Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Enzyme Microb Technol ; 124: 41-53, 2019 May.
Article in English | MEDLINE | ID: mdl-30797478

ABSTRACT

Peptidylarginine deiminases (PADs) are a group of hydrolases, mediating the deimination of peptidylarginine residues into peptidyl-citrulline. Equivocal protein citrullination by PADs of fungal pathogens has a strong relation to the progression of multiple human diseases, however, the biochemical properties of fungal PADs remain ambiguous. Thus, this is the first report exploring the molecular properties of PAD from thermotolerant fungi, to imitate the human temperature. The teleomorph Emericella dentata and anamorph Aspergillus nidulans have been morphologically and molecularly identified, with observed robust growth at 37-40 °C, and strong PAD productivity. The physiological profiles of E. dentata and A. nidulans for PADs production in response to carbon, nitrogen sources, initial medium pH and incubation temperature were relatively identical, emphasizing the taxonomical proximity of these fungal isolates. PADs were purified from E. dentata and A. nidulans with apparent molecular masses 41 and 48 kDa, respectively. The peptide fingerprints of PADs from E. dentata and A. nidulans have been analyzed by MALDI-TOF/MS, displaying a higher sequence similarity to human PAD4 by 18% and 31%, respectively. The conserved peptide sequences of E. dentata and A. nidulans PADs displayed a higher similarity to human PAD than A. fumigatus PADs clade. PADs from both fungal isolates have an optimum pH and pH stability at 7.0-8.0, with putative pI 5.0-5.5, higher structural denaturation at pH 4.0-5.5 and 9.5-12 as revealed from absorbance at λ280nm. E. dentata PAD had a higher conformationally thermal stability than A. nidulans PAD as revealed from its lower Kr value. From the proteolytic mapping, the orientation of trypsinolytic recognition sites on the PADs surface from both fungal isolates was very similar. PADs from both isolates are calcium dependent, with participation of serine and cysteine residues on their catalytic sites. PADs displayed a higher affinity to deiminate the peptidylarginine residues with a feeble affinity to work as ADI. So, PADs from E. dentata and A. nidulans had a relatively similar conformational and kinetic properties. Further molecular modeling analysis are ongoing to explore the role of PADs in citrullination of human proteins in Aspergillosis, that will open a new avenue for unraveling the vague of protein-protein interaction of human A. nidulans pathogen.


Subject(s)
Aspergillus nidulans/enzymology , Emericella/enzymology , Protein-Arginine Deiminases/chemistry , Protein-Arginine Deiminases/metabolism , Aspergillus fumigatus/enzymology , Enzyme Stability , Humans , Hydrogen-Ion Concentration , Kinetics , Molecular Weight , Peptides/chemistry , Protein Conformation , Protein-Arginine Deiminases/isolation & purification , Temperature
2.
J Dent Res ; 97(5): 556-562, 2018 05.
Article in English | MEDLINE | ID: mdl-29298553

ABSTRACT

Porphyromonas gingivalis is one of the major oral pathogens implicated in the widespread inflammatory disorder periodontitis. Moreover, in recent years, P. gingivalis has been associated with the autoimmune disease rheumatoid arthritis. The peptidylarginine deiminase enzyme of P. gingivalis (PPAD) is a major virulence factor that catalyzes the citrullination of both bacterial and host proteins, potentially contributing to production of anticitrullinated protein antibodies. Considering that these antibodies are very specific for rheumatoid arthritis, PPAD appears to be a link between P. gingivalis, periodontitis, and the autoimmune disorder rheumatoid arthritis. PPAD was thus far considered unique among prokaryotes, with P. gingivalis being the only bacterium known to produce and secrete it. To challenge this hypothesis, we investigated the possible secretion of PPAD by 11 previously collected Porphyromonas isolates from a dog, 2 sheep, 3 cats, 4 monkeys, and a jaguar with periodontitis. Our analyses uncovered the presence of secreted PPAD homologues in 8 isolates that were identified as Porphyromonas gulae (from a dog, monkeys, and cats) and Porphyromonas loveana (from sheep). In all 3 PPAD-producing Porphyromonas species, the dominant form of the secreted PPAD was associated with outer membrane vesicles, while a minor fraction was soluble. Our results prove for the first time that the citrullinating PPAD exoenzyme is not unique to only 1 prokaryotic species. Instead, we show that PPAD is produced by at least 2 other oral pathogens.


Subject(s)
Porphyromonas/enzymology , Protein-Arginine Deiminases/metabolism , Animals , Blotting, Western , Cats , Dogs , Electrophoresis, Polyacrylamide Gel , Haplorhini , Panthera , Periodontitis/enzymology , Periodontitis/microbiology , Periodontitis/veterinary , Phylogeny , Porphyromonas/genetics , Porphyromonas gingivalis/enzymology , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/isolation & purification , Sequence Analysis, DNA , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...