Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.767
Filter
1.
BMC Med Genomics ; 17(1): 89, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627775

ABSTRACT

OBJECTIVE: Branchio-oto-renal syndrome (BOR, OMIM#113,650) is a rare autosomal dominant disorder that presents with a variety of symptoms, including hearing loss (sensorineural, conductive, or mixed), structural abnormalities affecting the outer, middle, and inner ear, branchial fistulas or cysts, as well as renal abnormalities.This study aims to identify the pathogenic variants by performing genetic testing on a family with Branchio-oto-renal /Branchio-otic (BO, OMIM#602,588) syndrome using whole-exome sequencing, and to explore possible pathogenic mechanisms. METHODS: The family spans 4 generations and consists of 9 individuals, including 4 affected by the BOR/BO syndrome. Phenotypic information, including ear malformation and branchial cleft, was collected from family members. Audiological, temporal bone imaging, and renal ultrasound examinations were also performed. Whole-exome sequencing was conducted to identify candidate pathogenic variants and explore the underlying molecular etiology of BOR/BO syndrome by minigene experiments. RESULTS: Intra-familial variability was observed in the clinical phenotypes of BOR/BO syndrome in this family. The severity and nature of hearing loss varied in family members, with mixed or sensorineural hearing loss. The proband, in particular, had profound sensorineural hearing loss on the left and moderate conductive hearing loss on the right. Additionally, the proband exhibited developmental delay, and her mother experienced renal failure during pregnancy and terminated the pregnancy prematurely. Genetic testing revealed a novel heterozygous variant NM_000503.6: c.639 + 3 A > C in the EYA1 gene in affected family members. In vitro minigene experiments demonstrated its effect on splicing. According to the American College of Medical Genetics (ACMG) guidelines, this variant was classified as likely pathogenic. CONCLUSION: This study highlights the phenotypic heterogeneity within the same family, reports the occurrence of renal failure and adverse pregnancy outcomes in a female patient at reproductive age with BOR syndrome, and enriches the mutational spectrum of pathogenic variants in the EYA1 gene.


Subject(s)
Branchio-Oto-Renal Syndrome , Deafness , Hearing Loss, Sensorineural , Hearing Loss , Renal Insufficiency , Humans , Pregnancy , Female , Branchio-Oto-Renal Syndrome/genetics , Branchio-Oto-Renal Syndrome/pathology , Intracellular Signaling Peptides and Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Hearing Loss/genetics , Pedigree , Nuclear Proteins/genetics
2.
J Biomed Sci ; 31(1): 33, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38532423

ABSTRACT

BACKGROUND: T cell receptor (TCR) signaling and T cell activation are tightly regulated by gatekeepers to maintain immune tolerance and avoid autoimmunity. The TRAIL receptor (TRAIL-R) is a TNF-family death receptor that transduces apoptotic signals to induce cell death. Recent studies have indicated that TRAIL-R regulates T cell-mediated immune responses by directly inhibiting T cell activation without inducing apoptosis; however, the distinct signaling pathway that regulates T cell activation remains unclear. In this study, we screened for intracellular TRAIL-R-binding proteins within T cells to explore the novel signaling pathway transduced by TRAIL-R that directly inhibits T cell activation. METHODS: Whole-transcriptome RNA sequencing was used to identify gene expression signatures associated with TRAIL-R signaling during T cell activation. High-throughput screening with mass spectrometry was used to identify the novel TRAIL-R binding proteins within T cells. Co-immunoprecipitation, lipid raft isolation, and confocal microscopic analyses were conducted to verify the association between TRAIL-R and the identified binding proteins within T cells. RESULTS: TRAIL engagement downregulated gene signatures in TCR signaling pathways and profoundly suppressed phosphorylation of TCR proximal tyrosine kinases without inducing cell death. The tyrosine phosphatase SHP-1 was identified as the major TRAIL-R binding protein within T cells, using high throughput mass spectrometry-based proteomics analysis. Furthermore, Lck was co-immunoprecipitated with the TRAIL-R/SHP-1 complex in the activated T cells. TRAIL engagement profoundly inhibited phosphorylation of Lck (Y394) and suppressed the recruitment of Lck into lipid rafts in the activated T cells, leading to the interruption of proximal TCR signaling and subsequent T cell activation. CONCLUSIONS: TRAIL-R associates with phosphatase SHP-1 and transduces a unique and distinct immune gatekeeper signal to repress TCR signaling and T cell activation via inactivating Lck. Thus, our results define TRAIL-R as a new class of immune checkpoint receptors for restraining T cell activation, and TRAIL-R/SHP-1 axis can serve as a potential therapeutic target for immune-mediated diseases.


