Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 890
Filter
1.
PLoS One ; 19(7): e0305626, 2024.
Article in English | MEDLINE | ID: mdl-39008445

ABSTRACT

Autotrophic microaerophilic iron-oxidizing Zetaproteobacteria seem to play an important role in mineral weathering and metal corrosion in different environments. Here, we compare the bacterial and zetaproteobacterial communities of a mature iron-rich mat together with in situ incubations of different Fe-bearing materials at the EMSO-Ligure West seafloor observatory, which is located on the abyssal plain in the NW Mediterranean Sea. Our results on bacterial communities enable us to make a clear distinction between those growing on mild steel anthropic substrata and those developing on basaltic substrata. Moreover, on anthropic substrata we highlight an influence of mat age on the bacterial communities. Regarding zetaproteobacterial communities, our results point to an increase in ZetaOTUs abundance and diversification with the age of the mat. We corroborate the key role of the ZetaOTU 2 in mat construction, whatever the environment, the substrata on which they develop or the age of the mat. We also show that ZetaOTU 28 is specific to anthropogenic substrata. Finally, we demonstrate the advantage of using dPCR to precisely quantify very low abundant targets, as Zetaproteobacteria on our colonizers. Our study, also, allows to enrich our knowledge on the biogeography of Zetaproteobacteria, by adding new information on this class and their role in the Mediterranean Sea.


Subject(s)
Iron , Mediterranean Sea , Iron/metabolism , Biodiversity , Proteobacteria/genetics , Proteobacteria/metabolism , Proteobacteria/isolation & purification , Seawater/microbiology , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics
2.
Proc Natl Acad Sci U S A ; 121(29): e2309757121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990940

ABSTRACT

Structural color is an optical phenomenon resulting from light interacting with nanostructured materials. Although structural color (SC) is widespread in the tree of life, the underlying genetics and genomics are not well understood. Here, we collected and sequenced a set of 87 structurally colored bacterial isolates and 30 related strains lacking SC. Optical analysis of colonies indicated that diverse bacteria from at least two different phyla (Bacteroidetes and Proteobacteria) can create two-dimensional packing of cells capable of producing SC. A pan-genome-wide association approach was used to identify genes associated with SC. The biosynthesis of uroporphyrin and pterins, as well as carbohydrate utilization and metabolism, was found to be involved. Using this information, we constructed a classifier to predict SC directly from bacterial genome sequences and validated it by cultivating and scoring 100 strains that were not part of the training set. We predicted that SCr is widely distributed within gram-negative bacteria. Analysis of over 13,000 assembled metagenomes suggested that SC is nearly absent from most habitats associated with multicellular organisms except macroalgae and is abundant in marine waters and surface/air interfaces. This work provides a large-scale ecogenomics view of SC in bacteria and identifies microbial pathways and evolutionary relationships that underlie this optical phenomenon.


Subject(s)
Genome, Bacterial , Phenotype , Color , Bacteria/genetics , Bacteria/metabolism , Proteobacteria/genetics , Proteobacteria/metabolism , Phylogeny , Metagenome , Genome-Wide Association Study , Bacteroidetes/genetics , Bacteroidetes/metabolism
3.
Sci Rep ; 14(1): 14827, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937498

ABSTRACT

Microbial bioaugmentation of coal is considered as a viable and ecologically sustainable approach for the utilization of low-rank coals (LRC). The search for novel techniques to derive high-value products from LRC is currently of great importance. In response to this demand, endeavors have been undertaken to develop microbially based coal solubilization and degradation techniques. The impact of supplementing activated sludge (AS) as a microbial augmentation to enhance LRC biodegradation was investigated in this study. The LRC and their biodegradation products were characterized using the following methods: excitation-emission Matrices detected fluorophores at specific wavelength positions (O, E, and K peaks), revealing the presence of organic complexes with humic properties. FTIR indicated the increased amount of carboxyl groups in the bioaugmented coals, likely due to aerobic oxidation of peripheral non-aromatic structural components of coal. The bacterial communities of LRC samples are primarily composed of Actinobacteria (up to 36.2%) and Proteobacteria (up to 25.8%), whereas the Firmicutes (63.04%) was the most abundant phylum for AS. The community-level physiological profile analysis showed that the microbial community AS had high metabolic activity of compared to those of coal. Overall, the results demonstrated successful stimulation of LRC transformation through supplementation of exogenous microflora in the form of AS.


