used to evaluate the associations between immune cell subsets infiltration and OS. Correlations between different immune cell subsets were examined by Spearman's tests. Results: In NSCLC, the distribution of different macrophage subsets within the TME, tumor regions, and stroma regions exhibited inconsistency. The proportions of CD68+ SHP2+ TAMs (P < 0.05) were higher in tumor than in stroma. And the high infiltration of CD68+SHP2+ TAMs in tumor areas correlated with poor OS (P < 0.05). We found that the expression level of SHP2 was higher in M2-like macrophages than in M1-like macrophages. The CD68+SHP2+ subset proportion was positively correlated with the CD68+CD206+ subset within TME (P < 0.0001), tumor (P < 0.0001) and stroma (P < 0.0001). Conclusions: The high infiltration of CD68+SHP2+ TAMs predict poor OS in NSCLC. Targeting SHP2 is a potentially effective strategy to inhibit M2-phenotype polarization. And it provides a new thought for SHP2 targeted cancer immunotherapy.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Tumor Microenvironment/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Female , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Antigens, CD/metabolism , Male , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Middle Aged , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Aged , Biomarkers, Tumor/metabolism , Macrophages/immunology , Macrophages/metabolism , Prognosis , Adult , CD68 Molecule
4.
Proc Natl Acad Sci U S A ; 121(18): e2316819121, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38657042

ABSTRACT

Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.


Subject(s)
Endocytosis , Long-Term Synaptic Depression , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Receptors, AMPA , Receptors, Metabotropic Glutamate , Receptors, AMPA/metabolism , Animals , Phosphorylation , Endocytosis/physiology , Long-Term Synaptic Depression/physiology , Receptors, Metabotropic Glutamate/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Rats , Tyrosine/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Synapses/metabolism , Mice , Humans , Neurons/metabolism
5.
Aging (Albany NY) ; 16(7): 6334-6347, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38575308

ABSTRACT

BACKGROUND: The purpose of this study is to observe LP45 (Lactobacillus plantarum 45) to investigate the mechanism by which LP45 attenuates oxidative stress-induced damage and regulates the osteoblast-osteoclast balance. MATERIALS AND METHODS: The oxidative stress level and osteoblast- and osteoclast-related proteins were detected by immunofluorescence staining, Western blotting, ROS fluorescent probe and ELISA. Osteoblast cell proliferation capacity was determined by the CCK-8 assay. X-ray observation and HE staining were used to detect the effect of LP45 on osteoporosis. RESULTS: The expression level of SHP2 and Src was significantly increased, and the expression levels of NOX4, P22, P47, IL-1ß, NLRP3, IRF3, RANK, ß-catenin and INF-ß were inhibited in LP45 group and LPS + LP45 group as compared to those in LPS group. Compared with that in LPS group, the concentration of SOD was increased and the concentration of MDA was decreased in LPS + LP45 group. The protein expressions of OPG, RANKL, RUNX3, RANK and ß-catenin in LP45 group and LPS + LP45 group increased. The protein expressions of NF-κB, CREB and AP-1 in LP45 group and LPS + LP45 group decreased significantly. The results were also confirmed by immunofluorescence staining and ROS fluorescent probe. X-ray observation and HE staining showed that LP45 could inhibit the progression of osteoporosis. CONCLUSION: LP45 can exert its antioxidant effect by inhibiting the production of oxidative stress to activate the SHP2 signaling pathway, thus promoting osteoblast differentiation and repressing osteoclast formation to maintain bone homeostasis and improve bone metabolism.


