Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.645
Filter
1.
Sci Adv ; 10(23): eadm9589, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838142

ABSTRACT

DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.


Subject(s)
DNA Replication , Immunity, Innate , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Humans , Signal Transduction , Arginine/metabolism , Arginine/analogs & derivatives , Stress, Physiological , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Damage , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Crit Rev Eukaryot Gene Expr ; 34(5): 69-79, 2024.
Article in English | MEDLINE | ID: mdl-38842205

ABSTRACT

Gastric cancer is a most malignancy in digestive tract worldwide. This study aimed to investigate the roles of protein arginine methyltransferase 6 (PRMT6) in gastric cancer. Immunohistochemistry was performed to detect PRMT6 expression in gastric tumors. Real-time transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to detected mRNA levels. Protein expression was determined using western blot. Gastric cancer cells were co-cultured with CD8+ T cells. Colony formation assay was performed to detect cell proliferation. Flow cytometry was performed to determine CD8+ T cell function and tumor cell apoptosis. PRMT6 was overexpressed in gastric tumors. High level of PRMT6 predicted poor outcomes of gastric cancer patients and inhibition of CD8+ T cell infiltration. PRMT6 promoted proliferation of CD8+ T cells and enhanced its tumor killing ability. Moreover, PRMT6 upregulated annexin A1 (ANXA1) and promoted ANXA1 protein stability. ANXA1 overexpression suppressed the proliferation of CD8+ T cells and promoted tumor cell survival. PRMT6 functions as an oncogene in gastric cancer. PRMT6-mediated protein stability inhibits the infiltration of CD8+ T cells, resulting in immune evasion of gastric cancer. The PRMT6-ANXA1 may be a promising strategy for gastric cancer.


Subject(s)
Annexin A1 , CD8-Positive T-Lymphocytes , Cell Proliferation , Gene Expression Regulation, Neoplastic , Protein-Arginine N-Methyltransferases , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Stomach Neoplasms/metabolism , Humans , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Annexin A1/genetics , Annexin A1/metabolism , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Up-Regulation , Apoptosis , Tumor Escape/genetics , Male , Immune Evasion , Female , Nuclear Proteins
3.
Nat Commun ; 15(1): 4790, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839752

ABSTRACT

Cancer cells are often addicted to serine synthesis to support growth. How serine synthesis is regulated in cancer is not well understood. We recently demonstrated protein arginine methyltransferase 1 (PRMT1) is upregulated in hepatocellular carcinoma (HCC) to methylate and activate phosphoglycerate dehydrogenase (PHGDH), thereby promoting serine synthesis. However, the mechanisms underlying PRMT1 upregulation and regulation of PRMT1-PHGDH axis remain unclear. Here, we show the E3 ubiquitin ligase F-box-only protein 7 (FBXO7) inhibits serine synthesis in HCC by binding PRMT1, inducing lysine 37 ubiquitination, and promoting proteosomal degradation of PRMT1. FBXO7-mediated PRMT1 downregulation cripples PHGDH arginine methylation and activation, resulting in impaired serine synthesis, accumulation of reactive oxygen species (ROS), and inhibition of HCC cell growth. Notably, FBXO7 is significantly downregulated in human HCC tissues, and inversely associated with PRMT1 protein and PHGDH methylation level. Overall, our study provides mechanistic insights into the regulation of cancer serine synthesis by FBXO7-PRMT1-PHGDH axis, and will facilitate the development of serine-targeting strategies for cancer therapy.