Subject(s)
Receptors, Antigen, T-Cell , Receptors, TNF-Related Apoptosis-Inducing Ligand , Humans , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, Antigen, T-Cell/metabolism , Jurkat Cells , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Phosphorylation , Lymphocyte Activation , Tyrosine/metabolism
3.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189098, 2024 May.
Article in English | MEDLINE | ID: mdl-38555001

ABSTRACT

The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.


Subject(s)
Neoplasms , Protein Tyrosine Phosphatases , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/genetics , Animals , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
4.
EMBO J ; 43(7): 1325-1350, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38321267

ABSTRACT

Exit from mitosis is brought about by dramatic changes in the phosphoproteome landscape. A drop in Cyclin-dependent kinase (Cdk) activity, the master regulatory kinase, and activation of counteracting phosphatases such as Cdc14 in budding yeast, results in ordered substrate dephosphorylation, allowing entry into a new cell cycle and replication licensing. In meiosis however, two cell divisions have to be executed without intermediate DNA replication, implying that global phosphorylation and dephosphorylation have to be adapted to the challenges of meiosis. Using a global time-resolved phosphoproteomics approach in budding yeast, we compared the phosphoproteome landscape between mitotic exit and the transition from meiosis I to meiosis II. We found that unlike exit from mitosis, Cdk phosphomotifs remain mostly stably phosphorylated at the end of meiosis I, whereas a majority of Cdk-unrelated motifs are reset by dephosphorylation. However, inducing an artificial drop of Cdk at metaphase of meiosis I leads to ordered substrate dephosphorylation, comparable to mitosis, indicating that phosphoregulation of substrates at the end of meiosis I is thus mainly qualitatively rather than quantitatively ordered.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Mitosis , Phosphorylation , Meiosis
5.
Int. microbiol ; 27(1): 37-47, Feb. 2024. ilus, graf
Article in English | IBECS | ID: ibc-230242

ABSTRACT

To date, there are very limited reports on sequence analysis and structure-based molecular modeling of phosphatases produced by probiotic bacteria. Therefore, a novel protein tyrosine-like phosphatase was characterized from L. helveticus 2126 in this study. The purified bacterial phosphatase was subjected to mass spectrometric analysis, and the identity of constructed sequence was analyzed using peptide mass fingerprint. The 3-D structure of protein was elucidated using homology modeling, while its stability was assessed using Ramachandran plot, VERIFY 3D, and PROCHECK. The bacterium produced an extracellular phosphatase of zone diameter 15 ± 0.8 mm on screening medium within 24 h of incubation. This bacterial phosphatase was highly specific towards sodium phytate as it yielded the lowest Km value of 299.50 ± 4.95 μM compared to other phosphorylated substrates. The activity was effectively stimulated in the presence of zinc, magnesium, and manganese ions thereby showing its PTP-like behavior. The phosphatase showed a molecular mass of 43 kDa, and the corresponding M/Z ratio data yielded 46% query coverage to Bacillus subtilis (3QY7). This showed a 61.1% sequence similarity to Ligilactobacillus ruminis (WP_046923835.1). The final sequence construct based on these bacteria showed a conserved motif “HCHILPGIDD” in their active site. In addition, homology modeling showed a distorted Tim barrel structure with a trinuclear metal center. The final model after energy minimization showed 90.9% of the residues in the favorable region of Ramachandran’s plot. This structural information can be used in genetic engineering for improving the overall stability and catalytic efficiency of probiotic bacterial phosphatases.(AU)


