Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.718
Filter
1.
Drug Des Devel Ther ; 18: 1165-1174, 2024.
Article in English | MEDLINE | ID: mdl-38623566

ABSTRACT

Purpose: Citric acid (CA) is a tricarboxylic acid with antioxidant and antimicrobial properties. Based on previous studies, the small compound with its three carboxylic groups can be considered a protein tyrosine phosphatase inhibitor. YopH, a protein tyrosine phosphatase, is an essential virulence factor in Yersinia bacteria. Materials and Methods: We performed enzymatic activity assays of YopH phosphatase after treatment with citric acid in comparison with the inhibitory compound trimesic acid, which has a similar structure. We also measured the cytotoxicity of these compounds in Jurkat T E6.1 and macrophage J774.2 cell lines. We performed molecular docking analysis of the binding of citric acid molecules to YopH phosphatase. Results: Citric acid and trimesic acid reversibly reduced the activity of YopH enzyme and decreased the viability of Jurkat and macrophage cell lines. Importantly, these two compounds showed greater inhibitory properties against bacterial YopH activity than against human CD45 phosphatase activity. Molecular docking simulations confirmed that citric acid could bind to YopH phosphatase. Conclusion: Citric acid, a known antioxidant, can be considered an inhibitor of bacterial phosphatases.


Subject(s)
Antioxidants , Protein Tyrosine Phosphatases , Tricarboxylic Acids , Humans , Molecular Docking Simulation , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/metabolism , Tyrosine
2.
BMC Med Genomics ; 17(1): 89, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627775

ABSTRACT

OBJECTIVE: Branchio-oto-renal syndrome (BOR, OMIM#113,650) is a rare autosomal dominant disorder that presents with a variety of symptoms, including hearing loss (sensorineural, conductive, or mixed), structural abnormalities affecting the outer, middle, and inner ear, branchial fistulas or cysts, as well as renal abnormalities.This study aims to identify the pathogenic variants by performing genetic testing on a family with Branchio-oto-renal /Branchio-otic (BO, OMIM#602,588) syndrome using whole-exome sequencing, and to explore possible pathogenic mechanisms. METHODS: The family spans 4 generations and consists of 9 individuals, including 4 affected by the BOR/BO syndrome. Phenotypic information, including ear malformation and branchial cleft, was collected from family members. Audiological, temporal bone imaging, and renal ultrasound examinations were also performed. Whole-exome sequencing was conducted to identify candidate pathogenic variants and explore the underlying molecular etiology of BOR/BO syndrome by minigene experiments. RESULTS: Intra-familial variability was observed in the clinical phenotypes of BOR/BO syndrome in this family. The severity and nature of hearing loss varied in family members, with mixed or sensorineural hearing loss. The proband, in particular, had profound sensorineural hearing loss on the left and moderate conductive hearing loss on the right. Additionally, the proband exhibited developmental delay, and her mother experienced renal failure during pregnancy and terminated the pregnancy prematurely. Genetic testing revealed a novel heterozygous variant NM_000503.6: c.639 + 3 A > C in the EYA1 gene in affected family members. In vitro minigene experiments demonstrated its effect on splicing. According to the American College of Medical Genetics (ACMG) guidelines, this variant was classified as likely pathogenic. CONCLUSION: This study highlights the phenotypic heterogeneity within the same family, reports the occurrence of renal failure and adverse pregnancy outcomes in a female patient at reproductive age with BOR syndrome, and enriches the mutational spectrum of pathogenic variants in the EYA1 gene.


Subject(s)
Branchio-Oto-Renal Syndrome , Deafness , Hearing Loss, Sensorineural , Hearing Loss , Renal Insufficiency , Humans , Pregnancy , Female , Branchio-Oto-Renal Syndrome/genetics , Branchio-Oto-Renal Syndrome/pathology , Intracellular Signaling Peptides and Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Hearing Loss/genetics , Pedigree , Nuclear Proteins/genetics
3.
Expert Opin Ther Targets ; 28(4): 259-271, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38653737