Subject(s)
Carcinoma, Hepatocellular , F-Box Proteins , Liver Neoplasms , Phosphoglycerate Dehydrogenase , Protein-Arginine N-Methyltransferases , Serine , Ubiquitination , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , F-Box Proteins/metabolism , F-Box Proteins/genetics , Serine/metabolism , Serine/biosynthesis , Phosphoglycerate Dehydrogenase/metabolism , Phosphoglycerate Dehydrogenase/genetics , Cell Line, Tumor , Animals , Repressor Proteins/metabolism , Repressor Proteins/genetics , Mice , Cell Proliferation , Methylation , Gene Expression Regulation, Neoplastic , Mice, Nude , Male , HEK293 Cells , Female , Hep G2 Cells
4.
Oncol Res ; 32(6): 1047-1061, 2024.
Article in English | MEDLINE | ID: mdl-38827317

ABSTRACT

Background: Colorectal cancer (CRC) is one of the most frequently diagnosed cancers. In many cases, the poor prognosis of advanced CRC is associated with resistance to treatment with chemotherapeutic drugs such as 5-Fluorouracil (5-FU). The epithelial-to-mesenchymal transition (EMT) and dysregulation in protein methylation are two mechanisms associated with chemoresistance in many cancers. This study looked into the effect of 5-FU dose escalation on EMT and protein methylation in CRC. Materials and Methods: HCT-116, Caco-2, and DLD-1 CRC cell lines were exposed to dose escalation treatment of 5-FU. The motility and invasive potentials of the cells before and after treatment with 5-FU were investigated through wound healing and invasion assays. This was followed by a Western blot which analyzed the protein expressions of the epithelial marker E-cadherin, mesenchymal marker vimentin, and the EMT transcription factor (EMT-TF), the snail family transcriptional repressor 1 (Snail) in the parental and desensitized cells. Western blotting was also conducted to study the protein expressions of the protein methyltransferases (PMTs), Euchromatic histone lysine methyltransferase 2 (EHMT2/G9A), protein arginine methyltransferase (PRMT5), and SET domain containing 7/9 (SETD7/9) along with the global lysine and arginine methylation profiles. Results: The dose escalation method generated 5-FU desensitized CRC cells with distinct morphological features and increased tolerance to high doses of 5-FU. The 5-FU desensitized cells experienced a decrease in migration and invasion when compared to the parental cells. This was reflected in the observed reduction in E-cadherin, vimentin, and Snail in the desensitized cell lines. Additionally, the protein expressions of EHMT2/G9A, PRMT5, and SETD7/9 also decreased in the desensitized cells and global protein lysine and arginine methylation became dysregulated with 5-FU treatment. Conclusion: This study showed that continuous, dose-escalation treatment of 5-FU in CRC cells generated 5-FU desensitized cancer cells that seemed to be less aggressive than parental cells.


Subject(s)
Cell Movement , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Fluorouracil , Humans , Fluorouracil/pharmacology , Fluorouracil/administration & dosage , Epithelial-Mesenchymal Transition/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cell Movement/drug effects , Cell Line, Tumor , Antimetabolites, Antineoplastic/pharmacology , Drug Resistance, Neoplasm , Dose-Response Relationship, Drug , Methyltransferases/metabolism , Methyltransferases/genetics , Gene Expression Regulation, Neoplastic/drug effects , Methylation , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics
5.
Oncol Res ; 32(6): 1037-1045, 2024.
Article in English | MEDLINE | ID: mdl-38827324

ABSTRACT

Background: The dysregulation of Isocitrate dehydrogenase (IDH) and the subsequent production of 2-Hydroxyglutrate (2HG) may alter the expression of epigenetic proteins in Grade 4 astrocytoma. The interplay mechanism between IDH, O-6-methylguanine-DNA methyltransferase (MGMT)-promoter methylation, and protein methyltransferase proteins-5 (PRMT5) activity, with tumor progression has never been described. Methods: A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors. Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis. Inter-cohort statistical significance was evaluated. Results: Both IDH-mutant WHO grade 4 astrocytomas (n = 22, 64.7%) and IDH-wildtype glioblastomas (n = 12, 35.3%) had upregulated PRMT5 gene expression except in one case. Out of the 22 IDH-mutant tumors, 10 (45.5%) tumors showed MGMT-promoter methylation and 12 (54.5%) tumors had unmethylated MGMT. All IDH-wildtype tumors had unmethylated MGMT. There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma (p-value = 0.006). Statistically significant differences in progression-free survival (PFS) were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide (TMZ) or TMZ plus other chemotherapies, regardless of their IDH or MGMT-methylation status (p-value=0.0014). Specifically, IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation, who received only TMZ, have exhibited longer PFS. Conclusions: The relationship between PRMT5, MGMT-promoter, and IDH is not tri-directional. However, accumulation of D2-hydroxyglutarate (2-HG), which partially activates 2-OG-dependent deoxygenase, may not affect their activities. In IDH-wildtype glioblastomas, the 2HG-2OG pathway is typically inactive, leading to PRMT5 upregulation. TMZ alone, compared to TMZ-plus, can increase PFS in upregulated PRMT5 tumors. Thus, using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression.