Subject(s)
Cell Differentiation , Lactobacillus plantarum , Osteoblasts , Osteoclasts , Oxidative Stress , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Osteoblasts/metabolism , Animals , Osteoclasts/metabolism , Mice , Osteoporosis/metabolism , Signal Transduction , Cell Proliferation
6.
Sci Rep ; 14(1): 9128, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644382

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Macrophage-mediated innate immune responses play a crucial role in tumor development. This study revealed the mechanism of SHP-1 in regulating HCC progression. SHP-1 inhibits tumour development in vivo. Increasing SHP-1 expression in macrophages promotes the expression of p-SHP-1, SHP2, and p-SHP-2. In macrophages GM-CSF recruits SHP-2 to the GM-CSF receptor GM-CSFR induces p-SHP-2 dephosphorylation. GM-CSF recruits p-SHP-2 for dephosphorylation by up-regulating HoxA10HOXA10 activates the transcription of TGFß2 by interacting with tandem cis-elements in the promoter thereby regulating the proliferation and migration of liver cancer cells. GM-CSF inhibits SHP-1 regulation of p-SHP-1, SHP2, and p-SHP-2 in macrophages. Detailed studies have shown that SHP-1 regulates SHP2 expression, and SHP-1 and SHP2 are involved in macrophage M2 polarisation. SHP-1 inhibits HOXA10 and TGFß2 which in turn regulates the expression of the migration-associated proteins, MMP2/9, and the migration of hepatocellular carcinoma cells. Overexpression of SHP-1 inhibits macrophage M2 polarisation via the p-STAT3/6 signalling pathway Classical markers arginase-1, CD206, CD163 and regulate the expression of M2 polarisation cytokines IL-4 and IL-10. In addition, hypoxia-induced ROS inhibited SHP-1 regulation by suppressing the expression of p-SHP-1. The combined effect of GM-CSF and ROS significantly increased p-HOXA10/TGFß2 and macrophage M2 polarisation, and the regulatory effect of ROS was significantly suppressed by GM-CSF knockdown. These findings suggest that increasing the expression of tyrosine phosphatase SHP-1 can inhibit hepatocellular carcinoma progression by modulating the SHP2/GM-CSF pathway in TAM and thus inhibit the progression of hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Granulocyte-Macrophage Colony-Stimulating Factor , Liver Neoplasms , Macrophages , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , Signal Transduction , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Humans , Animals , Macrophages/metabolism , Macrophages/immunology , Mice , Disease Progression , Cell Line, Tumor , Cell Proliferation , Cell Movement , Gene Expression Regulation, Neoplastic
7.
Aging (Albany NY) ; 16(5): 4778-4788, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38451182

ABSTRACT

This study aims to explore the specific mechanism by which miR-155 regulates SHP2 expression in mouse ischemia-reperfusion (I/R) induced necroptosis. Various methods including cardiac ultrasound, TTC staining, Masson staining, TUNEL staining, and Western blotting were used to examine changes in the morphology and function of the rat left ventricle, myocardial fibrosis, as well as the expression of proteins related to tissue and cardiomyocyte necroptosis pathways. In vivo results showed that knockdown (KD) of miR-155 significantly improved cardiac ultrasound parameters (EF, FS, LVAW;d, and LVAW;s), reduced the myocardial infarction area, myocardial fibrosis, and cell apoptosis in I/R mice, upregulated cardiac SHP2 protein expression, and other proteins including p-ERK1/2, NLRP3, GSDMD, caspase-3, caspase-4, and caspase-11 were also significantly decreased. In vitro experiments showed that compared with the SHP2 WT miR-155 KD group, SHP2 protein expression was significantly increased in the SHP2 WT miR-155 KD group, while the expression of other proteins was significantly reduced, consistent with in vivo results. MiR-155 can regulate ERK1/2 and NLRP3 through SHP2. After adding the ERK1/2 inhibitor U0126 to cardiomyocytes from SHP2 KO mice, it was found that the expression of proteins other than SHP2 significantly decreased compared to SHP2 KO cells without the inhibitor. In summary, low expression of miR-155 promoted the expression of SHP2 and improved mouse I/R-induced necroptosis by inhibiting the activation of the ERK1/2 pathway.


