Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 462
Filter
1.
Nat Commun ; 15(1): 4739, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834613

ABSTRACT

The overexpression of the ecotropic viral integration site-1 gene (EVI1/MECOM) marks the most lethal acute myeloid leukemia (AML) subgroup carrying chromosome 3q26 abnormalities. By taking advantage of the intersectionality of high-throughput cell-based and gene expression screens selective and pan-histone deacetylase inhibitors (HDACis) emerge as potent repressors of EVI1. To understand the mechanism driving on-target anti-leukemia activity of this compound class, here we dissect the expression dynamics of the bone marrow leukemia cells of patients treated with HDACi and reconstitute the EVI1 chromatin-associated co-transcriptional complex merging on the role of proliferation-associated 2G4 (PA2G4) protein. PA2G4 overexpression rescues AML cells from the inhibitory effects of HDACis, while genetic and small molecule inhibition of PA2G4 abrogates EVI1 in 3q26 AML cells, including in patient-derived leukemia xenografts. This study positions PA2G4 at the crosstalk of the EVI1 leukemogenic signal for developing new therapeutics and urges the use of HDACis-based combination therapies in patients with 3q26 AML.


Subject(s)
Chromosomes, Human, Pair 3 , Histone Deacetylase Inhibitors , Leukemia, Myeloid, Acute , MDS1 and EVI1 Complex Locus Protein , Proteogenomics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , MDS1 and EVI1 Complex Locus Protein/metabolism , MDS1 and EVI1 Complex Locus Protein/genetics , Animals , Histone Deacetylase Inhibitors/pharmacology , Mice , Cell Line, Tumor , Chromosomes, Human, Pair 3/genetics , Proteogenomics/methods , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Xenograft Model Antitumor Assays , Gene Expression Regulation, Leukemic/drug effects , Female , Cell Proliferation/drug effects , Cell Proliferation/genetics
2.
Breast Cancer Res ; 26(1): 76, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745208

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer death among women globally. Despite advances, there is considerable variation in clinical outcomes for patients with non-luminal A tumors, classified as difficult-to-treat breast cancers (DTBC). This study aims to delineate the proteogenomic landscape of DTBC tumors compared to luminal A (LumA) tumors. METHODS: We retrospectively collected a total of 117 untreated primary breast tumor specimens, focusing on DTBC subtypes. Breast tumors were processed by laser microdissection (LMD) to enrich tumor cells. DNA, RNA, and protein were simultaneously extracted from each tumor preparation, followed by whole genome sequencing, paired-end RNA sequencing, global proteomics and phosphoproteomics. Differential feature analysis, pathway analysis and survival analysis were performed to better understand DTBC and investigate biomarkers. RESULTS: We observed distinct variations in gene mutations, structural variations, and chromosomal alterations between DTBC and LumA breast tumors. DTBC tumors predominantly had more mutations in TP53, PLXNB3, Zinc finger genes, and fewer mutations in SDC2, CDH1, PIK3CA, SVIL, and PTEN. Notably, Cytoband 1q21, which contains numerous cell proliferation-related genes, was significantly amplified in the DTBC tumors. LMD successfully minimized stromal components and increased RNA-protein concordance, as evidenced by stromal score comparisons and proteomic analysis. Distinct DTBC and LumA-enriched clusters were observed by proteomic and phosphoproteomic clustering analysis, some with survival differences. Phosphoproteomics identified two distinct phosphoproteomic profiles for high relapse-risk and low relapse-risk basal-like tumors, involving several genes known to be associated with breast cancer oncogenesis and progression, including KIAA1522, DCK, FOXO3, MYO9B, ARID1A, EPRS, ZC3HAV1, and RBM14. Lastly, an integrated pathway analysis of multi-omics data highlighted a robust enrichment of proliferation pathways in DTBC tumors. CONCLUSIONS: This study provides an integrated proteogenomic characterization of DTBC vs LumA with tumor cells enriched through laser microdissection. We identified many common features of DTBC tumors and the phosphopeptides that could serve as potential biomarkers for high/low relapse-risk basal-like BC and possibly guide treatment selections.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Proteogenomics , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Biomarkers, Tumor/genetics , Proteogenomics/methods , Mutation , Laser Capture Microdissection , Middle Aged , Retrospective Studies , Aged , Adult , Proteomics/methods , Prognosis
3.
Front Cell Infect Microbiol ; 14: 1398706, 2024.
Article in English | MEDLINE | ID: mdl-38756231