Subject(s)
Astrocytoma , DNA Methylation , DNA Modification Methylases , DNA Repair Enzymes , Disease Progression , Isocitrate Dehydrogenase , Mutation , Promoter Regions, Genetic , Protein-Arginine N-Methyltransferases , Tumor Suppressor Proteins , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Isocitrate Dehydrogenase/genetics , Male , Female , Astrocytoma/genetics , Astrocytoma/pathology , Middle Aged , Adult , Retrospective Studies , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Neoplasm Grading , Aged , Temozolomide/therapeutic use , Temozolomide/pharmacology , Gene Expression Regulation, Neoplastic
6.
Hepatol Commun ; 8(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38704651

ABSTRACT

BACKGROUND: Alcohol-associated liver disease is a complex disease regulated by genetic and environmental factors such as diet and sex. The combination of high-fat diet and alcohol consumption has synergistic effects on liver disease progression. Female sex hormones are known to protect females from liver disease induced by high-fat diet. In contrast, they promote alcohol-mediated liver injury. We aimed to define the role of female sex hormones on liver disease induced by a combination of high-fat diet and alcohol. METHODS: Wild-type and protein arginine methyltransferase (Prmt)6 knockout female mice were subjected to gonadectomy (ovariectomy, OVX) or sham surgeries and then fed western diet and alcohol in the drinking water. RESULTS: We found that female sex hormones protected mice from western diet/alcohol-induced weight gain, liver steatosis, injury, and fibrosis. Our data suggest that these changes are, in part, mediated by estrogen-mediated induction of arginine methyltransferase PRMT6. Liver proteome changes induced by OVX strongly correlated with changes induced by Prmt6 knockout. Using Prmt6 knockout mice, we confirmed that OVX-mediated weight gain, steatosis, and injury are PRMT6 dependent, while OVX-induced liver fibrosis is PRMT6 independent. Proteomic and gene expression analyses revealed that estrogen signaling suppressed the expression of several components of the integrin pathway, thus reducing integrin-mediated proinflammatory (Tnf, Il6) and profibrotic (Tgfb1, Col1a1) gene expression independent of PRMT6 levels. Integrin signaling inhibition using Arg-Gly-Asp peptides reduced proinflammatory and profibrotic gene expression in mice, suggesting that integrin suppression by estrogen is protective against fibrosis development. CONCLUSIONS: Taken together, estrogen signaling protects mice from liver disease induced by a combination of alcohol and high-fat diet through upregulation of Prmt6 and suppression of integrin signaling.


Subject(s)
Estradiol , Integrins , Mice, Knockout , Protein-Arginine N-Methyltransferases , Signal Transduction , Animals , Mice , Female , Signal Transduction/drug effects , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Integrins/metabolism , Diet, High-Fat/adverse effects , Ovariectomy , Ethanol/adverse effects , Liver Cirrhosis, Alcoholic/metabolism , Liver Cirrhosis, Alcoholic/prevention & control , Liver Cirrhosis, Alcoholic/pathology , Liver/metabolism , Liver/pathology , Liver/drug effects , Mice, Inbred C57BL , Disease Models, Animal
7.
FASEB J ; 38(10): e23647, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38787599

ABSTRACT

Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Arginine , Muscle, Skeletal , Protein-Arginine N-Methyltransferases , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Arginine/metabolism , Arginine/analogs & derivatives , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Mice , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Male , Methylation , Female , Protein Processing, Post-Translational , Mice, Inbred C57BL , Proteome/metabolism
8.
Commun Biol ; 7(1): 593, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760429