Subject(s)
MicroRNAs , Myocardial Infarction , Animals , Mice , Rats , Fibrosis , MAP Kinase Signaling System , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Reperfusion , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
8.
JCI Insight ; 9(8)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451719

ABSTRACT

Mesenchymal stem cells (MSCs), suffering from diverse gene hits, undergo malignant transformation and aberrant osteochondral differentiation. Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), a nonreceptor protein tyrosine phosphatase, regulates multicellular differentiation, proliferation, and transformation. However, the role of SHP2 in MSC fate determination remains unclear. Here, we showed that MSCs bearing the activating SHP2E76K mutation underwent malignant transformation into sarcoma stem-like cells. We revealed that the SHP2E76K mutation in mouse MSCs led to hyperactive mitochondrial metabolism by activating mitochondrial complexes I and III. Inhibition of complexes I and III prevented hyperactive mitochondrial metabolism and malignant transformation of SHP2E76K MSCs. Mechanistically, we verified that SHP2 underwent liquid-liquid phase separation (LLPS) in SHP2E76K MSCs. SHP2 LLPS led to its dissociation from complexes I and III, causing their hyperactivation. Blockade of SHP2 LLPS by LLPS-defective mutations or allosteric inhibitors suppressed complex I and III hyperactivation as well as malignant transformation of SHP2E76K MSCs. These findings reveal that complex I and III hyperactivation driven by SHP2 LLPS promotes malignant transformation of SHP2E76K MSCs and suggest that inhibition of SHP2 LLPS could be a potential therapeutic target for the treatment of activated SHP2-associated cancers.


Subject(s)
Cell Transformation, Neoplastic , Mesenchymal Stem Cells , Mitochondria , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Mesenchymal Stem Cells/metabolism , Animals , Mice , Mitochondria/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Humans , Mutation , Cell Differentiation , Phase Separation
9.
J Neurosci ; 44(17)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38471782

ABSTRACT

Cytoplasmic protein tyrosine phosphatase nonreceptor type 11 (PTPN11) and Drosophila homolog Corkscrew (Csw) regulate the mitogen-activated protein kinase (MAPK) pathway via a conserved autoinhibitory mechanism. Disease-causing loss-of-function (LoF) and gain-of-function (GoF) mutations both disrupt this autoinhibition to potentiate MAPK signaling. At the Drosophila neuromuscular junction glutamatergic synapse, LoF/GoF mutations elevate transmission strength and reduce activity-dependent synaptic depression. In both sexes of LoF/GoF mutations, the synaptic vesicles (SV)-colocalized synapsin phosphoprotein tether is highly elevated at rest, but quickly reduced with stimulation, suggesting a larger SV reserve pool with greatly heightened activity-dependent recruitment. Transmission electron microscopy of mutants reveals an elevated number of SVs clustered at the presynaptic active zones, suggesting that the increased vesicle availability is causative for the elevated neurotransmission. Direct neuron-targeted extracellular signal-regulated kinase (ERK) GoF phenocopies both increased local presynaptic MAPK/ERK signaling and synaptic transmission strength in mutants, confirming the presynaptic regulatory mechanism. Synapsin loss blocks this elevation in both presynaptic PTPN11 and ERK mutants. However, csw null mutants cannot be rescued by wild-type Csw in neurons: neurotransmission is only rescued by expressing Csw in both neurons and glia simultaneously. Nevertheless, targeted LoF/GoF mutations in either neurons or glia alone recapitulate the elevated neurotransmission. Thus, PTPN11/Csw mutations in either cell type are sufficient to upregulate presynaptic function, but a dual requirement in neurons and glia is necessary for neurotransmission. Taken together, we conclude that PTPN11/Csw acts in both neurons and glia, with LoF and GoF similarly upregulating MAPK/ERK signaling to enhance presynaptic Synapsin-mediated SV trafficking.


Subject(s)
Drosophila Proteins , MAP Kinase Signaling System , Neuroglia , Neurons , Presynaptic Terminals , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Synapsins , Synaptic Transmission , Synaptic Vesicles , Animals , Female , Male , Animals, Genetically Modified , Drosophila , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , MAP Kinase Signaling System/physiology , Mutation , Neuroglia/metabolism , Neuroglia/physiology , Neuromuscular Junction/metabolism , Neuromuscular Junction/physiology , Neurons/metabolism , Neurons/physiology , Presynaptic Terminals/metabolism , Presynaptic Terminals/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Synapsins/metabolism , Synapsins/genetics , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism
10.
Pharmacol Res ; 201: 107096, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320736