Subject(s)
Humans , Phosphoric Monoester Hydrolases , Metals , Amino Acid Sequence , Lactobacillus helveticus/genetics , Protein Tyrosine Phosphatases/metabolism , Microbiology , Microbiological Techniques , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/genetics , Catalytic Domain
6.
Open Biol ; 14(2): 230278, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38378139

ABSTRACT

Neuroparasitism concerns the hostile take-over of a host's nervous system by a foreign invader, in order to alter the behaviour of the host in favour of the parasite. One of the most remarkable cases of parasite-induced host behavioural manipulation comprises the changes baculoviruses induce in their caterpillar hosts. Baculoviruses may manipulate caterpillar behaviour in two ways: hyperactivity (increased movement in the horizontal plane) and/or tree-top disease (movement to elevated levels in the vertical plane). Those behavioural changes are followed by liquefaction and death of the caterpillar. In Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected Spodoptera exigua caterpillars, an enzymatic active form of the virally encoded protein tyrosine phosphatase (PTP) is needed for the expression of hyperactivity from 3 days post infection (dpi). Using eGFP-expressing recombinant AcMNPV strains, we show that infection of the caterpillar's central nervous system (CNS) can be observed primarily from 3 dpi onwards. In addition, we demonstrate that the structural and enzymatic function of PTP does not play a role in infection of the CNS. Instead we show that the virus entered the CNS via the trachea, progressing caudally to frontally through the CNS and that the infection progressed from the outermost cell layers towards the inner cell layers of the CNS, in a PTP independent manner. These findings help to further understand parasitic manipulation and the mechanisms by which neuroparasites infect the host nervous system to manipulate host behaviour.


Subject(s)
Baculoviridae , Central Nervous System , Nucleopolyhedroviruses , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Spodoptera/metabolism , Central Nervous System/metabolism , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism
7.
Int Microbiol ; 27(1): 37-47, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37365352

ABSTRACT

To date, there are very limited reports on sequence analysis and structure-based molecular modeling of phosphatases produced by probiotic bacteria. Therefore, a novel protein tyrosine-like phosphatase was characterized from L. helveticus 2126 in this study. The purified bacterial phosphatase was subjected to mass spectrometric analysis, and the identity of constructed sequence was analyzed using peptide mass fingerprint. The 3-D structure of protein was elucidated using homology modeling, while its stability was assessed using Ramachandran plot, VERIFY 3D, and PROCHECK. The bacterium produced an extracellular phosphatase of zone diameter 15 ± 0.8 mm on screening medium within 24 h of incubation. This bacterial phosphatase was highly specific towards sodium phytate as it yielded the lowest Km value of 299.50 ± 4.95 µM compared to other phosphorylated substrates. The activity was effectively stimulated in the presence of zinc, magnesium, and manganese ions thereby showing its PTP-like behavior. The phosphatase showed a molecular mass of 43 kDa, and the corresponding M/Z ratio data yielded 46% query coverage to Bacillus subtilis (3QY7). This showed a 61.1% sequence similarity to Ligilactobacillus ruminis (WP_046923835.1). The final sequence construct based on these bacteria showed a conserved motif "HCHILPGIDD" in their active site. In addition, homology modeling showed a distorted Tim barrel structure with a trinuclear metal center. The final model after energy minimization showed 90.9% of the residues in the favorable region of Ramachandran's plot. This structural information can be used in genetic engineering for improving the overall stability and catalytic efficiency of probiotic bacterial phosphatases.


Subject(s)
Lactobacillus helveticus , Protein Tyrosine Phosphatases , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Amino Acid Sequence , Lactobacillus helveticus/genetics , Catalytic Domain , Phosphorylation , Metals
8.
Methods Mol Biol ; 2743: 1-19, 2024.
Article in English | MEDLINE | ID: mdl-38147205