ABSTRACT

INTRODUCTION: Phosphatase of regenerating liver (PRL) family proteins, also known as protein tyrosine phosphatase 4A (PTP4A), have been implicated in many types of cancers. The PRL family of phosphatases consists of three members, PRL1, PRL2, and PRL3. PRLs have been shown to harbor oncogenic potentials and are highly expressed in a variety of cancers. Given their roles in cancer progression and metastasis, PRLs are potential targets for anticancer therapies. However, additional studies are needed to be performed to fully understand the roles of PRLs in blood cancers. AREAS COVERED: In this review, we will summarize recent studies of PRLs in normal and malignant hematopoiesis, the role of PRLs in regulating various signaling pathways, and the therapeutic potentials of targeting PRLs in hematological malignancies. We will also discuss how to improve current PRL inhibitors for cancer treatment. EXPERT OPINION: Although PRL inhibitors show promising therapeutic effects in preclinical studies of different types of cancers, moving PRL inhibitors from bench to bedside is still challenging. More potent and selective PRL inhibitors are needed to target PRLs in hematological malignancies and improve treatment outcomes.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Molecular Targeted Therapy , Protein Tyrosine Phosphatases , Signal Transduction , Humans , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/metabolism , Hematologic Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , Enzyme Inhibitors/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Drug Development , Membrane Proteins , Cell Cycle Proteins
4.
Molecules ; 29(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38611852

ABSTRACT

Moonlighting enzymes are multifunctional proteins that perform multiple functions beyond their primary role as catalytic enzymes. Extensive research and clinical practice have demonstrated their pivotal roles in the development and progression of cancer, making them promising targets for drug development. This article delves into multiple notable moonlighting enzymes, including GSK-3, GAPDH, and ENO1, and with a particular emphasis on an enigmatic phosphatase, PTP4A3. We scrutinize their distinct roles in cancer and the mechanisms that dictate their ability to switch roles. Lastly, we discuss the potential of an innovative approach to develop drugs targeting these moonlighting enzymes: target protein degradation. This strategy holds promise for effectively tackling moonlighting enzymes in the context of cancer therapy.


Subject(s)
Glycogen Synthase Kinase 3 , Neoplasms , Humans , Phosphoric Monoester Hydrolases , Neoplasms/drug therapy , Catalysis , Drug Development , Neoplasm Proteins , Protein Tyrosine Phosphatases
5.
J Biomed Sci ; 31(1): 33, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38532423

ABSTRACT

BACKGROUND: T cell receptor (TCR) signaling and T cell activation are tightly regulated by gatekeepers to maintain immune tolerance and avoid autoimmunity. The TRAIL receptor (TRAIL-R) is a TNF-family death receptor that transduces apoptotic signals to induce cell death. Recent studies have indicated that TRAIL-R regulates T cell-mediated immune responses by directly inhibiting T cell activation without inducing apoptosis; however, the distinct signaling pathway that regulates T cell activation remains unclear. In this study, we screened for intracellular TRAIL-R-binding proteins within T cells to explore the novel signaling pathway transduced by TRAIL-R that directly inhibits T cell activation. METHODS: Whole-transcriptome RNA sequencing was used to identify gene expression signatures associated with TRAIL-R signaling during T cell activation. High-throughput screening with mass spectrometry was used to identify the novel TRAIL-R binding proteins within T cells. Co-immunoprecipitation, lipid raft isolation, and confocal microscopic analyses were conducted to verify the association between TRAIL-R and the identified binding proteins within T cells. RESULTS: TRAIL engagement downregulated gene signatures in TCR signaling pathways and profoundly suppressed phosphorylation of TCR proximal tyrosine kinases without inducing cell death. The tyrosine phosphatase SHP-1 was identified as the major TRAIL-R binding protein within T cells, using high throughput mass spectrometry-based proteomics analysis. Furthermore, Lck was co-immunoprecipitated with the TRAIL-R/SHP-1 complex in the activated T cells. TRAIL engagement profoundly inhibited phosphorylation of Lck (Y394) and suppressed the recruitment of Lck into lipid rafts in the activated T cells, leading to the interruption of proximal TCR signaling and subsequent T cell activation. CONCLUSIONS: TRAIL-R associates with phosphatase SHP-1 and transduces a unique and distinct immune gatekeeper signal to repress TCR signaling and T cell activation via inactivating Lck. Thus, our results define TRAIL-R as a new class of immune checkpoint receptors for restraining T cell activation, and TRAIL-R/SHP-1 axis can serve as a potential therapeutic target for immune-mediated diseases.