ABSTRACT

STAT3 is constitutively activated in many cancer types, including lung cancer, and can induce cancer cell proliferation and cancer stem cell (CSC) maintenance. STAT3 is activated by tyrosine kinases, such as JAK and SRC, but the mechanism by which STAT3 maintains its activated state in cancer cells remains unclear. Here, we show that PRMT5 directly methylates STAT3 and enhances its activated tyrosine phosphorylation in non-small cell lung cancer (NSCLC) cells. PRMT5 expression is also induced by STAT3, suggesting the presence of a positive feedback loop in cancer cells. Furthermore, methylation of STAT3 at arginine 609 by PRMT5 is important for its transcriptional activity and support of tumour growth and CSC maintenance. Indeed, NSCLC cells expressing the STAT3 mutant which R609 was replaced to alanine (R609K) show significantly impaired tumour growth in nude mice. Overall, our study reveals a mechanism by which STAT3 remains activated in NSCLC and provides a new target for cancer therapeutic approaches.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Lung Neoplasms , Mice, Nude , Neoplastic Stem Cells , Protein-Arginine N-Methyltransferases , STAT3 Transcription Factor , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Methylation , Cell Line, Tumor , Phosphorylation , Gene Expression Regulation, Neoplastic
9.
Cell Rep ; 43(5): 114176, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38691454

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis due to therapeutic resistance. We show that PDAC cells undergo global epigenetic reprogramming to acquire chemoresistance, a process that is driven at least in part by protein arginine methyltransferase 1 (PRMT1). Genetic or pharmacological PRMT1 inhibition impairs adaptive epigenetic reprogramming and delays acquired resistance to gemcitabine and other common chemo drugs. Mechanistically, gemcitabine treatment induces translocation of PRMT1 into the nucleus, where its enzymatic activity limits the assembly of chromatin-bound MAFF/BACH1 transcriptional complexes. Cut&Tag chromatin profiling of H3K27Ac, MAFF, and BACH1 suggests a pivotal role for MAFF/BACH1 in global epigenetic response to gemcitabine, which is confirmed by genetically silencing MAFF. PRMT1 and MAFF/BACH1 signature genes identified by Cut&Tag analysis distinguish gemcitabine-resistant from gemcitabine-sensitive patient-derived xenografts of PDAC, supporting the PRMT1-MAFF/BACH1 epigenetic regulatory axis as a potential therapeutic avenue for improving the efficacy and durability of chemotherapies in patients of PDAC.


Subject(s)
Deoxycytidine , Drug Resistance, Neoplasm , Epigenesis, Genetic , Gemcitabine , Pancreatic Neoplasms , Protein-Arginine N-Methyltransferases , Repressor Proteins , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Humans , Drug Resistance, Neoplasm/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Repressor Proteins/metabolism , Repressor Proteins/genetics , Cell Line, Tumor , Animals , Mice , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Gene Expression Regulation, Neoplastic/drug effects , Cellular Reprogramming/drug effects , Cellular Reprogramming/genetics
10.
J Med Chem ; 67(10): 7921-7934, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38713486

ABSTRACT

CARM1, belonging to the protein arginine methyltransferase (PRMT) family, is intricately associated with the progression of cancer and is viewed as a promising target for both cancer diagnosis and therapy. However, the number of specific and potent CARM1 inhibitors is limited. We herein discovered a CARM1 inhibitor, iCARM1, that showed better specificity and activity toward CARM1 compared to the known CARM1 inhibitors, EZM2302 and TP-064. Similar to CARM1 knockdown, iCARM1 suppressed the expression of oncogenic estrogen/ERα-target genes, whereas activated type I interferon (IFN) and IFN-induced genes (ISGs) in breast cancer cells. Consequently, iCARM1 potently suppressed breast cancer cell growth both in vitro and in vivo. The combination of iCARM1 with either endocrine therapy drugs or etoposide demonstrated synergistic effects in inhibiting the growth of breast tumors. In summary, targeting CARM1 by iCARM1 effectively suppresses breast tumor growth, offering a promising therapeutic approach for managing breast cancers in clinical settings.