ABSTRACT

Nonsense mutations generating premature termination codons (PTCs) in various genes are frequently associated with somatic cancer and hereditary human diseases since PTCs commonly generate truncated proteins with defective or altered function. Induced translational readthrough during protein biosynthesis facilitates the incorporation of an amino acid at the position of a PTC, allowing the synthesis of a complete protein. This may evade the pathological effect of the PTC mutation and provide new therapeutic opportunities. Several protein tyrosine phosphatases (PTPs) genes are targeted by PTC in human disease, the tumor suppressor PTEN being the more prominent paradigm. Here, using PTEN and laforin as examples, two PTPs from the dual-specificity phosphatase subfamily, we describe methodologies to analyze in silico the distribution and frequency of pathogenic PTC in PTP genes. We also summarize laboratory protocols and technical notes to study the induced translational readthrough reconstitution of the synthesis of PTP targeted by PTC in association with disease in cellular models.


Subject(s)
Codon, Nonsense , Protein Tyrosine Phosphatases , Humans , Mutation , Protein Tyrosine Phosphatases/genetics , Dual-Specificity Phosphatases , Protein Biosynthesis
9.
Methods Mol Biol ; 2743: 93-110, 2024.
Article in English | MEDLINE | ID: mdl-38147210

ABSTRACT

The zebrafish is an ideal model for functional analysis of genes at the molecular, protein, cell, organ, and organism levels. We have used zebrafish to analyze the function of members of the protein tyrosine phosphatase (PTP) superfamily for more than two decades. The molecular genetic toolbox has significantly improved over the years. Currently, generating mutant lines that lack the function of a PTP gene is relatively straightforward by CRISPR/Cas9 technology-mediated generation of insertions or deletions in the target gene. In addition, generating point mutations using CRISPR/Cas9 technology and homology-directed repair (HDR) is feasible, albeit the success rate could be higher. Here, we describe the methods, including the tips and tricks, that we have used to generate knock-out and knock-in zebrafish lines in PTP genes successfully.


Subject(s)
Craniocerebral Trauma , Perciformes , Animals , Zebrafish/genetics , Protein Tyrosine Phosphatases/genetics , Point Mutation
10.
Methods Mol Biol ; 2743: 123-133, 2024.
Article in English | MEDLINE | ID: mdl-38147212

ABSTRACT

Protein tyrosine phosphorylation and dephosphorylation are key regulatory mechanisms in eukaryotes. Protein tyrosine phosphorylation and dephosphorylation are catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. The combinatorial action of both PTKs and PTPs is essential for properly maintaining cellular functions. In this unit, we discuss different novel methods to identify PTP substrates. PTPs depend on specific invariant residues that enable binding to tyrosine-phosphorylated substrates and aid catalytic activity. Identifying PTP substrates has paved the way to understanding their role in distinct intracellular signaling pathways. Due to their high specific activity, the interaction between PTPs and their substrates is transient; therefore, identifying the physiological substrates of PTPs has been challenging. To identify the physiological substrates of PTPs, various PTP mutants have been generated. These PTP mutants, named "substrate-trapping mutants," lack catalytic activity but bind tightly to their tyrosine-phosphorylated substrates. Identifying the substrates for the PTPs will provide critical insight into the function of physiological and pathophysiological signal transduction. In this chapter, we describe interaction assays used to identify the PTP substrates.


Subject(s)
Protein Tyrosine Phosphatases , Signal Transduction , Protein Tyrosine Phosphatases/genetics , Phosphorylation , Protein-Tyrosine Kinases , Tyrosine
11.
Methods Mol Biol ; 2743: 271-283, 2024.
Article in English | MEDLINE | ID: mdl-38147221

ABSTRACT

Protein tyrosine phosphatases (PTPs) are important therapeutic targets for a range of human pathologies. However, the common architecture of PTP active sites impedes the discovery of selective PTP inhibitors. Our laboratory has recently developed methods to inhibit PTPs allosterically by targeting cysteine residues that either (i) are not conserved in the PTP family or (ii) result from pathogenic mutations. Here, we describe screening protocols for the identification of selective inhibitors that covalently engage such "rare" cysteines in target PTPs. Moreover, to elucidate the breadth of possible applications of our cysteine-directed screening protocols, we provide a brief overview of the nonconserved cysteines present in all human classical PTP domains.