Subject(s)
Receptors, Antigen, T-Cell , Receptors, TNF-Related Apoptosis-Inducing Ligand , Humans , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, Antigen, T-Cell/metabolism , Jurkat Cells , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Phosphorylation , Lymphocyte Activation , Tyrosine/metabolism
6.
BMC Cancer ; 24(1): 326, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461240

ABSTRACT

BACKGROUND: FLI1 is an oncogenic transcription factor that promotes diverse malignancies through mechanisms that are not fully understood. Herein, FLI1 is shown to regulate the expression of Ubiquitin Associated and SH3 Domain Containing A/B (UBASH3A/B) genes. UBASH3B and UBASH3A are found to act as an oncogene and tumor suppressor, respectively, and their combined effect determines erythroleukemia progression downstream of FLI1. METHODS: Promoter analysis combined with luciferase assays and chromatin immunoprecipitation (ChIP) analysis were applied on the UBASH3A/B promoters. RNAseq analysis combined with bioinformatic was used to determine the effect of knocking-down UBASH3A and UBASH3B in leukemic cells. Downstream targets of UBASH3A/B were inhibited in leukemic cells either via lentivirus-shRNAs or small molecule inhibitors. Western blotting and RT-qPCR were used to determine transcription levels, MTT assays to assess proliferation rate, and flow cytometry to examine apoptotic index. RESULTS: Knockdown of FLI1 in erythroleukemic cells identified the UBASH3A/B genes as potential downstream targets. Herein, we show that FLI1 directly binds to the UBASH3B promoter, leading to its activation and leukemic cell proliferation. In contrast, FLI1 indirectly inhibits UBASH3A transcription via GATA2, thereby antagonizing leukemic growth. These results suggest oncogenic and tumor suppressor roles for UBASH3B and UBASH3A in erythroleukemia, respectively. Mechanistically, we show that UBASH3B indirectly inhibits AP1 (FOS and JUN) expression, and that its loss leads to inhibition of apoptosis and acceleration of proliferation. UBASH3B also positively regulates the SYK gene expression and its inhibition suppresses leukemia progression. High expression of UBASH3B in diverse tumors was associated with worse prognosis. In contrast, UBASH3A knockdown in erythroleukemic cells increased proliferation; and this was associated with a dramatic induction of the HSP70 gene, HSPA1B. Accordingly, knockdown of HSPA1B in erythroleukemia cells significantly accelerated leukemic cell proliferation. Accordingly, overexpression of UBASH3A in different cancers was predominantly associated with good prognosis. These results suggest for the first time that UBASH3A plays a tumor suppressor role in part through activation of HSPA1B. CONCLUSIONS: FLI1 promotes erythroleukemia progression in part by modulating expression of the oncogenic UBASH3B and tumor suppressor UBASH3A.


Subject(s)
Leukemia, Erythroblastic, Acute , Proto-Oncogene Protein c-fli-1 , Humans , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Gene Expression Regulation , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Leukemia, Erythroblastic, Acute/genetics , Leukemia, Erythroblastic, Acute/metabolism , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA, Small Interfering/genetics , RNA-Binding Protein EWS/genetics , Protein Tyrosine Phosphatases/metabolism
7.
Biomolecules ; 14(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38540761

ABSTRACT

Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.


Subject(s)
Neoplasms , Signal Transduction , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Protein Tyrosine Phosphatases/metabolism , Protein Processing, Post-Translational , Phosphoprotein Phosphatases , Cell Line, Tumor
8.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189098, 2024 May.
Article in English | MEDLINE | ID: mdl-38555001

ABSTRACT

The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.


Subject(s)
Neoplasms , Protein Tyrosine Phosphatases , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/genetics , Animals , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
9.
Comput Biol Chem ; 110: 108039, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471352