Subject(s)
Biodegradation, Environmental , Coal , Sewage , Sewage/microbiology , Bacteria/metabolism , Actinobacteria/metabolism , Spectroscopy, Fourier Transform Infrared , Proteobacteria/metabolism
4.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1242-1250, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886422

ABSTRACT

In this study, we used a high-throughput sequencing technology to survey the dry-wet seasonal change characteristics of soil ammonia-oxidizing bacteria (AOB) communities in the three restoration stages [i.e., Mallotus paniculatus community (early stage), Millettia leptobotrya community (middle stage), and Syzygium oblatum community (later stage)] of Xishuangbanna tropical forest ecosystems. We analyzed the effects of soil physicochemical characteristics on AOB community composition and diversity during tropical forest restoration. The results showed that tropical forest restoration significantly affected the relative abundance of dominant AOB phyla and their dry-wet seasonal variation. The maximum relative abundance of Proteobacteria (71.3%) was found in the early recovery stage, while that of Actinobacteria was found in the late recovery stage (1.0%). The abundances of Proteobacteria and Actinobacteria had the maximum ranges of dry-wet seasonal variation in the early and late stages, respectively. The abundance of dominant AOB genera and its dry-wet seasonal variation varied across tropical forest restoration stages. The maximum average relative abundance of Nitrosospira and Nitrosomonas in the late recovery stage was 66.2% and 1.5%, respectively. In contrast, the abundance of Nitrosovibrio reached its maximum (25.6%) in the early recovery stage. The maximum dry-wet seasonal variation in relative abundance of Nitrosospira and Nitrosomonas occurred in the early recovery stage, while that of Nitrosovibrio occurred in the middle recovery stage. The Chao1, Shannon, and Simpson diversity indices of AOB communities increased along the restoration stages, which were significantly higher in the wet season than in the dry season. The results of canonical correspondence analysis showed that soil easily oxidized carbon was the main factor controlling AOB community diversity and Actinobacteria abundance. Soil bulk density and temperature were the main factors affecting Proteobacteria abundance. Soil pH, microbial biomass carbon, water content, ammonium nitrogen, bulk density, and temperature were the main factors controlling the abundances of Nitrosospira, Nitrosomonas, and Nitrosovibrio. Therefore, tropical forest restoration can regulate the change of relative abundance of dominant AOB taxa via mediating the changes of soil temperature, bulk density, and readily oxidized carbon, leading to an increase in soil AOB community diversity.


Subject(s)
Ammonia , Bacteria , Forests , Oxidation-Reduction , Seasons , Soil Microbiology , Tropical Climate , Ammonia/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/growth & development , Proteobacteria/isolation & purification , Proteobacteria/classification , Proteobacteria/metabolism , Proteobacteria/genetics , China , Conservation of Natural Resources , Environmental Restoration and Remediation/methods , Nitrosomonas/metabolism , Nitrosomonas/classification , Nitrosomonas/growth & development , Rainforest
5.
Proc Natl Acad Sci U S A ; 121(25): e2319903121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38870058

ABSTRACT

Biofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen Agrobacterium tumefaciens produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase, is crucial in control of UPP production and surface attachment. DcpA is regulated by PruR, a protein with distant similarity to enzymatic domains known to coordinate the molybdopterin cofactor (MoCo). Pterins are bicyclic nitrogen-rich compounds, several of which are produced via a nonessential branch of the folate biosynthesis pathway, distinct from MoCo. The pterin-binding protein PruR controls DcpA activity, fostering c-di-GMP breakdown and dampening its synthesis. Pterins are excreted, and we report here that PruR associates with these metabolites in the periplasm, promoting interaction with the DcpA periplasmic domain. The pteridine reductase PruA, which reduces specific dihydro-pterin molecules to their tetrahydro forms, imparts control over DcpA activity through PruR. Tetrahydromonapterin preferentially associates with PruR relative to other related pterins, and the PruR-DcpA interaction is decreased in a pruA mutant. PruR and DcpA are encoded in an operon with wide conservation among diverse Proteobacteria including mammalian pathogens. Crystal structures reveal that PruR and several orthologs adopt a conserved fold, with a pterin-specific binding cleft that coordinates the bicyclic pterin ring. These findings define a pterin-responsive regulatory mechanism that controls biofilm formation and related c-di-GMP-dependent phenotypes in A. tumefaciens and potentially acts more widely in multiple proteobacterial lineages.