Subject(s)
Cysteine , Protein Tyrosine Phosphatases , Humans , Mutation , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/genetics
12.
Methods Mol Biol ; 2743: 195-209, 2024.
Article in English | MEDLINE | ID: mdl-38147217

ABSTRACT

Receptor protein tyrosine phosphatases (RPTPs) are one of the key regulators of receptor tyrosine kinases (RTKs) and therefore play a critical role in modulating signal transduction. While the structure-function relationship of RTKs has been widely studied, the mechanisms modulating the activity of RPTPs still need to be fully understood. On the other hand, homodimerization has been shown to antagonize RPTP catalytic activity and appears to be a general feature of the entire family. Conversely, their documented ability to physically interact with RTKs is integral to their negative regulation of RTKs, but there is a yet-to-be proposed common model. However, specific transmembrane (TM) domain interactions and residues have been shown to be essential in regulating RPTP homodimerization, interactions with RTK substrates, and activity. Therefore, elucidating the contribution of the TM domains in RPTP regulation can provide significant insights into how these receptors function, interact, and eventually be modulated. This chapter describes the dominant-negative AraC-based transcriptional reporter (DN-AraTM) assay to identify specific TM interactions essential to homodimerization and heteroassociation with other membrane receptors, such as RTKs.


Subject(s)
Protein Tyrosine Phosphatases , Signal Transduction , Protein Tyrosine Phosphatases/genetics , Biological Assay , Protein Domains , Receptor Protein-Tyrosine Kinases
13.
Methods Mol Biol ; 2743: 153-163, 2024.
Article in English | MEDLINE | ID: mdl-38147214

ABSTRACT

Tyrosine phosphorylation regulates signaling network activity downstream of receptor tyrosine kinase (RTK) activation. Receptor protein tyrosine phosphatases (RPTPs) serve to dephosphorylate RTKs and their proximal adaptor proteins, thus serving to modulate RTK activity. While the general function of RPTPs is well understood, the direct and indirect substrates for each RPTP are poorly characterized. Here we describe a method, quantitative phosphotyrosine phosphoproteomics, that enables the identification of specific phosphorylation sites whose phosphorylation levels are altered by the expression and activity of a given RPTP. In a proof-of-concept application, we use this method to highlight several direct or indirect substrate phosphorylation sites for PTPRJ, also known as DEP1, and show their quantitative phosphorylation in the context of wild-type PTPRJ compared to a mutant form of PTPRJ with increased activity, in EGF-stimulated cells. This method is generally applicable to define the signaling network effects of each RPTP in cells or tissues under different physiological conditions.


Subject(s)
Protein Tyrosine Phosphatases , Signal Transduction , Protein Tyrosine Phosphatases/genetics , Adaptor Proteins, Signal Transducing , Phosphorylation , Protein Processing, Post-Translational
14.
Molecules ; 28(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38067503

ABSTRACT

Erwinia amylovora is a Gram-negative bacterium, responsible for the fire blight disease in Rosaceae plants. Its virulence is correlated with the production of an exopolysaccharide (EPS) called amylovoran, which protects the bacterium from the surrounding environment and helps its diffusion inside the host. Amylovoran biosynthesis relies on the expression of twelve genes clustered in the ams operon. One of these genes, amsI, encodes for a Low Molecular Weight Protein Tyrosine Phosphatase (LMW-PTP) called EaAmsI, which plays a key role in the regulation of the EPS production pathway. For this reason, EaAmsI was chosen in this work as a target for the development of new antibacterial agents against E. amylovora. To achieve this aim, a set of programs (DOCK6, OpenEye FRED) was selected to perform a virtual screening using a database of ca. 700 molecules. The six best-scoring compounds identified were tested in in vitro assays. A complete inhibition kinetic characterization carried out on the most promising molecule (n-Heptyl ß-D-glucopyranoside, N7G) showed an inhibition constant of 7.8 ± 0.6 µM. This study represents an initial step towards the development of new EaAmsI inhibitors able to act as antibacterial agents against E. amylovora infections.