ABSTRACT

Hepatocellular carcinoma (HCC) persists to be one of the most devastating and deadliest malignancies globally. Recent research into the molecular signaling networks entailed in many malignancies has given some prominent insights that can be leveraged to create molecular therapeutics for combating HCC. Therefore, in the current communication, an in-silico drug repurposing approach has been employed to target the function of PTP4A3/PRL-3 protein in HCC using antidepressants: Fluoxetine hydrochloride, Citalopram, Amitriptyline, Imipramine, and Escitalopram oxalate as the desired ligands. The density function theory (DFT) and chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters for the chosen ligands were evaluated to comprehend the pharmacokinetics, drug-likeness properties, and bioreactivity of the ligands. The precise interaction mechanism was explored using computational methods such as molecular docking and molecular dynamics (MD) simulation studies to assess the inhibitory effect and the stability of the interactions against the protein of interest. Escitalopram oxalate exhibited a comparatively significant docking score (-7.4 kcal/mol) compared to the control JMS-053 (-6.8 kcal/mol) against the PRL-3 protein. The 2D interaction plots exhibited an array of hydrophobic and hydrogen bond interactions. The findings of the ADMET forecast confirmed that it adheres to Lipinski's rule of five with no violations, and DFT analysis revealed a HOMO-LUMO energy gap of -0.26778 ev, demonstrating better reactivity than the control molecule. The docked complexes were subjected to MD studies (100 ns) showing stable interactions. Considering all the findings, it can be concluded that Escitalopram oxalate and related therapeutics can act as potential pharmacological candidates for targeting the activity of PTP4A3/PRL-3 in HCC.


Subject(s)
Antidepressive Agents , Carcinoma, Hepatocellular , Escitalopram , Liver Neoplasms , Molecular Docking Simulation , Protein Tyrosine Phosphatases , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/chemistry , Escitalopram/chemistry , Escitalopram/pharmacology , Neoplasm Proteins/metabolism , Neoplasm Proteins/antagonists & inhibitors , Molecular Dynamics Simulation , Oxalates/chemistry , Oxalates/metabolism , Density Functional Theory , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
10.
Nutrients ; 16(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38474775

ABSTRACT

Protein tyrosine phosphatases (PTPs) are pivotal contributors to the development of type 2 diabetes (T2DM). Hence, directing interventions towards PTPs emerges as a valuable therapeutic approach for managing type 2 diabetes. In particular, PTPN6 and PTPN9 are targets for anti-diabetic effects. Through high-throughput drug screening, quercetagitrin (QG) was recognized as a dual-target inhibitor of PTPN6 and PTPN9. We observed that QG suppressed the catalytic activity of PTPN6 (IC50 = 1 µM) and PTPN9 (IC50 = 1.7 µM) in vitro and enhanced glucose uptake by mature C2C12 myoblasts. Additionally, QG increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-dependent phosphorylation of Akt in mature C2C12 myoblasts. It further promoted the phosphorylation of Akt in the presence of palmitic acid, suggesting the attenuation of insulin resistance. In summary, our results indicate QG's role as a potent inhibitor targeting both PTPN6 and PTPN9, showcasing its potential as a promising treatment avenue for T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Proto-Oncogene Proteins c-akt/metabolism , Insulin/metabolism , Phosphorylation , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
11.
PLoS One ; 19(3): e0300032, 2024.
Article in English | MEDLINE | ID: mdl-38512889

ABSTRACT

Biomarkers that could predict the evolution of the graft in transplanted patients and that could allow to adapt the care of the patients would be an invaluable tool. Additionally, certain biomarkers can be target of treatments and help to stratify patients. Potential effective biomarkers have been identified but still need to be confirmed. CD45RC, one of the splicing variants of the CD45 molecule, a tyrosine phosphatase that is critical in negatively or positively regulating the TCR and the BCR signaling, is one marker already described. The frequency of CD8+ T cells expressing high levels of CD45RC before transplantation is increased in patients with an increased risk of acute rejection. However, single biomarkers have limited predictive reliability and the correlation of the expression levels of CD45RC with other cell markers was not reported. In this study, we performed a fluorescent-based high dimensional immunophenotyping of T cells on a cohort of 69 kidney transplant patients either with stable graft function or having experienced acute transplant rejection during the first year after transplantation or at the time of rejection. We identified combinations of markers and cell subsets associated with activation/inflammation or Tregs/tolerance (HLA-DR, PD-1, IFNγ, CD28) as significant biomarkers associated to transplant outcome, and showed the importance of cell segregation based on the CD45RC marker to identify the signature of a stable graft function. Our study highlights potential reliable biomarkers in transplantation to predict and/or monitor easily graft-directed immune responses and adapt immunosuppression treatments to mitigate adverse effects.


