Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.334
Filter
1.
Mol Biol Rep ; 51(1): 636, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727863

ABSTRACT

BACKGROUND: Osteoporosis (OP), characterized by compromised bone integrity and increased fracture risk, poses a significant health challenge. Circular RNAs (circRNAs) have emerged as crucial regulators in various pathophysiological processes, prompting investigation into their role in osteoporosis. This study aimed to elucidate the involvement of circCOX6A1 in OP progression and understand its underlying molecular mechanisms. The primary objective was to explore the impact of circCOX6A1 on bone marrow-derived mesenchymal stem cells (BMSCs) and its potential interactions with miR-512-3p and DYRK2. METHODS: GSE161361 microarray analysis was employed to assess circCOX6A1 expression in OP patients. We utilized in vitro and in vivo models, including BMSC cultures, osteogenic differentiation assays, and an OVX-induced mouse model of OP. Molecular techniques such as quantitative RT-PCR, western blotting, and functional assays like alizarin red staining (ARS) were employed to evaluate circCOX6A1 effects on BMSC proliferation, apoptosis, and osteogenic differentiation. The interaction between circCOX6A1, miR-512-3p, and DYRK2 was investigated through dual luciferase reporter assays, RNA immunoprecipitation, and RNA pull-down assays. RESULTS: CircCOX6A1 was found to be upregulated in osteoporosis patients, and its expression inversely correlated with osteogenic differentiation of BMSCs. CircCOX6A1 knockdown enhanced osteogenic differentiation, as evidenced by increased mineralized nodule formation and upregulation of osteogenic markers. In vivo, circCOX6A1 knockdown ameliorated osteoporosis progression in OVX mice. Mechanistically, circCOX6A1 acted as a sponge for miR-512-3p, subsequently regulating DYRK2 expression. CONCLUSION: This study provides compelling evidence for the role of circCOX6A1 in osteoporosis pathogenesis. CircCOX6A1 negatively regulates BMSC osteogenic differentiation through the miR-512-3p/DYRK2 axis, suggesting its potential as a therapeutic target for mitigating OP progression.


Subject(s)
Cell Differentiation , Dyrk Kinases , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Osteoporosis , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , RNA, Circular , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Osteogenesis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Cell Differentiation/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Humans , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Mice , Mesenchymal Stem Cells/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Female , Cell Proliferation/genetics , Disease Models, Animal , Apoptosis/genetics , Middle Aged
2.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38753246

ABSTRACT

Compared with naïve B cells, the B cell receptor (BCR) signal in germinal center (GC) B cells is attenuated; however, the significance of this signaling attenuation has not been well defined. Here, to investigate the role of attenuation of BCR signaling, we employed a Csk mutant mouse model in which Csk deficiency in GC B cells resulted in augmentation of net BCR signaling with no apparent effect on antigen presentation. We found that Csk is required for GC maintenance and efficient antibody affinity maturation. Mechanistically, ROS-induced apoptosis was exacerbated concomitantly with mitochondrial dysfunction in Csk-deficient GC B cells. Hence, our data suggest that attenuation of the BCR signal restrains hyper-ROS production, thereby protecting GC B cells from apoptosis and contributing to efficient affinity maturation.


Subject(s)
Apoptosis , B-Lymphocytes , Germinal Center , Reactive Oxygen Species , Receptors, Antigen, B-Cell , Signal Transduction , Animals , Germinal Center/immunology , Germinal Center/metabolism , Receptors, Antigen, B-Cell/metabolism , Reactive Oxygen Species/metabolism , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Mitochondria/metabolism , Antibody Affinity , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Mice, Inbred C57BL , Mice, Knockout
3.
Oncotarget ; 15: 313-325, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753413

ABSTRACT

The diheteroarylamide-based compound 1C8 and the aminothiazole carboxamide-related compound GPS167 inhibit the CLK kinases, and affect the proliferation of a broad range of cancer cell lines. A chemogenomic screen previously performed with GPS167 revealed that the depletion of components associated with mitotic spindle assembly altered sensitivity to GPS167. Here, a similar screen performed with 1C8 also established the impact of components involved in mitotic spindle assembly. Accordingly, transcriptome analyses of cells treated with 1C8 and GPS167 indicated that the expression and RNA splicing of transcripts encoding mitotic spindle assembly components were affected. The functional relevance of the microtubule connection was confirmed by showing that subtoxic concentrations of drugs affecting mitotic spindle assembly increased sensitivity to GPS167. 1C8 and GPS167 impacted the expression and splicing of transcripts in pathways relevant to tumor progression, including MYC targets and the epithelial mesenchymal transition (EMT). Finally, 1C8 and GPS167 altered the expression and alternative splicing of transcripts involved in the antiviral immune response. Consistent with this observation, depleting the double-stranded RNA sensor DHX33 suppressed GPS167-mediated cytotoxicity on HCT116 cells. Our study uncovered molecular mechanisms through which 1C8 and GPS167 affect cancer cell proliferation as well as processes critical for metastasis.