Subject(s)
Erwinia amylovora , Erwinia , Malus , Malus/metabolism , Virulence , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Plant Diseases/microbiology , Polysaccharides, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Erwinia/genetics , Erwinia/metabolism
15.
Microbiol Spectr ; 11(6): e0281323, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37819153

ABSTRACT

IMPORTANCE: Staphylococcus aureus uses numerous strategies to survive and persist in the intracellular environment of professional phagocytes, including modulation of the SUMOylation process. This study aims to understand how S. aureus alters host SUMOylation to enhance its intracellular survival in professional phagocytes. Our results indicate that S. aureus strain Newman utilizes PtpA-driven phosphorylation to decrease the amount of SUMOylated proteins in murine macrophages to facilitate its survival in this immune cell type.


Subject(s)
Protein Tyrosine Phosphatases , Staphylococcus aureus , Sumoylation , Animals , Mice , Macrophages , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Staphylococcus aureus/metabolism , Tyrosine/metabolism , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology
16.
Mol Cancer ; 22(1): 158, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777742

ABSTRACT

The Eyes Absent (EYA) family of proteins is an atypical group of four dual-functioning protein phosphatases (PP), which have been linked to many vital cellular processes and organogenesis pathways. The four family members of this PP family possess transcriptional activation and phosphatase functions, with serine/threonine and tyrosine phosphatase domains. EYA4 has been associated with several human cancers, with tumor-suppressing and tumor-promoting roles. However, EYA4 is the least well-characterized member of this unique family of PP, with its biological functions and molecular mechanisms in cancer progression, particularly in breast cancer, still largely unknown. In the present study, we found that the over-expression of EYA4 in breast tissue leads to an aggressive and invasive breast cancer phenotype, while the inhibition of EYA4 reduced tumorigenic properties of breast cancer cells in vitro and in vivo. Cellular changes downstream of EYA4, including cell proliferation and migration, may explain the increased metastatic power of breast cancer cells over-expressing EYA4. Mechanistically, EYA4 prevents genome instability by inhibiting the accumulation of replication-associated DNA damage. Its depletion results in polyploidy as a consequence of endoreplication, a phenomenon that can occur in response to stress. The absence of EYA4 leads to spontaneous replication stress characterized by the activation of the ATR pathway, sensitivity to hydroxyurea, and accumulation of endogenous DNA damage as indicated by increased γH2AX levels. In addition, we show that EYA4, specifically its serine/threonine phosphatase domain, plays an important and so far, unexpected role in replication fork progression. This phosphatase activity is essential for breast cancer progression and metastasis. Taken together, our data indicate that EYA4 is a novel potential breast cancer oncogene that supports primary tumor growth and metastasis. Developing therapeutics aimed at the serine/threonine phosphatase activity of EYA4 represents a robust strategy for killing breast cancer cells, to limit metastasis and overcome chemotherapy resistance caused by endoreplication and genomic rearrangements.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Cell Line, Tumor , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Serine
17.
Genes Dev ; 37(15-16): 678-680, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37673461

ABSTRACT

Receptor protein tyrosine phosphatases (RPTPs) are involved in a broad list of cellular, developmental, and physiological functions. Altering their expression leads to significant changes in protein phosphorylation linked to a growing list of human diseases, including cancers and neurological disorders. In this issue of Genes & Development, Qian and colleagues (pp. 743-759) present the identification of a monoclonal antibody targeting PTPRD extracellular domain-inducing dimerization and inhibition of the phosphatase activities, causing the proteolysis of dimeric PTPRD by a mechanism involving intracellular degradation pathways. Their study supports the potential of modulating PTPRD via its extracellular domains. This opens a new framework in the clinical manipulation of PTPRD and its closely related family members.