Subject(s)
Agrobacterium tumefaciens , Bacterial Proteins , Biofilms , Cyclic GMP , Pterins , Biofilms/growth & development , Agrobacterium tumefaciens/metabolism , Agrobacterium tumefaciens/genetics , Pterins/metabolism , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Proteobacteria/metabolism , Proteobacteria/genetics , Molybdenum Cofactors , Periplasm/metabolism , Periplasmic Proteins/metabolism , Periplasmic Proteins/genetics , Periplasmic Binding Proteins/metabolism , Periplasmic Binding Proteins/genetics , Gene Expression Regulation, Bacterial
6.
PeerJ ; 12: e16943, 2024.
Article in English | MEDLINE | ID: mdl-38770100

ABSTRACT

The aim of the current study was to assess the potency of the exopolymeric substances (EPS)-secreting purple non-sulfur bacteria (PNSB) on rice plants on acidic salt-affected soil under greenhouse conditions. A two-factor experiment was conducted following a completely randomized block design. The first factor was the salinity of the irrigation, and the other factor was the application of the EPS producing PNSB (Luteovulum sphaeroides EPS18, EPS37, and EPS54), with four replicates. The result illustrated that irrigation of salt water at 3-4‰ resulted in an increase in the Na+ accumulation in soil, resulting in a lower rice grain yield by 12.9-22.2% in comparison with the 0‰ salinity case. Supplying the mixture of L. sphaeroides EPS18, EPS37, and EPS54 increased pH by 0.13, NH4+ by 2.30 mg NH4+ kg-1, and available P by 8.80 mg P kg-1, and decreased Na+ by 0.348 meq Na+ 100 g-1, resulting in improvements in N, P, and K uptake and reductions in Na uptake, in comparison with the treatment without bacteria. Thus, the treatments supplied with the mixture of L. sphaeroides EPS18, EPS37, and EPS54 resulted in greater yield by 27.7% than the control treatment.


Subject(s)
Oryza , Soil Microbiology , Soil , Oryza/microbiology , Oryza/metabolism , Oryza/growth & development , Soil/chemistry , Salinity , Salt Stress , Proteobacteria/metabolism , Hydrogen-Ion Concentration , Sodium/metabolism , Sodium/pharmacology
7.
Chemosphere ; 358: 142119, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697567

ABSTRACT

The CO2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage.


Subject(s)
Biofuels , Bioreactors , Carbon Dioxide , Methane , Carbon Dioxide/analysis , Electrolysis , Electrodes , Bioelectric Energy Sources , Methanobacterium/metabolism , Membranes, Artificial , Proteobacteria/metabolism
8.
Chemosphere ; 359: 142131, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697574

ABSTRACT

The addition of bacterial agents is an effective method for improving nitrogen removal from wetlands. Herein, an aerobic denitrifier, RC-15, was added to a vertical-flow constructed wetland (CW), and the presence of functional genes and microbial communities was investigated at different CW depths. For the RC-15-treated CW, the removal of NO3- and TN during the process was significantly greater than in the control. Quantitative PCR revealed that nirS is a dominant denitrifying gene for treating WWTP tailwater. Moreover, the presence of the RC-15 strain significantly enhanced the abundance of the napA gene and nirK gene in the CWs. The napA gene was concentrated in the upper layer of the CWs, and the nirK gene was concentrated in the middle and bottom layers. Compared to the control, the addition of the bacterial agent Trial resulted in a more diverse denitrification pathway, a greater abundance of 16Sr RNA, and a greater number of denitrifying strains. According to the microbial community analysis, Proteobacteria and Chloroflexi dominated denitrification in the CWs. Greater abundances of Thauera, Aeromonas and Ardenticatenales were found at the genus level, indicating that these genera have potential applications in future nitrogen removal projects.