Subject(s)
Breast Neoplasms , Cell Proliferation , Protein-Arginine N-Methyltransferases , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Female , Animals , Mice , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Mice, Nude , Mice, Inbred BALB C , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use
11.
Bioorg Chem ; 148: 107439, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754310

ABSTRACT

PRMT6 is a member of the protein arginine methyltransferase family, which participates in a variety of physical processes and plays an important role in the occurrence and development of tumors. Using small molecules to design and synthesize targeted protein degraders is a new strategy for drug development. Here, we report the first-in-class degrader SKLB-0124 for PRMT6 based on the hydrophobic tagging (HyT) method.Importantly, SKLB-0124 induced proteasome dependent degradation of PRMT6 and significantly inhibited the proliferation of HCC827 and MDA-MB-435 cells. Moreover, SKLB-0124 effectively induced apoptosis and cell cycle arrest in these two cell lines. Our data clarified that SKLB-0124 is a promising selective PRMT6 degrader for cancer therapy which is worthy of further evaluation.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Dose-Response Relationship, Drug , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Humans , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Structure-Activity Relationship , Apoptosis/drug effects , Drug Discovery , Cell Line, Tumor , Drug Screening Assays, Antitumor , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Nuclear Proteins
12.
Mol Plant ; 17(6): 900-919, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38704640

ABSTRACT

Although both protein arginine methylation (PRMT) and jasmonate (JA) signaling are crucial for regulating plant development, the relationship between these processes in the control of spikelet development remains unclear. In this study, we used the CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants that exhibit various abnormal spikelet structures. Interestingly, we found that OsPRMT6a can methylate arginine residues in JA signal repressors OsJAZ1 and OsJAZ7. We showed that arginine methylation of OsJAZ1 enhances the binding affinity of OsJAZ1 with the JA receptors OsCOI1a and OsCOI1b in the presence of JAs, thereby promoting the ubiquitination of OsJAZ1 by the SCFOsCOI1a/OsCOI1b complex and degradation via the 26S proteasome. This process ultimately releases OsMYC2, a core transcriptional regulator in the JA signaling pathway, to activate or repress JA-responsive genes, thereby maintaining normal plant (spikelet) development. However, in the osprmt6a-1 mutant, reduced arginine methylation of OsJAZ1 impaires the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs. As a result, OsJAZ1 proteins become more stable, repressing JA responses, thus causing the formation of abnormal spikelet structures. Moreover, we discovered that JA signaling reduces the OsPRMT6a mRNA level in an OsMYC2-dependent manner, thereby establishing a negative feedback loop to balance JA signaling. We further found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures. Collectively, our study establishes a direct molecular link between arginine methylation and JA signaling in rice.


Subject(s)
Arginine , Cyclopentanes , Oryza , Oxylipins , Plant Proteins , Protein-Arginine N-Methyltransferases , Signal Transduction , Cyclopentanes/metabolism , Oxylipins/metabolism , Oryza/growth & development , Oryza/genetics , Oryza/metabolism , Arginine/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Methylation , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Gene Expression Regulation, Plant
13.
Arch Esp Urol ; 77(2): 173-182, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38583010