Subject(s)
Cell Proliferation , Epithelial-Mesenchymal Transition , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Humans , Epithelial-Mesenchymal Transition/drug effects , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Antiviral Agents/pharmacology , HCT116 Cells , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Gene Expression Profiling
5.
Protein Sci ; 33(6): e5004, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723164

ABSTRACT

Dysregulation of RNA splicing processes is intricately linked to tumorigenesis in various cancers, especially breast cancer. Cdc2-like kinase 2 (CLK2), an oncogenic RNA-splicing kinase pivotal in breast cancer, plays a significant role, particularly in the context of triple-negative breast cancer (TNBC), a subtype marked by substantial medical challenges due to its low survival rates. In this study, we employed a structure-based virtual screening (SBVS) method to identify potential CLK2 inhibitors with novel chemical structures for treating TNBC. Compound 670551 emerged as a novel CLK2 inhibitor with a 50% inhibitory concentration (IC50) value of 619.7 nM. Importantly, Compound 670551 exhibited high selectivity for CLK2 over other protein kinases. Functionally, this compound significantly reduced the survival and proliferation of TNBC cells. Results from a cell-based assay demonstrated that this inhibitor led to a decrease in RNA splicing proteins, such as SRSF4 and SRSF6, resulting in cell apoptosis. In summary, we identified a novel CLK2 inhibitor as a promising potential treatment for TNBC therapy.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Female , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Molecular Docking Simulation , Cell Proliferation/drug effects
6.
Behav Brain Res ; 468: 115022, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697301

ABSTRACT

Abl2/Arg (ABL-related gene) is a member of the Abelson family of nonreceptor tyrosine kinases, known for its role in tumor progression, metastasis, tissue injury responses, inflammation, neural degeneration, and other diseases. In this study, we developed Abl2/Arg knockout (abl2-/-) mice to explore its impact on sensory/motor functions and emotion-related behaviors. Our findings show that abl2-/- mice exhibit normal growth and phenotypic characteristics, closely resembling their wild-type (WT) counterparts. Behavioral tests, including the elevated plus maze, marble-burying behavior test, and open field test, indicated pronounced anxiety-like behaviors in abl2-/- mice compared to WT mice. Furthermore, in the tail suspension test, abl2-/- mice showed a significant decrease in mobility time, suggesting depressive-like behavior. Conversely, in the Y-maze and cliff avoidance reaction tests, no notable differences were observed between abl2-/- and WT mice, suggesting the absence of working memory deficits and impulsivity in abl2-/- mice. Proteomic analysis of the hippocampus in abl2-/- mice highlighted significant alterations in proteins related to anxiety and depression, especially those associated with the GABAergic synapse in inhibitory neurotransmission. The expression of Gabbr2 was significantly reduced in the hippocampus of abl2-/- compared to WT mice, and intraperitoneal treatment of GABA receptor agonist Gaboxadol normalized anxiety/depression-related behaviors of abl2-/- mice. These findings underscore the potential role of Abl2/Arg in influencing anxiety and depressive-like behaviors, thereby contributing valuable insights into its broader physiological and pathological functions.