Subject(s)
Denitrification , Nitrogen , Waste Disposal, Fluid , Wetlands , Nitrogen/metabolism , Waste Disposal, Fluid/methods , Wastewater/microbiology , Aerobiosis , Microbiota , RNA, Ribosomal, 16S/genetics , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Proteobacteria/genetics , Proteobacteria/metabolism , Proteobacteria/isolation & purification , Water Pollutants, Chemical/metabolism
9.
Microbiol Spectr ; 12(6): e0024424, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38747631

ABSTRACT

Extreme environments, such as Antarctica, select microbial communities that display a range of evolutionary strategies to survive and thrive under harsh environmental conditions. These include a diversity of specialized metabolites, which have the potential to be a source for new natural product discovery. Efforts using (meta)genome mining approaches to identify and understand biosynthetic gene clusters in Antarctica are still scarce, and the extent of their diversity and distribution patterns in the environment have yet to be discovered. Herein, we investigated the biosynthetic gene diversity of the biofilm microbial community of Whalers Bay, Deception Island, in the Antarctic Peninsula and revealed its distribution patterns along spatial and temporal gradients by applying metagenome mining approaches and multivariable analysis. The results showed that the Whalers Bay microbial community harbors a great diversity of biosynthetic gene clusters distributed into seven classes, with terpene being the most abundant. The phyla Proteobacteria and Bacteroidota were the most abundant in the microbial community and contributed significantly to the biosynthetic gene abundances in Whalers Bay. Furthermore, the results highlighted a significant correlation between the distribution of biosynthetic genes and taxonomic diversity, emphasizing the intricate interplay between microbial taxonomy and their potential for specialized metabolite production.IMPORTANCEThis research on antarctic microbial biosynthetic diversity in Whalers Bay, Deception Island, unveils the hidden potential of extreme environments for natural product discovery. By employing metagenomic techniques, the research highlights the extensive diversity of biosynthetic gene clusters and identifies key microbial phyla, Proteobacteria and Bacteroidota, as significant contributors. The correlation between taxonomic diversity and biosynthetic gene distribution underscores the intricate interplay governing specialized metabolite production. These findings are crucial for understanding microbial adaptation in extreme environments and hold significant implications for bioprospecting initiatives. The study opens avenues for discovering novel bioactive compounds with potential applications in medicine and industry, emphasizing the importance of preserving and exploring these polyextreme ecosystems to advance biotechnological and pharmaceutical research.


Subject(s)
Metagenome , Microbiota , Antarctic Regions , Microbiota/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Multigene Family , Biofilms , Phylogeny , Proteobacteria/genetics , Proteobacteria/metabolism , Proteobacteria/classification , Terpenes/metabolism , Bacteroidetes/genetics , Bacteroidetes/metabolism , Bacteroidetes/classification
10.
Biodegradation ; 35(5): 621-639, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38619793

ABSTRACT

In order to explore the operation performance, kinetic characteristics and bacterial community of the short-cut nitrification and denitrification (SND) system, the SND system with pre-cultured short cut nitrification and denitrification sludge was established and operated under different ferrous ion (Fe (II)) conditions. Experimental results showed that the average NH4+-N removal efficiency (ARE) of SND system was 97.3% on Day 5 and maintained a high level of 94.9% ± 1.3% for a long operation period. When the influent Fe(II) concentration increased from 2.3 to 7.3 mg L-1, the sedimentation performance, sludge concentration and organic matter removal performance were improved. However, higher Fe(II) of 12.3 mg L-1 decreased the removal of nitrogen and CODCr with the relative abundance (RA) of Proteobacteria and Bacteroidetes decreased to 30.28% and 19.41%, respectively. Proteobacteria, Bacteroidetes and Firmicutes were the dominant phyla in SND system. Higher Fe(II) level of 12.3 mg L-1 increase the RA of denitrifying genus Trichococcus (33.93%), and the denitrifying genus Thauera and Tolumonas dominant at Fe(II) level of no more than 7.3 mg L-1.