Subject(s)
CD8-Positive T-Lymphocytes , HLA-DR Antigens , Humans , Reproducibility of Results , Leukocyte Common Antigens/metabolism , Graft Rejection , Protein Tyrosine Phosphatases , Biomarkers
12.
Acta Neuropathol Commun ; 12(1): 32, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395965

ABSTRACT

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are clinically linked major neurodegenerative diseases. Notably, TAR DNA-binding protein-43 (TDP43) accumulations are hallmark pathologies of FTD/ALS and mutations in the gene encoding TDP43 cause familial FTD/ALS. There are no cures for FTD/ALS. FTD/ALS display damage to a broad range of physiological functions, many of which are regulated by signaling between the endoplasmic reticulum (ER) and mitochondria. This signaling is mediated by the VAPB-PTPIP51 tethering proteins that serve to recruit regions of ER to the mitochondrial surface so as to facilitate inter-organelle communications. Several studies have now shown that disrupted ER-mitochondria signaling including breaking of the VAPB-PTPIP51 tethers are features of FTD/ALS and that for TDP43 and other familial genetic FTD/ALS insults, this involves activation of glycogen kinase-3ß (GSK3ß). Such findings have prompted suggestions that correcting damage to ER-mitochondria signaling and the VAPB-PTPIP51 interaction may be broadly therapeutic. Here we provide evidence to support this notion. We show that overexpression of VAPB or PTPIP51 to enhance ER-mitochondria signaling corrects mutant TDP43 induced damage to inositol 1,4,5-trisphosphate (IP3) receptor delivery of Ca2+ to mitochondria which is a primary function of the VAPB-PTPIP51 tethers, and to synaptic function. Moreover, we show that ursodeoxycholic acid (UDCA), an FDA approved drug linked to FTD/ALS and other neurodegenerative diseases therapy and whose precise therapeutic target is unclear, corrects TDP43 linked damage to the VAPB-PTPIP51 interaction. We also show that this effect involves inhibition of TDP43 mediated activation of GSK3ß. Thus, correcting damage to the VAPB-PTPIP51 tethers may have therapeutic value for FTD/ALS and other age-related neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Neurodegenerative Diseases , Vesicular Transport Proteins , Humans , Amyotrophic Lateral Sclerosis/pathology , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Protein Tyrosine Phosphatases/metabolism , Synapses/pathology , TDP-43 Proteinopathies/metabolism , Vesicular Transport Proteins/genetics
13.
Cell Death Differ ; 31(3): 280-291, 2024 03.
Article in English | MEDLINE | ID: mdl-38383887

ABSTRACT

Detection of cytosolic nucleic acids by pattern recognition receptors, including STING and RIG-I, leads to the activation of multiple signalling pathways that culminate in the production of type I interferons (IFNs) which are vital for host survival during virus infection. In addition to protective immune modulatory functions, type I IFNs are also associated with autoimmune diseases. Hence, it is important to elucidate the mechanisms that govern their expression. In this study, we identified a critical regulatory function of the DUSP4 phosphatase in innate immune signalling. We found that DUSP4 regulates the activation of TBK1 and ERK1/2 in a signalling complex containing DUSP4, TBK1, ERK1/2 and IRF3 to regulate the production of type I IFNs. Mice deficient in DUSP4 were more resistant to infections by both RNA and DNA viruses but more susceptible to malaria parasites. Therefore, our study establishes DUSP4 as a regulator of nucleic acid sensor signalling and sheds light on an important facet of the type I IFN regulatory system.


Subject(s)
Interferon Type I , Membrane Proteins , Protein Tyrosine Phosphatases , Receptors, Cell Surface , Roundabout Proteins , Virus Diseases , Animals , Mice , Immunity, Innate , Interferon Type I/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Virus Diseases/immunology , Virus Diseases/metabolism , Membrane Proteins/metabolism , Roundabout Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Receptors, Cell Surface/metabolism
14.
Nat Commun ; 15(1): 1385, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360978

ABSTRACT

The Eyes Absent proteins (EYA1-4) are a biochemically unique group of tyrosine phosphatases known to be tumour-promoting across a range of cancer types. To date, the targets of EYA phosphatase activity remain largely uncharacterised. Here, we identify Polo-like kinase 1 (PLK1) as an interactor and phosphatase substrate of EYA4 and EYA1, with pY445 on PLK1 being the primary target site. Dephosphorylation of pY445 in the G2 phase of the cell cycle is required for centrosome maturation, PLK1 localization to centrosomes, and polo-box domain (PBD) dependent interactions between PLK1 and PLK1-activation complexes. Molecular dynamics simulations support the rationale that pY445 confers a structural impairment to PBD-substrate interactions that is relieved by EYA-mediated dephosphorylation. Depletion of EYA4 or EYA1, or chemical inhibition of EYA phosphatase activity, dramatically reduces PLK1 activation, causing mitotic defects and cell death. Overall, we have characterized a phosphotyrosine signalling network governing PLK1 and mitosis.