Subject(s)
Anxiety , Behavior, Animal , Depression , Hippocampus , Mice, Knockout , Protein-Tyrosine Kinases , Animals , Anxiety/metabolism , Mice , Depression/physiopathology , Behavior, Animal/physiology , Hippocampus/metabolism , Male , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/deficiency , Mice, Inbred C57BL , Disease Models, Animal , Maze Learning/physiology
7.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739166

ABSTRACT

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Subject(s)
Disease Models, Animal , Down Syndrome , Neurogenesis , Animals , Down Syndrome/drug therapy , Down Syndrome/pathology , Down Syndrome/metabolism , Down Syndrome/complications , Down Syndrome/genetics , Neurogenesis/drug effects , Mice , Female , Pregnancy , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Dyrk Kinases , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Male , Cognition Disorders/drug therapy , Cognition Disorders/pathology
8.
Nat Commun ; 15(1): 3901, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724505

ABSTRACT

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Subject(s)
Cytoplasm , NF-KappaB Inhibitor alpha , NF-kappa B , Protein-Tyrosine Kinases , Transcription Factor RelA , Animals , Phosphorylation , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Mice , Transcription Factor RelA/metabolism , Humans , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , NF-kappa B/metabolism , Cytoplasm/metabolism , Proteolysis , Cell Nucleus/metabolism , Virus Replication , HEK293 Cells , Signal Transduction , Mice, Inbred C57BL , Cytokines/metabolism , Active Transport, Cell Nucleus , Protein Serine-Threonine Kinases
9.
Int J Biol Macromol ; 269(Pt 1): 132024, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704072

ABSTRACT

Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) plays an essential role in Tau and Aß pathology closely related to Alzheimer's disease (AD). Accumulative evidence has demonstrated DYRK1A inhibition is able to reduce the pathological features of AD. Nevertheless, there is no approved DYRK1A inhibitor for clinical use as anti-AD therapy. This is somewhat due to the lack of effective and safe chemotypes of DYRK1A inhibitors. To address this issue, we carried out in silico screening, in vitro assays and in vivo efficacy evaluation with the aim to discover a new class of DYRK1A inhibitors for potential treatment of AD. By in silico screening, we selected and purchased 16 potential DYRK1A inhibitors from the Specs chemical library. Among them, compound Q17 (Specs ID: AO-476/40829177) potently inhibited DYRK1A. The hydrogen bonds between compound Q17 and two amino acid residues named GLU239 and LYS188, were uncovered by molecular docking and molecular dynamics simulation. The cell-based assays showed that compound Q17 could protect the SH-SY5Y human neuroblastoma cell line from okadaic acid (OA)-induced injury by targeting DYRK1A. More importantly, compound Q17 significantly improved cognitive dysfunction of 3 × Tg-AD mice, ameliorated pathological changes, and attenuated Tau hyperphosphorylation as well as Aß deposition. In summary, our computational modeling strategy is effective to identify novel chemotypes of DYRK1A inhibitors with great potential to treat AD, and the identified compound Q17 in this study is worthy of further study.


Subject(s)
Alzheimer Disease , Dyrk Kinases , Molecular Docking Simulation , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Animals , Mice , Molecular Dynamics Simulation , Cell Line, Tumor , tau Proteins/metabolism , Drug Discovery , Computer Simulation , Disease Models, Animal
10.
Dev Biol ; 511: 63-75, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38621649

ABSTRACT

Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.


Subject(s)
Dyrk Kinases , Gene Expression Regulation, Developmental , Neural Crest , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Xenopus Proteins , Xenopus laevis , Animals , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Xenopus laevis/embryology , Xenopus laevis/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Neural Crest/embryology , Neural Crest/metabolism , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Signal Transduction , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/embryology , Craniofacial Abnormalities/metabolism , Branchial Region/embryology , Branchial Region/metabolism , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/embryology
11.
Eur J Med Chem ; 271: 116409, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38663285

ABSTRACT

Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), ß secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aß aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 µM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 µM) along with good anti-Aß aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 µM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aß-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid Precursor Protein Secretases , Cholinesterase Inhibitors , Drug Design , Triazines , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Rats , Structure-Activity Relationship , Acetylcholinesterase/metabolism , Triazines/chemistry , Triazines/pharmacology , Triazines/chemical synthesis , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Molecular Structure , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Molecular Docking Simulation , Dyrk Kinases , Dose-Response Relationship, Drug , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Male , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Butyrylcholinesterase/metabolism
12.
Mol Med Rep ; 29(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38639190