Subject(s)
Bacteria , Bioreactors , Denitrification , Nitrification , Sewage , Kinetics , Bacteria/metabolism , Bioreactors/microbiology , Sewage/microbiology , Ferrous Compounds/metabolism , Nitrogen/metabolism , Waste Disposal, Fluid/methods , Proteobacteria/metabolism
11.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474181

ABSTRACT

Circadian rhythms, characterized by approximately 24 h cycles, play a pivotal role in enabling various organisms to synchronize their biological activities with daily variations. While ubiquitous in Eukaryotes, circadian clocks remain exclusively characterized in Cyanobacteria among Prokaryotes. These rhythms are regulated by a core oscillator, which is controlled by a cluster of three genes: kaiA, kaiB, and kaiC. Interestingly, recent studies revealed rhythmic activities, potentially tied to a circadian clock, in other Prokaryotes, including purple bacteria such as Rhodospirillum rubrum, known for its applications in fuel and plastic bioproduction. However, the pivotal question of how light and dark cycles influence protein dynamics and the expression of putative circadian clock genes remains unexplored in purple non-sulfur bacteria. Unraveling the regulation of these molecular clocks holds the key to unlocking optimal conditions for harnessing the biotechnological potential of R. rubrum. Understanding how its proteome responds to different light regimes-whether under continuous light or alternating light and dark cycles-could pave the way for precisely fine-tuning bioproduction processes. Here, we report for the first time the expressed proteome of R. rubrum grown under continuous light versus light and dark cycle conditions using a shotgun proteomic analysis. In addition, we measured the impact of light regimes on the expression of four putative circadian clock genes (kaiB1, kaiB2, kaiC1, kaiC2) at the transcriptional and translational levels using RT-qPCR and targeted proteomic (MRM-MS), respectively. The data revealed significant effects of light conditions on the overall differential regulation of the proteome, particularly during the early growth stages. Notably, several proteins were found to be differentially regulated during the light or dark period, thus impacting crucial biological processes such as energy conversion pathways and the general stress response. Furthermore, our study unveiled distinct regulation of the four kai genes at both the mRNA and protein levels in response to varying light conditions. Deciphering the impact of the diel cycle on purple bacteria not only enhances our understanding of their ecology but also holds promise for optimizing their applications in biotechnology, providing valuable insights into the origin and evolution of prokaryotic clock mechanisms.


Subject(s)
Circadian Clocks , Proteomics , Molecular Dynamics Simulation , Proteobacteria/metabolism , Proteome , Circadian Rhythm/physiology , Circadian Clocks/physiology , Biotechnology , Bacterial Proteins/metabolism
12.
J Bacteriol ; 206(6): e0044423, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38506530

ABSTRACT

Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.


Subject(s)
Bacterial Proteins , Heme , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Heme/metabolism , Heme-Binding Proteins/metabolism , Hemeproteins/metabolism , Hemeproteins/genetics , Hemeproteins/chemistry , Protein Binding , Proteobacteria/metabolism , Proteobacteria/genetics
13.
Sci Total Environ ; 921: 170899, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38350559

ABSTRACT

As the wide use of pesticides, they could form combined pollution with heavy metals, which would affect their environmental behaviors and toxic effects. Particularly, the effects would be more intricate for chiral pesticides. In this study, the accumulation and dissipation trends of tetraconazole enantiomers in zebrafish were investigated by individual and combined exposure of cadmium (Cd) and tetraconazole (including racemate and enantiomers) after confirming the absolute configuration of tetraconazole enantiomer. For the enantiomer treatments, Cd enhanced the accumulation of S-(+)-tetraconazole, but declined the concentrations of R-(-)-tetraconazole in zebrafish. The dissipation half-lives of tetraconazole enantiomers were extended by 1.65-1.44 times after the combined exposure of Cd and enantiomers. The community richness and diversity of intestinal microbiota were reduced in all treatments, and there were significant differences in R + Cd treatment. There was synergistic effect between Cd and S-(+)-tetraconazole for the effects on the relative abundances of Fusobacteria, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. For R-(-)-tetraconazole, Cd mainly exhibited antagonistic effects. In the combined exposure of Cd and S-(+)-tetraconazole, the relative abundance changes of Cetobacterium (Fusobacteria, increase) and Edwardsiella (Proteobacteria, decrease) might affect the carbohydrate metabolism and energy metabolism, and led to the increase of S-(+)-tetraconazole bioaccumulation concentration. In the combined exposure of Cd and R-(-)-tetraconazole, Cd could increase the relative abundance of Edwardsiella (Proteobacteria), and affect the amino acid metabolism, which might reduce the bioaccumulation concentration of R-(-)-tetraconazole. This study reported for the first time that the abundance of intestinal microbiota in zebrafish might affect the bioaccumulation and dissipation of tetraconazole enantiomers, and would provide new insight for the study of combined pollutions.