ABSTRACT

BACKGROUND: In recent years, significant attention has been directed towards long non-coding RNA NUT family member 2A antisense RNA 1 (NUTM2A-AS1) for its oncogenic role in tumours. This study aimed to investigate the functional and molecular mechanisms underlying NUTM2A-AS1 in prostate cancer (PCa). METHODS: NUTM2A-AS1, miR-376a-3p, and protein arginine methyltransferase 5 (PRMT5) levels were assessed in PCa samples and matched non-cancerous prostate samples. The DU145 cell line was conditioned to undergo transfection with relevant plasmids, and a cell counting kit-8 assay was performed to evaluate cell proliferation. A Transwell assay was conducted to analyse cell migration or invasion. Cell apoptosis was assessed using an annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and flow cytometry. A tumour sphere formation assay was conducted to assess the ability of PCa cells to form tumour spheres. RESULTS: We found elevated expression of NUTM2A-AS1 and PRMT5 and decreased expression of miR-376a-3p in PCa samples. Inhibition of NUTM2A-AS1 or overexpression of miR-376a-3p led to reduced cell proliferation and diminished cancer stem cell-like traits in vitro. NUTM2A-AS1 regulated miR-376a-3p through competitive absorption, thereby modulating PRMT5. Up-regulation of PRMT5 nullified the therapeutic effects of inhibiting NUTM2A-AS1 or overexpressing miR-376a-3p in DU145 cells. CONCLUSIONS: NUTM2A-AS1 promotes cancer stem cell-like traits in PCa cells by targeting PRMT5 through miR-376a-3p. Therefore, these NUTM2A-AS1-based novel insights into tumour therapy hold promise for patients with PCa.


Subject(s)
MicroRNAs , Prostatic Neoplasms , RNA, Long Noncoding , Male , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Prostate , Cell Line, Tumor , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
14.
J Med Chem ; 67(8): 6313-6326, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38574345

ABSTRACT

Coactivator-associated arginine methyltransferase 1 (CARM1), an important member of type I protein arginine methyltransferases (PRMTs), has emerged as a promising therapeutic target for various cancer types. In our previous study, we have identified a series of type I PRMT inhibitors, among which ZL-28-6 (6) exhibited increased activity against CARM1 while displaying decreased potency against other type I PRMTs. In this work, we conducted chemical modifications on compound 6, resulting in a series of (2-(benzyloxy)phenyl)methanamine derivatives as potent inhibitors of CARM1. Among them, compound 17e displayed remarkable potency and selectivity for CARM1 (IC50 = 2 ± 1 nM), along with notable antiproliferative effects against melanoma cell lines. Cellular thermal shift assay and western blot experiments confirmed that compound 6 effectively targets CARM1 within cells. Furthermore, compound 17e displayed good antitumor efficacy in a melanoma xenograft model, indicating that this compound warrants further investigation as a potential anticancer agent.


Subject(s)
Antineoplastic Agents , Melanoma , Protein-Arginine N-Methyltransferases , Humans , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Animals , Melanoma/drug therapy , Melanoma/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Mice , Structure-Activity Relationship , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Xenograft Model Antitumor Assays , Mice, Nude , Drug Screening Assays, Antitumor
15.
Nat Commun ; 15(1): 2809, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561334

ABSTRACT

Protein arginine methyltransferase 9 (PRMT9) is a recently identified member of the PRMT family, yet its biological function remains largely unknown. Here, by characterizing an intellectual disability associated PRMT9 mutation (G189R) and establishing a Prmt9 conditional knockout (cKO) mouse model, we uncover an important function of PRMT9 in neuronal development. The G189R mutation abolishes PRMT9 methyltransferase activity and reduces its protein stability. Knockout of Prmt9 in hippocampal neurons causes alternative splicing of ~1900 genes, which likely accounts for the aberrant synapse development and impaired learning and memory in the Prmt9 cKO mice. Mechanistically, we discover a methylation-sensitive protein-RNA interaction between the arginine 508 (R508) of the splicing factor 3B subunit 2 (SF3B2), the site that is exclusively methylated by PRMT9, and the pre-mRNA anchoring site, a cis-regulatory element that is critical for RNA splicing. Additionally, using human and mouse cell lines, as well as an SF3B2 arginine methylation-deficient mouse model, we provide strong evidence that SF3B2 is the primary methylation substrate of PRMT9, thus highlighting the conserved function of the PRMT9/SF3B2 axis in regulating pre-mRNA splicing.