Subject(s)
Immunoglobulins , Protein Tyrosine Phosphatases , Humans , Dimerization , Cell Differentiation , Protein Tyrosine Phosphatases/genetics , Tyrosine
18.
Biol Open ; 12(10)2023 10 15.
Article in English | MEDLINE | ID: mdl-37530060

ABSTRACT

Eukaryotic meiosis is a specialized cell cycle of two nuclear divisions that give rise to haploid gametes. The phosphatase Cdc14 is essential for meiosis in the yeast Saccharomyces cerevisiae. Cdc14 is sequestered in the nucleolus, a nuclear domain containing the ribosomal DNA, by its binding partner Net1, and released in two distinct waves, first in early anaphase I, then in anaphase II. Current models posit that the meiosis I release is required for ribosomal DNA disjunction, disassembly of the anaphase spindle, spindle pole re-duplication and counteraction of cyclin-dependent kinase, all of which are essential events. We examined Cdc14 release in net1-6cdk mutant cells, which lack six key Net1 CDK phosphorylation sites. Cdc14 release in early anaphase I was partially inhibited, and disjunction of the rDNA was fully inhibited. Failure to disjoin the rDNA is lethal in mitosis, and we expected the same to be true for meiosis I. However, the cells reliably completed both meiotic divisions to produce four viable spores. Therefore, segregation of the rDNA into all four meiotic products can be postponed until meiosis II without decreasing the fidelity of chromosome inheritance.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Anaphase , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Meiosis , Nuclear Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
19.
Sci Rep ; 13(1): 11776, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479820

ABSTRACT

Branchio-oto-renal (BOR)/branchio-otic (BO) syndrome is a rare disorder and exhibits clinically heterogenous phenotypes, marked by abnormalities in the ear, branchial arch, and renal system. Sporadic cases of atypical BOR/BO syndrome have been recently reported; however, evidence on genotype-phenotype correlations and molecular mechanisms of those cases is lacking. We herein identified five SIX1 heterozygous variants (c.307dupC:p.Leu103Profs*51, c.373G>A:p.Glu125Lys, c.386_391del:p.Tyr129_Cys130del, c.397_399del:p.Glu133del, and c.501G>C:p.Gln167His), including three novel variants, through whole-exome sequencing in five unrelated Korean families. All eight affected individuals with SIX1 variants displayed non-syndromic hearing loss (DFNA23) or atypical BO syndrome. The prevalence of major and minor criteria for BOR/BO syndrome was significantly reduced among individuals with SIX1 variants, compared to 15 BOR/BO syndrome families with EYA1 variants. All SIX1 variants interacted with the EYA1 wild-type; their complexes were localized in the nucleus except for the p.Leu103Profs*51 variant. All mutants also showed obvious but varying degrees of reduction in DNA binding affinity, leading to a significant decrease in transcriptional activity. This study presents the first report of SIX1 variants in South Korea, expanding the genotypic and phenotypic spectrum of SIX1 variants, characterized by DFNA23 or atypical BO syndrome, and refines the diverse molecular aspects of SIX1 variants according to the EYA1-SIX1-DNA complex theory.


Subject(s)
Branchio-Oto-Renal Syndrome , Deafness , Humans , Intracellular Signaling Peptides and Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Mutation , Pedigree , Branchio-Oto-Renal Syndrome/genetics , Phenotype , Republic of Korea , DNA/genetics , Homeodomain Proteins/genetics
20.
EMBO J ; 42(16): e114364, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37493185

ABSTRACT

CDC14, originally identified as crucial mediator of mitotic exit in budding yeast, belongs to the family of dual-specificity phosphatases (DUSPs) that are present in most eukaryotes. Contradicting data have sparked a contentious discussion whether a cell cycle role is conserved in the human paralogs CDC14A and CDC14B but possibly masked due to redundancy. Subsequent studies on CDC14A and CDC14B double knockouts in human and mouse demonstrated that CDC14 activity is dispensable for mitotic progression in higher eukaryotes and instead suggested functional specialization. In this review, we provide a comprehensive overview of our current understanding of how faithful cell division is linked to phosphorylation and dephosphorylation and compare functional similarities and divergences between the mitotic phosphatases CDC14, PP2A, and PP1 from yeast and higher eukaryotes. Furthermore, we review the latest discoveries on CDC14B, which identify this nuclear phosphatase as a key regulator of gene expression and reveal its role in neuronal development. Finally, we discuss CDC14B functions in meiosis and possible implications in other developmental processes.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Animals , Mice , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Cell Division , Cell Cycle , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Phosphorylation , Mitosis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...