ABSTRACT

The uncontrolled bacterial infection-induced cytokine storm and sequential immunosuppression are commonly observed in septic patients, which indicates that the activation of phagocytic cells and the efficient and timely elimination of bacteria are crucial for combating bacterial infections. However, the role of dysregulated immune cells and their disrupted function in sepsis remains unclear. Here, we found that macrophages exhibited the impaired endocytosis capabilities in sepsis by Single-cell RNA sequencing and bulk RNA sequencing. Caveolae protein Caveolin-1 (Cav-1) of macrophages was inactivated by SHP2 rapidly during Escherichia coli (E.coli) infection. Allosteric inhibitor of SHP2 effectively maintains Cav-1 phosphorylation to enhance macrophage to endocytose and eliminate bacteria. Additionally, TLR4 endocytosis of macrophage was also enhanced upon E.coli infection by SHP099, inducing an increased and rapidly resolved inflammatory response. In vivo, pretreatment or posttreatment with inhibitor of SHP2 significantly reduced the bacterial burden in organs and mortality of mice subjected E.coli infection or CLP-induced sepsis. The cotreatment of inhibitor of SHP2 with an antibiotic conferred complete protection against mortality in mice. Our findings suggest that Cav-1-mediated endocytosis and bacterial elimination may play a critical role in the pathogenesis of sepsis, highlighting inhibitor of SHP2 as a potential therapeutic agent for sepsis.


Subject(s)
Caveolae , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Sepsis , Animals , Humans , Mice , Bacteria , Caveolae/metabolism , Endocytosis , Escherichia coli Infections/drug therapy , Escherichia coli Infections/metabolism , Macrophages , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Sepsis/drug therapy , Sepsis/metabolism
11.
Sci Signal ; 17(817): eadg4422, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38166031

ABSTRACT

Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.


Subject(s)
Protein Serine-Threonine Kinases , Receptors, Antigen, T-Cell , T-Lymphocytes , Animals , Humans , Mice , Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Threonine/metabolism
12.
Cell Mol Life Sci ; 81(1): 64, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38280930

ABSTRACT

Silenced protein tyrosine phosphatase receptor type R (PTPRR) participates in mitogen-activated protein kinase (MAPK) signaling cascades during the genesis and development of tumors. Rat sarcoma virus (Ras) genes are frequently mutated in lung adenocarcinoma, thereby resulting in hyperactivation of downstream MAPK signaling. However, the molecular mechanism manipulating the regulation and function of PTPRR in RAS-mutant lung adenocarcinoma is not known. Patient records collected from the Cancer Genome Atlas and Gene Expression Omnibus showed that silenced PTPRR was positively correlated with the prognosis. Exogenous expression of PTPRR suppressed the proliferation and migration of lung cancer cells. PTPRR expression and Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) inhibition acted synergistically to control ERK1/2 phosphorylation in RAS-driven lung cancer cells. Chromatin immunoprecipitation assay revealed that HDAC inhibition induced enriched histone acetylation in the promoter region of PTPRR and recovered PTPRR transcription. The combination of the HDAC inhibitor SAHA and SHP2 inhibitor SHP099 suppressed the progression of lung cancer markedly in vitro and in vivo. Therefore, we revealed the epigenetic silencing mechanism of PTPRR and demonstrated that combination therapy targeting HDAC and SHP2 might represent a novel strategy to treat RAS-mutant lung cancer.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Histones/metabolism , Acetylation , Adenocarcinoma of Lung/genetics , Lung Neoplasms/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Cell Line, Tumor , Receptor-Like Protein Tyrosine Phosphatases, Class 7/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 7/metabolism
13.
Biochemistry ; 63(3): 273-281, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38251939