ABSTRACT

Traumatic Brain Injury (TBI) represents a significant public health challenge. Recovery from brain injury necessitates the collaborative efforts of various resident neural cells, predominantly microglia. The present study analyzed rat and mouse RNA expression micro­arrays, high­throughput RNA sequencing and single­cell sequencing data sourced from public databases. To construct an inflammation regulation network around TYRO protein tyrosine kinase­binding protein (TYROBP), to evaluate the role of TYROBP in cell death after TBI. These findings indicate that following TBI, neurons predominantly communicate with one another through the CXC chemokine ligand (CXCL) and CC chemokine ligand (CCL) signaling pathways, employing a paracrine mechanism to activate microglia. These activated microglia intensify the pathological progression of brain injury by releasing factors such as tumor necrosis factor α (TNF­α), vascular endothelial growth factor and transforming growth factor ß via the NF­κB pathway. Cells co­culture experiments demonstrated that neurons, impaired by mechanical injury, interact with microglia through non­contact mechanisms. Activated microglia secrete cytokines, including TNF­α, CXCL­8 and CCL2, which trigger an inflammatory response and facilitate neuronal apoptosis. TYROBP gene knockout in microglia was demonstrated to reduce this interaction and reduce neuronal cell apoptosis rates.


Subject(s)
Adaptor Proteins, Signal Transducing , Brain Injuries, Traumatic , Microglia , Animals , Mice , Rats , Apoptosis , Brain Injuries, Traumatic/metabolism , Inflammation/metabolism , Ligands , Mice, Inbred C57BL , Microglia/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Adaptor Proteins, Signal Transducing/metabolism
13.
Exp Cell Res ; 438(1): 114026, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38604522

ABSTRACT

The emergence of AR-V7, a truncated isoform of AR upon androgen deprivation therapy treatment, leads to the development of castration resistant prostate cancer (CRPC). Understanding mechanisms that regulate AR-V7 expression is critical for developing newer therapeutic strategies. In this study, we have investigated the regulation of AR-V7 during cell cycle and identified a distinct pattern of periodic fluctuation, peaking during G2/M phase. This fluctuation correlates with the expression of Cdc-2 like kinase 1 (CLK1) and phosphorylated serine/arginine-rich splicing factor 1 (p-SRSF1) during these phases, pointing towards their role in AR-V7 generation. Functional assays reveal that CLK1 knockdown prolongs the S phase, leading to altered cell cycle distribution and increased accumulation of AR-V7 and pSRSF1 in G1/S phase. Conversely, CLK1 overexpression rescues AR-V7 and p-SRSF1 levels in the G2/M phase, consistent with observed cell cycle alterations upon AR-V7 knockdown and overexpression in CRPC cells. Furthermore, overexpression of kinase-deficient CLK1 mutant leads to diminished AR-V7 levels during G2/M, underlining the essential contribution of CLK1's kinase activity in modulating AR-V7 expression. Collectively, our findings, for the first time, show periodic regulation of AR-V7 expression, its effect on cell cycle progression and the critical role of CLK1-pSRSF1 axis in modulating AR-V7 expression throughout the cell cycle.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Protein-Tyrosine Kinases , Receptors, Androgen , Serine-Arginine Splicing Factors , Humans , Male , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , G2 Phase/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Phosphorylation , Cell Proliferation/genetics , G2 Phase Cell Cycle Checkpoints/genetics
14.
Expert Opin Ther Targets ; 28(4): 283-294, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629385

ABSTRACT

INTRODUCTION: Epilepsy is a chronic neurological condition characterized by a persistent propensity for seizure generation. About one-third of patients do not achieve seizure control with the first-line treatment options, which include >20 antiseizure medications. It is therefore imperative that new medications with novel targets and mechanisms of action are developed. AREAS COVERED: Clinical studies and preclinical research increasingly implicate Non-receptor tyrosine kinases (nRTKs) in the pathogenesis of epilepsy. To date, several nRTK members have been linked to processes relevant to the development of epilepsy. Therefore, in this review, we provide insight into the molecular mechanisms by which the various nRTK subfamilies can contribute to the pathogenesis of epilepsy. We further highlight the prospective use of specific nRTK inhibitors in the treatment of epilepsy deriving evidence from existing literature providing a rationale for their use as therapeutic targets. EXPERT OPINION: Specific small-molecule inhibitors of NRTKs can be employed for the targeted therapy as already seen in other diseases by examining the precise molecular pathways regulated by them contributing to the development of epilepsy. However, the evidence supporting NRTKs as therapeutic targets are limiting in nature thus, necessitating more research to fully comprehend their function in the development and propagation of seizures.