Subject(s)
Chlorobenzenes , Fluorocarbons , Gastrointestinal Microbiome , Pesticides , Triazoles , Animals , Cadmium/metabolism , Zebrafish/metabolism , Proteobacteria/metabolism
14.
Res Microbiol ; 175(1-2): 104135, 2024.
Article in English | MEDLINE | ID: mdl-37678513

ABSTRACT

Extreme acidophiles thrive in acidic environments, confront a multitude of challenges, and demonstrate remarkable adaptability in their metabolism to cope with the ever-changing environmental fluctuations, which encompass variations in temperature, pH levels, and the availability of electron acceptors and donors. The survival and proliferation of members within the Acidithiobacillia class rely on the deployment of transcriptional regulatory systems linked to essential physiological traits. The study of these transcriptional regulatory systems provides valuable insights into critical processes, such as energy metabolism and nutrient assimilation, and how they integrate into major genetic-metabolic circuits. In this study, we examined the transcriptional regulatory repertoires and potential interactions of forty-three Acidithiobacillia complete and draft genomes, encompassing nine species. To investigate the function and diversity of Transcription Factors (TFs) and their DNA Binding Sites (DBSs), we conducted a genome-wide comparative analysis, which allowed us to identify these regulatory elements in representatives of Acidithiobacillia. We classified TFs into gene families and compared their occurrence among all representatives, revealing conservation patterns across the class. The results identified conserved regulators for several pathways, including iron and sulfur oxidation, the main pathways for energy acquisition, providing new evidence for viable regulatory interactions and branch-specific conservation in Acidithiobacillia. The identification of TFs and DBSs not only corroborates existing experimental information for selected species, but also introduces novel candidates for experimental validation. Moreover, these promising candidates have the potential for further extension to new representatives within the class.


Subject(s)
Iron , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Iron/metabolism , Genomics/methods , Proteobacteria/metabolism , Gene Expression Regulation, Bacterial
15.
Photosynth Res ; 159(2-3): 261-272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38032488

ABSTRACT

In photosynthetic bacteria, the absorbed light drives the canonical cyclic electron transfer between the reaction center and the cytochrome bc1 complexes via the pools of mobile electron carriers. If kinetic or structural barriers hinder the participation of the bc1 complex in the cyclic flow of electrons, then the pools of mobile redox agents must supply the electrons for the multiple turnovers of the reaction center. These conditions were achieved by continuous high light excitation of intact cells of bacterial strains Rba. sphaeroides and Rvx. gelatinosus with depleted donor side cytochromes c2 (cycA) and tetraheme cytochrome subunit (pufC), respectively. The gradual oxidation by ferricyanide further reduced the availability of electron donors to pufC. Electron transfer through the reaction center was tracked by absorption change and by induction and relaxation of the fluorescence of the bacteriochlorophyll dimer. The rate constants of the electron transfer (~ 3 × 103 s‒1) from the mobile donors of Rvx. gelatinosus bound either to the RC (pufC) or to the tetraheme subunit (wild type) were similar. The electrons transferred through the reaction center dimer were supplied entirely by the donor pool; their number amounted to about 5 in wild type Rvx. gelatinosus and decreased to 1 in pufC oxidized by ferricyanide. Fluorescence yield was measured as a function of the oxidized fraction of the dimer and its complex shape reveals the contribution of two competing processes: the migration of the excitation energy among the photosynthetic units and the availability of electron donors to the oxidized dimer. The experimental results were simulated and rationalized by a simple kinetic model of the two-electron cycling of the acceptor side combined with aperiodic one-electron redox function of the donor side.