ABSTRACT

Src-homology-2-domain-containing PTP-2 (SHP2) is a widely expressed signaling enzyme whose misregulation is associated with multiple human pathologies. SHP2's enzymatic activity is controlled by a conformational equilibrium between its autoinhibited ("closed") state and its activated ("open") state. Although SHP2's closed state has been extensively characterized, the putative structure of its open form has only been revealed in the context of a highly activated mutant (E76K), and no systematic studies of the biochemical determinants of SHP2's open-state stabilization have been reported. To identify amino-acid interactions that are critical for stabilizing SHP2's active state, we carried out a mutagenic study of residues that lie at potentially important interdomain interfaces of the open conformation. The open/closed equilibria of the mutants were evaluated, and we identified several interactions that contribute to the stabilization of SHP2's open state. In particular, our findings establish that an ion pair between glutamate 249 on SHP2's PTP domain and arginine 111 on an interdomain loop is the key determinant of SHP2's open-state stabilization. Mutations that disrupt the R111/E249 ion pair substantially shift SHP2's open/closed equilibrium to the closed state, even compared to wild-type SHP2's basal-state equilibrium, which strongly favors the closed state. To the best of our knowledge, the ion-pair variants uncovered in this study are the first known SHP2 mutants in which autoinhibition is augmented with respect to the wild-type protein. Such "hyperinhibited" mutants may provide useful tools for signaling studies that investigate the connections between SHP2 inhibition and the suppression of human disease progression.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Signal Transduction , Humans , Mutation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , src Homology Domains
14.
Phys Chem Chem Phys ; 26(12): 9155-9169, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38165855

ABSTRACT

Src homology 2-domain-containing tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase that is widely expressed in a variety of cells and regulates the immune response of T cells through the PD-1 pathway. However, the activation mechanism and allosteric effects of SHP2 remain unclear, hindering the development of small molecule inhibitors. For the first time, in this study, the complex structure formed by the intact PD-1 tail and SHP2 was modeled. The molecular recognition and conformational changes of inactive/active SHP2 versus ITIM/ITSM were compared based on prolonged MD simulations. The relative flexibility of the two SH2 domains during MD simulations contributes to the recruitment of ITIM/ITSM and supports the subsequent conformational change of SHP2. The binding free energy calculation shows that inactive SHP2 has a higher affinity for ITIM/ITSM than active SHP2, mainly because the former's N-SH2 refers to the α-state. In addition, a significant decrease in the contribution to the binding energy of certain residues (e.g., R32, S34, K35, T42, and K55) of conformationally transformed SHP2 contributes to the above result. These detailed changes during conformational transition will provide theoretical guidance for the molecular design of subsequent novel anticancer drugs.


Subject(s)
Programmed Cell Death 1 Receptor , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , src Homology Domains
15.
Cancer Lett ; 582: 216517, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38101609

ABSTRACT

Src homology 2 domain-containing phosphatase (SHP2) is a non-receptor protein phosphatase that transduces signals from upstream receptor tyrosine kinases (RTKs)/non-RTKs to Ras/MAPK pathway. Accumulating studies indicated that SHP2 is a critical mediator of resistance to current targeted therapies in multiple cancers. Here, we reported a novel SHP2 allosteric inhibitor JC-010a, which was highly selective to SHP2 and bound at the "tunnel" allosteric site of SHP2. The effect of JC-010a on combating RTK/non-RTK or MAPK inhibitors-induced acquired resistance was explored. Our study demonstrated that JC-010a monotherapy significantly inhibited the proliferation of cancer cells with different oncogenic drivers via inhibiting signaling through SHP2. Importantly, JC-010a abolished acquired resistance induced by targeted therapies: in KRAS-mutant cancers, JC-010a abrogated selumetinib-induced adaptive resistance mediated by RTK/SHP2; in BCR-ABL-driven leukemia cells, we demonstrated JC-010a inhibited BCR-ABL T315I mutation-mediated imatinib resistance and proposed a novel mechanism of JC-010a involving the disrupted co-interaction of SHP2, BCR-ABL, and Hsp90; in non-small cell lung cancer (NSCLC) cells, JC-010a inhibited both EGFR T790M/C797S mutation and alternate RTK-driven resistance to gefitinib or osimertinib; importantly, we first proposed a novel potential therapeutic strategy for RET-rearranged cancer, we confirmed that JC-010a monotherapy inhibited cell resistance to BLU-667, and JC-010a/BLU-667 combination prolonged anticancer response both in vivo and in vitro cancer models by inhibiting the alternate MET activation-induced RAS/MAPK reactivation, thereby promoting cancer cell apoptosis. These findings suggested that JC-010a was a novel selective SHP2 allosteric inhibitor, and combing JC-010a with current targeted therapy agents provided a promising therapeutic approach for clinical resistant cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , ErbB Receptors/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Protein Kinase Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Oncogenes , Drug Resistance , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Cell Line, Tumor
16.
Cell Mol Life Sci ; 81(1): 5, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085330