Subject(s)
Anticonvulsants , Drug Development , Epilepsy , Molecular Targeted Therapy , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Humans , Epilepsy/drug therapy , Epilepsy/physiopathology , Animals , Anticonvulsants/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism
15.
Biochem Pharmacol ; 224: 116233, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663682

ABSTRACT

Extracellular amyloid plaques made of Amyloid-ß (Aß) derived from amyloid precursor protein (APP) is one of the major neuropathological hallmarks of Alzheimer's disease (AD). There are three major isoforms of APP, APP770, APP751, and APP695 generated by alternative splicing of exons 7 and 8. Exon 7 encodes the Kunitz protease inhibitor (KPI) domain. Its inclusion generates APP isoforms containing KPI, APPKPI+, which is elevated in AD and Down syndrome (DS) brains and associated with increased Aß deposition. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) phosphorylates many splicing factors and regulates the alternative splicing of pre-mRNA. It is upregulated in DS and AD brain. However, it is not yet clear whether Dyrk1A could regulate APP alternative splicing. In the present study, we overexpressed or knocked down Dyrk1A in cultured cells and observed that Dyrk1A promoted the inclusion of both APP exons 7 and 8. Moreover, a significant increase in APP exon7 inclusion was also detected in the forebrain and hippocampus of human Dyrk1A transgenic mice - Tg/Dyrk1A. Screening for splicing factors regulated by Dyrk1A revealed that serine/arginine-rich protein 9G8 inhibited APP exon7 inclusion and interacted with APP pre-mRNA. In vitro, expression of exon 7 facilitated APP cleavage. In human Dyrk1A transgenic mice, we also found an increase in Aß production. These findings suggest that Dyrk1A inhibits the splicing factor 9G8 and promotes APP exon 7 inclusion, leading to more APPKPI+ expression and APP cleavage and potentially contributing to Aß production in vivo.


Subject(s)
Amyloid beta-Protein Precursor , Dyrk Kinases , Exons , Mice, Transgenic , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Animals , Humans , Mice , Alternative Splicing , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , HEK293 Cells , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics
16.
Anal Chem ; 96(21): 8721-8729, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38683735

ABSTRACT

Tyrosine phosphorylation is one of the most important posttranslational modifications in bacteria, linked to regulating growth, migration, virulence, secondary metabolites, biofilm formation, and capsule production. Only two tyrosine kinases (yccC (etk) and wzc) have been identified in Escherichia coli. The investigation by similarity has not revealed any novel BY-kinases in silico so far, most probably due to their sequence and structural variability. Here we developed a reverse-phase protein array from 4126 overexpressed E. coli clones, lysed, and printed on coated glass slides. These high-density E. coli lysate arrays (ECLAs) were quality controlled by the reproducibility and immobilization of total lysate proteins and specific overexpressed proteins. ECLAs were used to interrogate the relationship between protein overexpression and tyrosine phosphorylation in the total lysate. We identified 6 protein candidates, including etk and wzc, with elevated phosphotyrosine signals in the total lysates. Among them, we identified a novel kinase nrdD with autophosphorylation and transphosphorylation activities in the lysates. Moreover, the overexpression of nrdD induced biofilm formation. Since nrdD is a novel kinase, we used E. coli proteome microarrays (purified 4,126 E. coli proteins) to perform an in vitro kinase assay and identified 33 potential substrates. Together, this study established a new ECLA platform for interrogating posttranslational modifications and identified a novel kinase that is important in biofilm formation, which will shed some light on bacteria biochemistry and new ways to impede drug resistance.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Protein Array Analysis , Protein-Tyrosine Kinases , Escherichia coli/enzymology , Escherichia coli/metabolism , Protein-Tyrosine Kinases/metabolism , Escherichia coli Proteins/metabolism , Phosphorylation , Biofilms
17.
J Med Chem ; 67(9): 6922-6937, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38648167

ABSTRACT

Tauopathy, neuronal atrophy, and psychological impairments are hallmarks of neurodegenerative diseases, such as Alzheimer's disease, that currently lack efficacious clinical treatments capable of rectifying these issues. To address these unmet needs, we used rational drug design to combine the pharmacophores of DYRK1A inhibitors and isoDMTs to develop psychoplastogenic DYRK1A inhibitors. Using this approach, we discovered a nonhallucinogenic compound capable of promoting cortical neuron growth and suppressing tau hyperphosphorylation while also having the potential to mitigate the biological and psychological symptoms of dementia. Together, our results suggest that hybridization of the DYRK1A and psychoplastogen pharmacophores represents a promising strategy for identifying compounds that might address the cognitive as well as the behavioral and psychological symptoms of dementia.