Subject(s)
Photosynthetic Reaction Center Complex Proteins , Rhodobacter sphaeroides , Humans , Electrons , Photosynthetic Reaction Center Complex Proteins/metabolism , Cytochromes/metabolism , Oxidation-Reduction , Electron Transport , Cytochromes c/metabolism , Proteobacteria/metabolism , Ferricyanides , Tissue Donors , Kinetics , Rhodobacter sphaeroides/metabolism
16.
Curr Biol ; 34(1): 106-116.e6, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38141614

ABSTRACT

Cellulose is the world's most abundant biopolymer, and similar to its role as a cell wall component in plants, it is a prevalent constituent of the extracellular matrix in bacterial biofilms. Although bacterial cellulose (BC) was first described in the 19th century, it was only recently revealed that it is produced by several distinct types of Bcs secretion systems that feature multiple accessory subunits in addition to a catalytic BcsAB synthase tandem. We recently showed that crystalline cellulose secretion in the Gluconacetobacter genus (α-Proteobacteria) is driven by a supramolecular BcsH-BcsD scaffold-the "cortical belt"-which stabilizes the synthase nanoarrays through an unexpected inside-out mechanism for secretion system assembly. Interestingly, while bcsH is specific for Gluconacetobacter, bcsD homologs are widespread in Proteobacteria. Here, we examine BcsD homologs and their gene neighborhoods from several plant-colonizing ß- and γ-Proteobacteria proposed to secrete a variety of non-crystalline and/or chemically modified cellulosic polymers. We provide structural and mechanistic evidence that through different quaternary structure assemblies BcsD acts with proline-rich BcsH, BcsP, or BcsO partners across the proteobacterial clade to form synthase-interacting intracellular scaffolds that, in turn, determine the biofilm strength and architecture in species with strikingly different physiology and secreted biopolymers.


Subject(s)
Cellulose , Gluconacetobacter , Proteobacteria/metabolism , Gluconacetobacter/chemistry , Gluconacetobacter/genetics , Gluconacetobacter/metabolism , Bacteria/metabolism , Biofilms
17.
Biochim Biophys Acta Bioenerg ; 1864(4): 149001, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37527691

ABSTRACT

Phospholipid-protein interactions play important roles in regulating the function and morphology of photosynthetic membranes in purple phototrophic bacteria. Here, we characterize the phospholipid composition of intracytoplasmic membrane (ICM) from Rhodobacter (Rba.) sphaeroides that has been genetically altered to selectively express light-harvesting (LH) complexes. In the mutant strain (DP2) that lacks a peripheral light-harvesting (LH2) complex, the phospholipid composition was significantly different from that of the wild-type strain; strain DP2 showed a marked decrease in phosphatidylglycerol (PG) and large increases in cardiolipin (CL) and phosphatidylcholine (PC) indicating preferential interactions between the complexes and specific phospholipids. Substitution of the core light-harvesting (LH1) complex of Rba. sphaeroides strain DP2 with that from the purple sulfur bacterium Thermochromatium tepidum further altered the phospholipid composition, with substantial increases in PG and PE and decreases in CL and PC, indicating that the phospholipids incorporated into the ICM depend on the nature of the LH1 complex expressed. Purified LH1-reaction center core complexes (LH1-RC) from the selectively expressing strains also contained different phospholipid compositions than did core complexes from their corresponding wild-type strains, suggesting different patterns of phospholipid association between the selectively expressed LH1-RC complexes and those purified from native strains. Effects of carotenoids on the phospholipid composition were also investigated using carotenoid-suppressed cells and carotenoid-deficient species. The findings are discussed in relation to ICM morphology and specific LH complex-phospholipid interactions.


Subject(s)
Proteobacteria , Rhodobacter sphaeroides , Proteobacteria/metabolism , Phospholipids/metabolism , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/metabolism , Cardiolipins/metabolism , Carotenoids/metabolism
18.
Environ Microbiol ; 25(11): 2447-2464, 2023 11.
Article in English | MEDLINE | ID: mdl-37549929