Subject(s)
Cell Cycle Proteins , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Proteins/metabolism , Tyrosine/metabolism , Mitosis , Centrosome/metabolism , Phosphoric Monoester Hydrolases/metabolism , HeLa Cells , Nuclear Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Trans-Activators/metabolism
15.
Open Biol ; 14(2): 230278, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38378139

ABSTRACT

Neuroparasitism concerns the hostile take-over of a host's nervous system by a foreign invader, in order to alter the behaviour of the host in favour of the parasite. One of the most remarkable cases of parasite-induced host behavioural manipulation comprises the changes baculoviruses induce in their caterpillar hosts. Baculoviruses may manipulate caterpillar behaviour in two ways: hyperactivity (increased movement in the horizontal plane) and/or tree-top disease (movement to elevated levels in the vertical plane). Those behavioural changes are followed by liquefaction and death of the caterpillar. In Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected Spodoptera exigua caterpillars, an enzymatic active form of the virally encoded protein tyrosine phosphatase (PTP) is needed for the expression of hyperactivity from 3 days post infection (dpi). Using eGFP-expressing recombinant AcMNPV strains, we show that infection of the caterpillar's central nervous system (CNS) can be observed primarily from 3 dpi onwards. In addition, we demonstrate that the structural and enzymatic function of PTP does not play a role in infection of the CNS. Instead we show that the virus entered the CNS via the trachea, progressing caudally to frontally through the CNS and that the infection progressed from the outermost cell layers towards the inner cell layers of the CNS, in a PTP independent manner. These findings help to further understand parasitic manipulation and the mechanisms by which neuroparasites infect the host nervous system to manipulate host behaviour.


Subject(s)
Baculoviridae , Central Nervous System , Nucleopolyhedroviruses , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Spodoptera/metabolism , Central Nervous System/metabolism , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism
16.
J Chem Inf Model ; 64(4): 1331-1346, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38346324

ABSTRACT

Dynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study, we employ this paradigm to answer a basic question: in enzyme superfamilies, where the catalytic mechanism, active sites, and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as representatives of the conserved protein tyrosine phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of the catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatases , Catalytic Domain , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry
17.
FEBS Open Bio ; 14(3): 390-409, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320757

ABSTRACT

Post-translational modifications are key in the regulation of activity, structure, localization, and stability of most proteins in eukaryotes. Phosphorylation is potentially the most studied post-translational modification, also due to its reversibility and thereby the regulatory role this modification often plays. While most research attention was focused on kinases in the past, phosphatases remain understudied, most probably because the addition and presence of the modification is more easily studied than its removal and absence. Here, we report the identification of an uncharacterized protein tyrosine phosphatase PPH-7 in C. elegans, a member of the evolutionary conserved PTPN family of phosphatases. Lack of PPH-7 function led to reduction of fertility and embryonic lethality at elevated temperatures. Proteomics revealed changes in the regulation of targets of the von Hippel-Lindau (VHL) E3 ligase, suggesting a potential role for PPH-7 in the regulation of VHL.


Subject(s)
Caenorhabditis elegans , Von Hippel-Lindau Tumor Suppressor Protein , Animals , Caenorhabditis elegans/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Temperature , Protein Tyrosine Phosphatases , Embryonic Development/genetics , Fertility/genetics
18.
Sci Adv ; 10(9): eadi7404, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416831

ABSTRACT

PTPN21 belongs to the four-point-one, ezrin, radixin, moesin (FERM) domain-containing protein tyrosine phosphatases (PTP) and plays important roles in cytoskeleton-associated cellular processes like cell adhesion, motility, and cargo transport. Because of the presence of a WPE loop instead of a WPD loop in the phosphatase domain, it is often considered to lack phosphatase activity. However, many of PTPN21's biological functions require its catalytic activity. To reconcile these findings, we have determined the structures of individual PTPN21 FERM, PTP domains, and a complex between FERM-PTP. Combined with biochemical analysis, we have found that PTPN21 PTP is weakly active and is autoinhibited by association with its FERM domain. Disruption of FERM-PTP interaction results in enhanced ERK activation. The oncogenic HPV18 E7 protein binds to PTP at the same location as PTPN21 FERM, indicating that it may act by displacing the FERM domain from PTP. Our results provide mechanistic insight into PTPN21 and benefit functional studies of PTPN21-mediated processes.