Subject(s)
Alzheimer Disease , Dyrk Kinases , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , tau Proteins , Alzheimer Disease/drug therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Humans , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemical synthesis , tau Proteins/metabolism , tau Proteins/antagonists & inhibitors , Mice , Phosphorylation , Drug Design
18.
J Virol ; 98(5): e0034724, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38651897

ABSTRACT

Angiotensin converting enzyme 2 (ACE2), the host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is differentially expressed in a wide variety of tissues and cell types. The expression of ACE2 is under tight regulation, but the mechanisms regulating ACE2 expression have not yet been well defined. Through a genome-wide CRISPR knockout screen, we discovered that host factors TRAF3, DYRK1A, and RAD54L2 (TDR) form a complex to regulate the expression of ACE2. Knockout of TRAF3, DYRK1A, or RAD54L2 reduces the mRNA levels of ACE2 and inhibits the cellular entry of SARS-CoV-2. On the other hand, SARS-CoV-2 continuously evolves by genetic mutations for the adaption to the host. We have identified mutations in spike (S) (P1079T) and nucleocapsid (N) (S194L) that enhance the replication of SARS-CoV-2 in cells that express ACE2 at a low level. Our results have revealed the mechanisms for the transcriptional regulation of ACE2 and the adaption of SARS-CoV-2. IMPORTANCE: The expression of ACE2 is essential for the entry of SARS-CoV-2 into host cells. We identify a new complex-the TDR complex-that acts to maintain the abundance of ACE2 in host cells. The identification and characterization of the TDR complex provide new targets for the development of therapeutics against SARS-CoV-2 infection. By analysis of SARS-CoV-2 virus replicating in cells expressing low levels of ACE2, we identified mutations in spike (P1079T) and nucleocapsid (S194L) that overcome the restriction of limited ACE2. Functional analysis of these key amino acids in S and N extends our knowledge of the impact of SARS-CoV-2 variants on virus infection and transmission.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/virology , COVID-19/metabolism , COVID-19/genetics , Mutation , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization , Vero Cells , Chlorocebus aethiops , Animals , Cell Line
19.
Elife ; 122024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588001

ABSTRACT

Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl's activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.


Subject(s)
Protein-Tyrosine Kinases , Proto-Oncogene Proteins c-abl , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/chemistry , Proto-Oncogene Proteins c-abl/metabolism , Models, Molecular , Protein-Tyrosine Kinases/metabolism , src Homology Domains , Imatinib Mesylate/pharmacology
20.
Sci Transl Med ; 16(741): eadj0133, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569018

ABSTRACT

Transforming growth factor-ß (TGFß) drives fibrosis and disease progression in a number of chronic disorders, but targeting this ubiquitously expressed cytokine may not yield a viable and safe antifibrotic therapy. Here, we sought to identify alternative ways to inhibit TGFß signaling using human hepatic stellate cells and macrophages from humans and mice in vitro, as well as mouse models of liver, kidney, and lung fibrosis. We identified Mer tyrosine kinase (MERTK) as a TGFß-inducible effector of fibrosis that was up-regulated during fibrosis in multiple organs in three mouse models. We confirmed these findings in liver biopsy samples from patients with metabolic dysfunction-associated fatty liver disease (MAFLD). MERTK also induced TGFß expression and drove TGFß signaling resulting in a positive feedback loop that promoted fibrosis in cultured cells. MERTK regulated both canonical and noncanonical TGFß signaling in both mouse and human cells in vitro. MERTK increased transcription of genes regulating fibrosis by modulating chromatin accessibility and RNA polymerase II activity. In each of the three mouse models, disrupting the fibrosis-promoting signaling loop by reducing MERTK expression reduced organ fibrosis. Pharmacological inhibition of MERTK reduced fibrosis in these mouse models either when initiated immediately after injury or when initiated after fibrosis was established. Together, these data suggest that MERTK plays a role in modulating organ fibrosis and may be a potential target for treating fibrotic diseases.


Subject(s)
Liver , Protein-Tyrosine Kinases , Animals , Humans , Mice , c-Mer Tyrosine Kinase/metabolism , Disease Models, Animal , Fibrosis , Liver/metabolism , Protein-Tyrosine Kinases/metabolism , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...