ABSTRACT

Bacterial genomes are a huge reservoir of genes encoding J-domain protein co-chaperones that recruit the molecular chaperone DnaK to assist protein substrates involved in survival, adaptation, or fitness. The atc operon of the aquatic mesophilic bacterium Shewanella oneidensis encodes the proteins AtcJ, AtcA, AtcB, and AtcC, and all of them, except AtcA, are required for growth at low temperatures. AtcJ is a short J-domain protein that interacts with DnaK, but also with AtcC through its 21 amino acid C-terminal domain. This interaction network is critical for cold growth. Here, we show that AtcJ represents a subfamily of short J-domain proteins that (i) are found in several environmental, mostly aquatic, ß- or É£-proteobacteria and (ii) contain a conserved PX7 W motif in their C-terminal extension. Using a combination of NMR, biochemical and genetic approaches, we show that the hydrophobic nature of the tryptophan of the S. oneidensis AtcJ PX7 W motif determines the strong AtcJ-AtcC interaction essential for cold growth. The AtcJ homologues are encoded by operons containing at least the S. oneidensis atcA, atcB, and atcC homologues. These findings suggest a conserved network of DnaK and Atc proteins necessary for low-temperature growth and, given the variation in the atc operons, possibly for other biological functions.


Subject(s)
Escherichia coli Proteins , Proteobacteria , Proteobacteria/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Arginine , Cold Temperature , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli Proteins/genetics
19.
Proc Natl Acad Sci U S A ; 120(28): e2220477120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399405

ABSTRACT

In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps. Here, we isolated and interrogated interprotein energy transfer by embedding two variants of the primary antenna protein from purple bacteria, light-harvesting complex 2 (LH2), together into a near-native membrane disc, known as a nanodisc. We integrated ultrafast transient absorption spectroscopy, quantum dynamics simulations, and cryogenic electron microscopy to determine interprotein energy transfer timescales. By varying the diameter of the nanodiscs, we replicated a range of distances between the proteins. The closest distance possible between neighboring LH2, which is the most common in native membranes, is 25 Šand resulted in a timescale of 5.7 ps. Larger distances of 28 to 31 Šresulted in timescales of 10 to 14 ps. Corresponding simulations showed that the fast energy transfer steps between closely spaced LH2 increase transport distances by ∼15%. Overall, our results introduce a framework for well-controlled studies of interprotein energy transfer dynamics and suggest that protein pairs serve as the primary pathway for the efficient transport of solar energy.


Subject(s)
Light-Harvesting Protein Complexes , Proteobacteria , Proteobacteria/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Spectrum Analysis , Energy Transfer
20.
Sci Total Environ ; 874: 162562, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36871728

ABSTRACT

The response mechanism of soil microbiota in military polluted sites can effectively indicate the biotoxicity of ammunition. In this study, two military demolition ranges polluted soils of grenades and bullet were collected. According to high-throughput sequencing, after grenade explosion, the dominant bacteria in Site 1 (S1) are Proteobacteria (97.29 %) and Actinobacteria (1.05 %). The dominant bacterium in Site 2 (S2) is Proteobacteria (32.95 %), followed by Actinobacteria (31.17 %). After the military exercise, the soil bacterial diversity index declined significantly, and the bacterial communities interacted more closely. The indigenous bacteria in S1 were influenced more compared to those in S2. According to the environmental factor analysis, the bacteria composition can easily be influenced by heavy metals and organic pollutants, including Cu, Pb, Cr and Trinitrotoluene (TNT). About 269 metabolic pathways annotated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were detected in bacterial communities, including nutrition metabolism (C, 4.09 %; N, 1.14 %; S, 0.82 %), external pollutant metabolism (2.52 %) and heavy metal detoxication (2.12 %), respectively. The explosion of ammunition changes the basic metabolism of indigenous bacteria, and heavy metal stress inhibits the TNT degradation ability of bacterial communities. The pollution degree and community structure influence the metal detoxication strategy at the contaminated sites together. Heavy metal ions in S1 are mainly discharged through membrane transporters, while heavy metal ions in S2 are mainly degraded through lipid metabolism and biosynthesis of secondary metabolites. The results obtained in this study can provide deep insight into the response mechanism of the soil bacterial community in military demolition ranges with composite pollutions of heavy metals and organic substances. CAPSULE: Heavy metal stress changed the composition, interaction and metabolism of indigenous communities in military demolition ranges, especially the TNT degradation process.


Subject(s)
Actinobacteria , Metals, Heavy , Military Personnel , Soil Pollutants , Humans , Soil/chemistry , Metals, Heavy/analysis , Bacteria/metabolism , Proteobacteria/metabolism , Actinobacteria/metabolism , China , Soil Pollutants/analysis , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...