ABSTRACT

Introduction: Mycoplasma hominis (M. hominis) belongs to the class Mollicutes, characterized by a very small genome size, reduction of metabolic pathways, including transcription factors, and the absence of a cell wall. Despite this, they adapt well not only to specific niches within the host organism but can also spread throughout the body, colonizing various organs and tissues. The adaptation mechanisms of M. hominis, as well as their regulatory pathways, are poorly understood. It is known that, when adapting to adverse conditions, Mycoplasmas can undergo phenotypic switches that may persist for several generations. Methods: To investigate the adaptive properties of M. hominis related to survival in the host, we conducted a comparative phenotypic and proteogenomic analysis of eight clinical isolates of M. hominis obtained from patients with urogenital infections and the laboratory strain H-34. Results: We have shown that clinical isolates differ in phenotypic features from the laboratory strain, form biofilms more effectively and show resistance to ofloxacin. The comparative proteogenomic analysis revealed that, unlike the laboratory strain, the clinical isolates possess several features related to stress survival: they switch carbon metabolism, activating the energetically least advantageous pathway of nucleoside utilization, which allows slowing down cellular processes and transitioning to a starvation state; they reconfigure the repertoire of membrane proteins; they have integrative conjugative elements in their genomes, which are key mediators of horizontal gene transfer. The upregulation of the methylating subunit of the restriction-modification (RM) system type I and the additional components of RM systems found in clinical isolates suggest that DNA methylation may play a role in regulating the adaptation mechanisms of M. hominis in the host organism. It has been shown that based on the proteogenomic profile, namely the genome sequence, protein content, composition of the RM systems and additional subunits HsdM, HsdS and HsdR, composition and number of transposable elements, as well as the sequence of the main variable antigen Vaa, we can divide clinical isolates into two phenotypes: typical colonies (TC), which have a high growth rate, and atypical (aTC) mini-colonies, which have a slow growth rate and exhibit properties similar to persisters. Discussion: We believe that the key mechanism of adaptation of M. hominis in the host is phenotypic restructuring, leading to a slowing down cellular processes and the formation of small atypical colonies. This is due to a switch in carbon metabolism and activation the pathway of nucleoside utilization. We hypothesize that DNA methylation may play a role in regulating this switch.


Subject(s)
Adaptation, Physiological , Mycoplasma Infections , Mycoplasma hominis , Proteogenomics , Humans , Mycoplasma hominis/genetics , Mycoplasma hominis/metabolism , Mycoplasma Infections/microbiology , Biofilms/growth & development , Genome, Bacterial , Phenotype , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics
4.
Pharmacol Res ; 204: 107209, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740147

ABSTRACT

Considerable progress has recently been made in cancer immunotherapy, including immune checkpoint blockade, cancer vaccine, and adoptive T cell methods. The lack of effective targets is a major cause of the low immunotherapy response rate in colorectal cancer (CRC). Here, we used a proteogenomic strategy comprising immunopeptidomics, whole exome sequencing, and 16 S ribosomal DNA sequencing analyses of 8 patients with CRC to identify neoantigens and bacterial peptides that can serve as antitumor targets. This study directly identified several personalized neoantigens and bacterial immunopeptides. Immunoassays showed that all neoantigens and 5 of 8 bacterial immunopeptides could be recognized by autologous T cells. Additionally, T cell receptor (TCR) αß sequencing revealed the TCR repertoire of epitope-reactive CD8+ T cells. Functional studies showed that T cell receptor-T (TCR-T) could be activated by epitope pulsed lymphoblastoid cells. Overall, this study comprehensively profiled the CRC immunopeptidome, revealing several neoantigens and bacterial peptides with potential to serve as immunotherapy targets in CRC.