ABSTRACT

SHP2 phosphatase promotes full activation of the RTK-dependent Ras/MAPK pathway. Its mutations can drive cancer and RASopathies, a group of neurodevelopmental disorders (NDDs). Here we ask how same residue mutations in SHP2 can lead to both cancer and NDD phenotypes, and whether we can predict what the outcome will be. We collected and analyzed mutation data from the literature and cancer databases and performed molecular dynamics simulations of SHP2 mutants. We show that both cancer and Noonan syndrome (NS, a RASopathy) mutations favor catalysis-prone conformations. As to cancer versus RASopathies, we demonstrate that cancer mutations are more likely to accelerate SHP2 activation than the NS mutations at the same genomic loci, in line with NMR data for K-Ras4B more aggressive mutations. The compiled experimental data and dynamic features of SHP2 mutants lead us to propose that different from strong oncogenic mutations, SHP2 activation by NS mutations is less likely to induce a transition of the ensemble from the SHP2 inactive state to the active state. Strong signaling promotes cell proliferation, a hallmark of cancer. Weak, or moderate signals are associated with differentiation. In embryonic neural cells, dysregulated differentiation is connected to NDDs. Our innovative work offers structural guidelines for identifying and correlating mutations with clinical outcomes, and an explanation for why bearers of RASopathy mutations may have a higher probability of cancer. Finally, we propose a drug strategy against SHP2 variants-promoting cancer and RASopathies.


Subject(s)
Neoplasms , Noonan Syndrome , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Noonan Syndrome/genetics , Mutation/genetics , Neoplasms/genetics , src Homology Domains/genetics , Phenotype
17.
Commun Biol ; 6(1): 1289, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38129686

ABSTRACT

SHP2 phosphatase plays an important role in regulating several intracellular signaling pathways. Pathogenic mutations of SHP2 cause developmental disorders and are linked to hematological malignancies and cancer. SHP2 comprises two tandemly-arranged SH2 domains, a catalytic PTP domain, and a disordered C-terminal tail. Under physiological, non-stimulating conditions, the catalytic site of PTP is occluded by the N-SH2 domain, so that the basal activity of SHP2 is low. Whereas the autoinhibited structure of SHP2 has been known for two decades, its active, open structure still represents a conundrum. Since the oncogenic mutant SHP2E76K almost completely populates the active, open state, this mutant has been extensively studied as a model for activated SHP2. By molecular dynamics simulations and accurate explicit-solvent SAXS curve predictions, we present the heterogeneous atomistic ensemble of constitutively active SHP2E76K in solution, encompassing a set of conformational arrangements and radii of gyration in agreement with experimental SAXS data.


Subject(s)
Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Scattering, Small Angle , X-Ray Diffraction , Mutation
18.
Aging (Albany NY) ; 15(24): 15525-15534, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38159254

ABSTRACT

OBJECTIVE: To investigate the effect of Src homology 2 domain-containing tyrosine phosphatase-2 (SHP2) in tumor-associated macrophages (TAMs), which is mediated by macrophage colony-stimulating factor (M-CSF) secreted by gastric cancer cells, on the development of gastric cancer and its molecular mechanism. METHODS: The progression of gastric cancer was detected by nude mouse tumor-bearing experiments. Colony formation assay and cell counting kit-8 (CCK8) assay were used to detect the proliferation capacity of gastric cancer cells. The migration capacity of gastric cancer cells was examined by wound healing assay. Transwell migration and invasion assays were performed on gastric cancer cells. Detection of relevant protein expression using western blotting. RESULTS: Overexpression of SHP2 could promote the progression of gastric cancer in nude mice. The results of colony formation assay and CCK8 assay showed that overexpression of SHP2 could enhance the proliferation of gastric cancer cells. It was found by wound healing assay and Transwell assay that overexpression of SHP2 could facilitate the migration and invasion of gastric cancer cells. The results of Western blotting revealed that overexpression of SHP2 could increase the expressions of p-STAT3, s-PD-1, p-Src, p-Lyn, p-PI3K, p-AKT, Arginase-1, MMP1 and MMP3 but decrease the expressions of TBK1 and SOCS1 in TAMs, and also increase the expressions of CD9, TSG101 and s-PD-1 in exosomes. CONCLUSION: M-CSF secreted by gastric cancer cells can promote the proliferation, invasion and migration of gastric cancer cells by increasing the expression of SHP2 in TAMs.