Subject(s)
Alternative Splicing , RNA , Animals , Humans , Mice , Arginine/metabolism , Mice, Knockout , Mutation , Protein-Arginine N-Methyltransferases/metabolism , RNA/metabolism , RNA Precursors/metabolism , RNA Splicing/genetics
16.
J Med Chem ; 67(8): 6064-6080, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38595098

ABSTRACT

It has been shown that PRMT5 inhibition by small molecules can selectively kill cancer cells with homozygous deletion of the MTAP gene if the inhibitors can leverage the consequence of MTAP deletion, namely, accumulation of the MTAP substrate MTA. Herein, we describe the discovery of TNG908, a potent inhibitor that binds the PRMT5·MTA complex, leading to 15-fold-selective killing of MTAP-deleted (MTAP-null) cells compared to MTAPintact (MTAP WT) cells. TNG908 shows selective antitumor activity when dosed orally in mouse xenograft models, and its physicochemical properties are amenable for crossing the blood-brain barrier (BBB), supporting clinical study for the treatment of both CNS and non-CNS tumors with MTAP loss.


Subject(s)
Antineoplastic Agents , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Humans , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Cell Line, Tumor , Xenograft Model Antitumor Assays , Neoplasms/drug therapy , Brain/metabolism , Structure-Activity Relationship
17.
Cancer Lett ; 591: 216877, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615930

ABSTRACT

Mantle cell lymphoma (MCL) is an incurable and aggressive subtype of non-Hodgkin B-cell lymphoma. Increased lipid uptake, storage, and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. However, no data has been explored for the roles of lipid metabolism reprogramming in MCL. Here, we identified aberrant lipid metabolism reprogramming and PRMT5 as a key regulator of cholesterol and fatty acid metabolism reprogramming in MCL patients. High PRMT5 expression predicts adverse outcome prognosis in 105 patients with MCL and GEO database (GSE93291). PRMT5 deficiency resulted in proliferation defects and cell death by CRISPR/Cas9 editing. Moreover, PRMT5 inhibitors including SH3765 and EPZ015666 worked through blocking SREBP1/2 and FASN expression in MCL. Furthermore, PRMT5 was significantly associated with MYC expression in 105 MCL samples and the GEO database (GSE93291). CRISPR MYC knockout indicated PRMT5 can promote MCL outgrowth by inducing SREBP1/2 and FASN expression through the MYC pathway.


Subject(s)
Cell Proliferation , Fatty Acid Synthase, Type I , Lipid Metabolism , Lymphoma, Mantle-Cell , Protein-Arginine N-Methyltransferases , Proto-Oncogene Proteins c-myc , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthase, Type I/genetics , Cell Line, Tumor , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Gene Expression Regulation, Neoplastic , Animals , Mice , Male , Prognosis , Female , Cholesterol/metabolism , CRISPR-Cas Systems , Metabolic Reprogramming
18.
Aging (Albany NY) ; 16(8): 7426-7436, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38663941

ABSTRACT

Head and neck tumors are malignant tumors that appear in the head and neck. Although much progress has been made in the treatment of head and neck tumors, many challenges remain. The prognosis of some advanced cases remains poor and survival and quality of life after treatment face certain limitations. Therefore, further research into the pathogenesis and treatment options for head and neck tumors is important in order to improve the prognosis and quality of life of patients. The Protein Arginine Methyltransferase (PRMT) family is a class of enzymes that are responsible for adding methyl groups to arginine residues in proteins. PRMT family members play important roles in regulating many cellular processes, such as transcriptional regulation, signaling, and cell cycle regulation. Recent studies have shown that the PRMT family also plays an important function in tumorigenesis and development. Here, we found that PRMT family members are significantly overexpressed in head and neck tumors and that PRMT5 may serve as an independent prognostic factor in head and neck tumors. We found that PRMT5-regulated differential genes were significantly enriched in tumor-associated signaling pathways such as IL-17 and p53. And we also found that the expression of PRMT5 in head and neck tumors was significantly correlated with immune cell infiltration, m6A as well as the expression of ferroptosis-related genes, and drug sensitivity. These results suggest that PRMT may play an important role in the development of head and neck tumors.