Subject(s)
Antigens, Neoplasm , Colorectal Neoplasms , Immunotherapy , Proteogenomics , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Colorectal Neoplasms/genetics , Proteogenomics/methods , Immunotherapy/methods , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Male , Female , Aged , Middle Aged , Peptides/immunology , CD8-Positive T-Lymphocytes/immunology
5.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38703764

ABSTRACT

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , Proteogenomics , Humans , Proteogenomics/methods , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Transcriptome/genetics , Male , Female , Middle Aged , Gene Expression Regulation, Neoplastic
6.
Leukemia ; 38(6): 1256-1265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740980

ABSTRACT

Recent advances in in-depth data-independent acquisition proteomic analysis have enabled comprehensive quantitative analysis of >10,000 proteins. Herein, an integrated proteogenomic analysis for inherited bone marrow failure syndrome (IBMFS) was performed to reveal their biological features and to develop a proteomic-based diagnostic assay in the discovery cohort; dyskeratosis congenita (n = 12), Fanconi anemia (n = 11), Diamond-Blackfan anemia (DBA, n = 9), Shwachman-Diamond syndrome (SDS, n = 6), ADH5/ALDH2 deficiency (n = 4), and other IBMFS (n = 18). Unsupervised proteomic clustering identified eight independent clusters (C1-C8), with the ribosomal pathway specifically downregulated in C1 and C2, enriched for DBA and SDS, respectively. Six patients with SDS had significantly decreased SBDS protein expression, with two of these not diagnosed by DNA sequencing alone. Four patients with ADH5/ALDH2 deficiency showed significantly reduced ADH5 protein expression. To perform a large-scale rapid IBMFS screening, targeted proteomic analysis was performed on 417 samples from patients with IBMFS-related hematological disorders (n = 390) and healthy controls (n = 27). SBDS and ADH5 protein expressions were significantly reduced in SDS and ADH5/ALDH2 deficiency, respectively. The clinical application of this first integrated proteogenomic analysis would be useful for the diagnosis and screening of IBMFS, where appropriate clinical screening tests are lacking.


Subject(s)
Bone Marrow Diseases , Bone Marrow Failure Disorders , Proteogenomics , Humans , Bone Marrow Failure Disorders/genetics , Bone Marrow Failure Disorders/pathology , Proteogenomics/methods , Male , Female , Bone Marrow Diseases/genetics , Bone Marrow Diseases/pathology , Child , Adult , Adolescent , Child, Preschool , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/diagnosis , Young Adult , Fanconi Anemia/genetics , Fanconi Anemia/diagnosis , Proteomics/methods , Infant , Shwachman-Diamond Syndrome/genetics , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/diagnosis , Dyskeratosis Congenita/pathology
7.
Nat Genet ; 56(4): 637-651, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38565644

ABSTRACT

Endometrial carcinoma remains a public health concern with a growing incidence, particularly in younger women. Preserving fertility is a crucial consideration in the management of early-onset endometrioid endometrial carcinoma (EEEC), particularly in patients under 40 who maintain both reproductive desire and capacity. To illuminate the molecular characteristics of EEEC, we undertook a large-scale multi-omics study of 215 patients with endometrial carcinoma, including 81 with EEEC. We reveal an unexpected association between exposome-related mutational signature and EEEC, characterized by specific CTNNB1 and SIGLEC10 hotspot mutations and disruption of downstream pathways. Interestingly, SIGLEC10Q144K mutation in EEECs resulted in aberrant SIGLEC-10 protein expression and promoted progestin resistance by interacting with estrogen receptor alpha. We also identified potential protein biomarkers for progestin response in fertility-sparing treatment for EEEC. Collectively, our study establishes a proteogenomic resource of EEECs, uncovering the interactions between exposome and genomic susceptibilities that contribute to the development of primary prevention and early detection strategies for EEECs.


Subject(s)
Carcinoma, Endometrioid , Endometrial Hyperplasia , Endometrial Neoplasms , Fertility Preservation , Proteogenomics , Humans , Female , Progestins/therapeutic use , Antineoplastic Agents, Hormonal , Endometrial Hyperplasia/drug therapy , Fertility Preservation/methods , Retrospective Studies , Carcinoma, Endometrioid/drug therapy , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology
8.
Cancer Res ; 84(9): 1491-1503, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38607364