Subject(s)
FERM Domains , Protein Tyrosine Phosphatases , Protein Structure, Tertiary , Protein Tyrosine Phosphatases/metabolism , Protein Binding , Cytoskeleton/metabolism
19.
Int. microbiol ; 27(1): 37-47, Feb. 2024. ilus, graf
Article in English | IBECS | ID: ibc-230242

ABSTRACT

To date, there are very limited reports on sequence analysis and structure-based molecular modeling of phosphatases produced by probiotic bacteria. Therefore, a novel protein tyrosine-like phosphatase was characterized from L. helveticus 2126 in this study. The purified bacterial phosphatase was subjected to mass spectrometric analysis, and the identity of constructed sequence was analyzed using peptide mass fingerprint. The 3-D structure of protein was elucidated using homology modeling, while its stability was assessed using Ramachandran plot, VERIFY 3D, and PROCHECK. The bacterium produced an extracellular phosphatase of zone diameter 15 ± 0.8 mm on screening medium within 24 h of incubation. This bacterial phosphatase was highly specific towards sodium phytate as it yielded the lowest Km value of 299.50 ± 4.95 μM compared to other phosphorylated substrates. The activity was effectively stimulated in the presence of zinc, magnesium, and manganese ions thereby showing its PTP-like behavior. The phosphatase showed a molecular mass of 43 kDa, and the corresponding M/Z ratio data yielded 46% query coverage to Bacillus subtilis (3QY7). This showed a 61.1% sequence similarity to Ligilactobacillus ruminis (WP_046923835.1). The final sequence construct based on these bacteria showed a conserved motif “HCHILPGIDD” in their active site. In addition, homology modeling showed a distorted Tim barrel structure with a trinuclear metal center. The final model after energy minimization showed 90.9% of the residues in the favorable region of Ramachandran’s plot. This structural information can be used in genetic engineering for improving the overall stability and catalytic efficiency of probiotic bacterial phosphatases.(AU)


Subject(s)
Humans , Phosphoric Monoester Hydrolases , Metals , Amino Acid Sequence , Lactobacillus helveticus/genetics , Protein Tyrosine Phosphatases/metabolism , Microbiology , Microbiological Techniques , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/genetics , Catalytic Domain
20.
Molecules ; 29(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38338416

ABSTRACT

Protein tyrosine phosphatases (PTPs) are ubiquitous in living organisms and are promising drug targets for cancer, diabetes/obesity, and autoimmune disorders. In this study, a histone deacetylase inhibitor called suberoylanilide hydroxamic acid (SAHA) was added to a culture of marine fungi (Aspergillus sydowii DL1045) to identify potential drug candidates related to PTP inhibition. Then, the profile of the induced metabolites was characterized using an integrated metabolomics strategy. In total, 46% of the total SMs were regulated secondary metabolites (SMs), among which 20 newly biosynthesized metabolites (10% of the total SMs) were identified only in chemical epigenetic regulation (CER) broth. One was identified as a novel compound, and fourteen compounds were identified from Aspergillus sydowii first. SAHA derivatives were also biotransformed by A. sydowii DL1045, and five of these derivatives were identified. Based on the bioassay, some of the newly synthesized metabolites exhibited inhibitory effects on PTPs. The novel compound sydowimide A (A11) inhibited Src homology region 2 domain-containing phosphatase-1 (SHP1), T-cell protein tyrosine phosphatase (TCPTP) and leukocyte common antigen (CD45), with IC50 values of 1.5, 2.4 and 18.83 µM, respectively. Diorcinol (A3) displayed the strongest inhibitory effect on SHP1, with an IC50 value of 0.96 µM. The structure-activity relationship analysis and docking studies of A3 analogs indicated that the substitution of the carboxyl group reduced the activity of A3. Research has demonstrated that CER positively impacts changes in the secondary metabolic patterns of A. sydowii DL1045. The compounds produced through this approach will provide valuable insights for the creation and advancement of novel drug candidates related to PTP inhibition.


Subject(s)
Aspergillus , Epigenesis, Genetic , Aspergillus/chemistry , Protein Tyrosine Phosphatases , Vorinostat/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...