Subject(s)
Ferroptosis , Head and Neck Neoplasms , Protein-Arginine N-Methyltransferases , Squamous Cell Carcinoma of Head and Neck , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Ferroptosis/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Male , Female , Prognosis , Middle Aged , Signal Transduction
19.
Oncogene ; 43(22): 1714-1725, 2024 May.
Article in English | MEDLINE | ID: mdl-38605214

ABSTRACT

Colorectal cancer (CRC) has a high degree of heterogeneity and identifying the genetic information of individual tumor cells could help enhance our understanding of tumor biology and uncover potential therapeutic targets for CRC. In this study, we identified LPCAT2+ tumor cell populations with less malignancy than LPCAT2- tumor cells in human and mouse CRC tissues using scRNA-seq. Combining in vitro and in vivo experiments, we found that LPCAT2 could inhibit the proliferation of CRC cells by inducing ferroptosis. Mechanistically, LPCAT2 arrested PRMT1 in cytoplasm of CRC cells via regulating acetylation of PRMT1 at the K145 site. In turn, PRMT1 enhanced SLC7A11 promoter activity. Thus, LPCAT2 attenuated the positive regulatory effect of PRMT1 on SLC7A11 promoter. Notably, SLC7A11 acts as a ferroptosis regulator. Furthermore, in LPCAT2 knockout mice (LPCAT2-/-) colon cancer model, we found that LPCAT2-/- mice exhibited more severe lesions, while PRMT1 or SLC7A11 inhibitors delayed the progression. Altogether, we elucidated that LPCAT2 suppresses SLC7A11 expression by inhibiting PRMT1 nuclear translocation, thereby inducing ferroptosis in CRC cells. Moreover, inhibitors of the PRMT1/SLC7A11 axis could delay tumor progression in CRC with low LPCAT2 expression, making it a potentially effective treatment for CRC.


Subject(s)
Amino Acid Transport System y+ , Colorectal Neoplasms , Disease Progression , Protein-Arginine N-Methyltransferases , Animals , Humans , Mice , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Ferroptosis/genetics , Ferroptosis/drug effects , Gene Expression Regulation, Neoplastic , Mice, Knockout , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Repressor Proteins/genetics , Repressor Proteins/metabolism
20.
Nat Commun ; 15(1): 3415, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649367

ABSTRACT

An important epigenetic component of tyrosine kinase signaling is the phosphorylation of histones, and epigenetic readers, writers, and erasers. Phosphorylation of protein arginine methyltransferases (PRMTs), have been shown to enhance and impair their enzymatic activity. In this study, we show that the hyperactivation of Janus kinase 2 (JAK2) by the V617F mutation phosphorylates tyrosine residues (Y149 and Y334) in coactivator-associated arginine methyltransferase 1 (CARM1), an important target in hematologic malignancies, increasing its methyltransferase activity and altering its target specificity. While non-phosphorylatable CARM1 methylates some established substrates (e.g. BAF155 and PABP1), only phospho-CARM1 methylates the RUNX1 transcription factor, on R223 and R319. Furthermore, cells expressing non-phosphorylatable CARM1 have impaired cell-cycle progression and increased apoptosis, compared to cells expressing phosphorylatable, wild-type CARM1, with reduced expression of genes associated with G2/M cell cycle progression and anti-apoptosis. The presence of the JAK2-V617F mutant kinase renders acute myeloid leukemia (AML) cells less sensitive to CARM1 inhibition, and we show that the dual targeting of JAK2 and CARM1 is more effective than monotherapy in AML cells expressing phospho-CARM1. Thus, the phosphorylation of CARM1 by hyperactivated JAK2 regulates its methyltransferase activity, helps select its substrates, and is required for the maximal proliferation of malignant myeloid cells.


Subject(s)
Apoptosis , Core Binding Factor Alpha 2 Subunit , Janus Kinase 2 , Protein-Arginine N-Methyltransferases , Tyrosine , Humans , Phosphorylation , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Tyrosine/metabolism , Cell Line, Tumor , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Methylation , Substrate Specificity , HEK293 Cells , Cell Cycle , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...