ABSTRACT

Never-smoker lung adenocarcinoma (NSLA) is prevalent in Asian populations, particularly in women. EGFR mutations and anaplastic lymphoma kinase (ALK) fusions are major genetic alterations observed in NSLA, and NSLA with these alterations have been well studied and can be treated with targeted therapies. To provide insights into the molecular profile of NSLA without EGFR and ALK alterations (NENA), we selected 141 NSLA tissues and performed proteogenomic characterization, including whole genome sequencing (WGS), transcriptomic, methylation EPIC array, total proteomic, and phosphoproteomic analyses. Forty patients with NSLA harboring EGFR and ALK alterations and seven patients with NENA with microsatellite instability were excluded. Genome analysis revealed that TP53 (25%), KRAS (22%), and SETD2 (11%) mutations and ROS1 fusions (14%) were the most frequent genetic alterations in NENA patients. Proteogenomic impact analysis revealed that STK11 and ERBB2 somatic mutations had broad effects on cancer-associated genes in NENA. DNA copy number alteration analysis identified 22 prognostic proteins that influenced transcriptomic and proteomic changes. Gene set enrichment analysis revealed estrogen signaling as the key pathway activated in NENA. Increased estrogen signaling was associated with proteogenomic alterations, such as copy number deletions in chromosomes 14 and 21, STK11 mutation, and DNA hypomethylation of LLGL2 and ST14. Finally, saracatinib, an Src inhibitor, was identified as a potential drug for targeting activated estrogen signaling in NENA and was experimentally validated in vitro. Collectively, this study enhanced our understanding of NENA NSLA by elucidating the proteogenomic landscape and proposed saracatinib as a potential treatment for this patient population that lacks effective targeted therapies. SIGNIFICANCE: The proteogenomic landscape in never-smoker lung cancer without known driver mutations reveals prognostic proteins and enhanced estrogen signaling that can be targeted as a potential therapeutic strategy to improve patient outcomes.


Subject(s)
Adenocarcinoma of Lung , Anaplastic Lymphoma Kinase , ErbB Receptors , Estrogens , Lung Neoplasms , Mutation , Proteogenomics , Signal Transduction , Female , Humans , Male , Middle Aged , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , DNA Copy Number Variations , ErbB Receptors/genetics , ErbB Receptors/metabolism , Estrogens/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Non-Smokers/statistics & numerical data , Prognosis , Proteogenomics/methods , Signal Transduction/genetics
9.
Nat Commun ; 15(1): 3175, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609408

ABSTRACT

Although papillary thyroid cancer (PTC) has a good prognosis, its recurrence rate is high and remains a core concern in the clinic. Molecular factors contributing to different recurrence risks (RRs) remain poorly defined. Here, we perform an integrative proteogenomic and metabolomic characterization of 102 Chinese PTC patients with different RRs. Genomic profiling reveals that mutations in MUC16 and TERT promoter as well as multiple gene fusions like NCOA4-RET are enriched by the high RR. Integrative multi-omics analyses further describe the multi-dimensional characteristics of PTC, especially in metabolism pathways, and delineate dominated molecular patterns of different RRs. Moreover, the PTC patients are clustered into four subtypes (CS1: low RR and BRAF-like; CS2: high RR and metabolism type, worst prognosis; CS3: high RR and immune type, better prognosis; CS4: high RR and BRAF-like) based on the omics data. Notably, the subtypes display significant differences considering BRAF and TERT promoter mutations, metabolism and immune pathway profiles, epithelial cell compositions, and various clinical factors (especially RRs and prognosis) as well as druggable targets. This study can provide insights into the complex molecular characteristics of PTC recurrences and help promote early diagnosis and precision treatment of recurrent PTC.


Subject(s)
Proteogenomics , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Proto-Oncogene Proteins B-raf/genetics , Metabolomics , Thyroid Neoplasms/genetics
10.
J Proteome Res ; 23(5): 1583-1592, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38651221

ABSTRACT

MD2 pineapple (Ananas comosus) is the second most important tropical crop that preserves crassulacean acid metabolism (CAM), which has high water-use efficiency and is fast becoming the most consumed fresh fruit worldwide. Despite the significance of environmental efficiency and popularity, until very recently, its genome sequence has not been determined and a high-quality annotated proteome has not been available. Here, we have undertaken a pilot proteogenomic study, analyzing the proteome of MD2 pineapple leaves using liquid chromatography-mass spectrometry (LC-MS/MS), which validates 1781 predicted proteins in the annotated F153 (V3) genome. In addition, a further 603 peptide identifications are found that map exclusively to an independent MD2 transcriptome-derived database but are not found in the standard F153 (V3) annotated proteome. Peptide identifications derived from these MD2 transcripts are also cross-referenced to a more recent and complete MD2 genome annotation, resulting in 402 nonoverlapping peptides, which in turn support 30 high-quality gene candidates novel to both pineapple genomes. Many of the validated F153 (V3) genes are also supported by an independent proteomics data set collected for an ornamental pineapple variety. The contigs and peptides have been mapped to the current F153 genome build and are available as bed files to display a custom gene track on the Ensembl Plants region viewer. These analyses add to the knowledge of experimentally validated pineapple genes and demonstrate the utility of transcript-derived proteomics to discover both novel genes and genetic structure in a plant genome, adding value to its annotation.