Subject(s)
Macrophage Colony-Stimulating Factor , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Stomach Neoplasms , Tumor-Associated Macrophages , Animals , Mice , Cell Line, Tumor , Cell Proliferation , Macrophages/metabolism , Mice, Nude , Programmed Cell Death 1 Receptor/metabolism , Stomach Neoplasms/metabolism , Tumor-Associated Macrophages/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Humans
19.
Biomed Pharmacother ; 168: 115797, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913735

ABSTRACT

Triple negative breast cancer (TNBC) presents a formidable challenge due to the lack of effective treatment modalities. Immunotherapy stands as a promising therapeutic approach; however, the emergence of drug resistance mechanisms within tumor cells, particularly those targeting apoptosis and pyroptosis, has hampered its clinical efficacy. SHP2 is intricately involved in diverse physiological processes, including immune cell proliferation, infiltration, and tumor progression. Nevertheless, the precise contribution of SHP2 to tumor cell pyroptosis resistance remains inadequately understood. Herein, we demonstrate that SHP2 inhibition hampers the proliferative, migratory, and invasive capabilities of TNBC, accompanied by noticeable alterations in cellular membrane architecture. Mechanistically, we provide evidence that SHP2 depletion triggers the activation of Caspase-1 and GSDMD, resulting in GSDMD-dependent release of LDH, IL-1ß, and IL-18. Furthermore, computational analyses and co-localization investigations substantiate the hypothesis that SHP2 may hinder pyroptosis through direct binding to JNK, thereby impeding JNK phosphorylation. Our cellular experiments further corroborate these findings by demonstrating that JNK inhibition rescues pyroptosis induced by SHP2 knockdown. Strikingly, in vivo experiments validate the suppressive impact of SHP2 knockdown on tumor progression via enhanced JNK phosphorylation. Additionally, SHP2 knockdown augments tumor sensitivity to anti-PD-1 therapy, thus reinforcing the pro-pyroptotic effects and inhibiting tumor growth. In summary, our findings elucidate the mechanism by which SHP2 governs TNBC pyroptosis, underscoring the potential of SHP2 inhibition to suppress cell pyroptosis resistance and its utility as an adjunctive agent for tumor immunotherapy.


Subject(s)
Immune Checkpoint Inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Pyroptosis , Triple Negative Breast Neoplasms , Humans , Caspase 1 , Immune Checkpoint Inhibitors/therapeutic use , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Triple Negative Breast Neoplasms/drug therapy
20.
Drug Dev Res ; 84(7): 1395-1410, 2023 11.
Article in English | MEDLINE | ID: mdl-37583266

ABSTRACT

Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) is a key regulatory factor in the cell cycle and its activating mutations play an important role in the development of various cancers, making it an important target for antitumor drugs. Due to the highly conserved amino acid sequence and positively charged nature of the active site of SHP2, it is difficult to discover inhibitors with high affinity for the catalytic site of SHP2 and sufficient cell permeability, making it considered an "undruggable" target. However, the discovery of allosteric regulation mechanisms provides new opportunities for transforming undruggable targets into druggable ones. Given the limitations of orthosteric inhibitors, SHP2 allosteric inhibitors have become a more selective and safer research direction. In this review, we elucidate the oncogenic mechanism of SHP2 and summarize the discovery methods of SHP2 allosteric inhibitors, providing new strategies for the design and improvement of SHP2 allosteric inhibitors.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Neoplasms/drug therapy , Amino Acid Sequence , Antineoplastic Agents/therapeutic use , Cell Cycle , Enzyme Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...