Subject(s)
Ananas , Genome, Plant , Plant Proteins , Proteogenomics , Tandem Mass Spectrometry , Ananas/genetics , Ananas/chemistry , Proteogenomics/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Chromatography, Liquid , Proteome/genetics , Proteome/analysis , Molecular Sequence Annotation , Plant Leaves/genetics , Plant Leaves/chemistry , Peptides/genetics , Peptides/analysis , Peptides/chemistry
11.
Front Cell Infect Microbiol ; 14: 1355113, 2024.
Article in English | MEDLINE | ID: mdl-38500499

ABSTRACT

Tularemia is a vector-borne disease caused by the Gram-negative bacterium Francisella tularensis. Known hosts and vectors in Europe are hare and ticks. F. tularensis is transmitted from ticks and animals, but also from the hydrotelluric environment and the consumption of contaminated water or food. A changing climate expands the range in which ticks can live and consequently might contribute to increasing case numbers of tularemia. Two subspecies of F. tularensis are human pathogenic. Francisella tularensis tularensis (Ftt) is endemic in North America, while Francisella tularensis holarctica (Fth) is the only subspecies causing tularemia in Europe. Ft is classified as a category A bioterrorism agent due to its low infectious dose, multiple modes of transmission, high infectivity and potential for airborne transmission and has become a global public health concern. In line with the European survey and previous phylogenetic studies, Switzerland shows the co-distribution of B.6 and B.12 strains with different geographical distribution and prevalence within the country. To establish itself in different host environments of ticks and mammals, F. tularensis presumably undergoes substantial changes on the transcriptomics and proteomic level. Here we investigate the transcriptomic and proteomic differences of five strains of Fth upon infection of rabbit macrophages and tick cells.


Subject(s)
Francisella tularensis , Francisella , Proteogenomics , Ticks , Tularemia , Animals , Humans , Rabbits , Tularemia/microbiology , Phylogeny , Proteomics , Genotype , Mammals
12.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38359819

ABSTRACT

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Subject(s)
Neoplasms , Proteogenomics , Humans , Combined Modality Therapy , Genomics , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Proteomics , Tumor Escape
13.
Cancer Res ; 84(9): 1379-1381, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38330148

ABSTRACT

Nearly all glioblastoma (GBM) patients relapse following standard treatment and eventually succumb to disease. While large-scale, integrated multiomic studies have tremendously advanced the understanding of primary GBM at the cellular and molecular level, the posttherapeutic trajectory and biological properties of recurrent GBM remain poorly understood. This knowledge gap was addressed in a recent Cancer Cell article in which Kim and colleagues report on a highly integrative proteogenomic analysis performed on 123 matched primary and recurrent GBMs that uncovered a dramatic evolutionary shift from a proliferative state at initial diagnosis to the activation of neuronal and synaptogenic pathways at recurrence following therapy. Neuronal transition was characterized by posttranslational activation of WNT/PCP signaling and BRAF kinase, while many canonical oncogenic pathways, and EGFR in particular, were downregulated. Parallel multiomics analyses of patient-derived xenograft (PDX) models corroborated this evolutionary trajectory, allowing in vivo experiments for translational significance. Notably, targeting BRAF kinase disrupted both the neuronal transition and migration capabilities of recurrent gliomas, which were key characteristics of posttreatment progression. Furthermore, combining BRAF inhibitor vemurafenib with temozolomide prolonged survival in PDX models. Overall, the results reveal novel biological mechanisms of GBM evolution and therapy resistance, and suggest promising therapeutic intervention.


Subject(s)
Brain Neoplasms , Glioblastoma , Proteogenomics , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Proteogenomics/methods , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Animals , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/drug therapy , Mice , Temozolomide/pharmacology
14.
Nat Commun ; 15(1): 989, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307861

ABSTRACT

Proteogenomics studies generate hypotheses on protein function and provide genetic evidence for drug target prioritization. Most previous work has been conducted using affinity-based proteomics approaches. These technologies face challenges, such as uncertainty regarding target identity, non-specific binding, and handling of variants that affect epitope affinity binding. Mass spectrometry-based proteomics can overcome some of these challenges. Here we report a pQTL study using the Proteograph™ Product Suite workflow (Seer, Inc.) where we quantify over 18,000 unique peptides from nearly 3000 proteins in more than 320 blood samples from a multi-ethnic cohort in a bottom-up, peptide-centric, mass spectrometry-based proteomics approach. We identify 184 protein-altering variants in 137 genes that are significantly associated with their corresponding variant peptides, confirming target specificity of co-associated affinity binders, identifying putatively causal cis-encoded proteins and providing experimental evidence for their presence in blood, including proteins that may be inaccessible to affinity-based proteomics.


Subject(s)
Proteogenomics , Proteomics , Humans , Proteomics/methods , Mass Spectrometry/methods , Proteins/analysis , Peptides/analysis , Proteogenomics/methods , Mutant Proteins
15.
Cell Rep ; 43(2): 113810, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377004

ABSTRACT

Metastatic progression of colorectal adenocarcinoma (CRC) remains poorly understood and poses significant challenges for treatment. To overcome these challenges, we performed multiomics analyses of primary CRC and liver metastases. Genomic alterations, such as structural variants or copy number alterations, were enriched in oncogenes and tumor suppressor genes and increased in metastases. Unsupervised mass spectrometry-based proteomics of 135 primary and 123 metastatic CRCs uncovered distinct proteomic subtypes, three each for primary and metastatic CRCs, respectively. Integrated analyses revealed that hypoxia, stemness, and immune signatures characterize these 6 subtypes. Hypoxic CRC harbors high epithelial-to-mesenchymal transition features and metabolic adaptation. CRC with a stemness signature shows high oncogenic pathway activation and alternative telomere lengthening (ALT) phenotype, especially in metastatic lesions. Tumor microenvironment analysis shows immune evasion via modulation of major histocompatibility complex (MHC) class I/II and antigen processing pathways. This study characterizes both primary and metastatic CRCs and provides a large proteogenomics dataset of metastatic progression.


Subject(s)
Colorectal Neoplasms , Proteogenomics , Humans , Proteome , Proteomics , Genomics , Colorectal Neoplasms/genetics , Histocompatibility Antigens Class II , Hypoxia , Tumor Microenvironment
16.
Cell Rep Med ; 5(1): 101359, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38232702

ABSTRACT

Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.


Subject(s)
Leukemia, Myeloid, Acute , Proteogenomics , Humans , Proteomics/methods , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Genomics/methods , Mutation
17.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256255

ABSTRACT

SpliceProt 2.0 is a public proteogenomics database that aims to list the sequence of known proteins and potential new proteoforms in human, mouse, and rat proteomes. This updated repository provides an even broader range of computationally translated proteins and serves, for example, to aid with proteomic validation of splice variants absent from the reference UniProtKB/SwissProt database. We demonstrate the value of SpliceProt 2.0 to predict orthologous proteins between humans and murines based on transcript reconstruction, sequence annotation and detection at the transcriptome and proteome levels. In this release, the annotation data used in the reconstruction of transcripts based on the methodology of ternary matrices were acquired from new databases such as Ensembl, UniProt, and APPRIS. Another innovation implemented in the pipeline is the exclusion of transcripts predicted to be susceptible to degradation through the NMD pathway. Taken together, our repository and its applications represent a valuable resource for the proteogenomics community.


Subject(s)
Proteogenomics , Proteomics , Rats , Mice , Humans , Animals , Databases, Protein , Knowledge Bases , Proteome/genetics
18.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181741

ABSTRACT

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Subject(s)
Lung Neoplasms , Proteogenomics , Small Cell Lung Carcinoma , Humans , Cell Line , Lung Neoplasms/chemistry , Lung Neoplasms/genetics , Small Cell Lung Carcinoma/chemistry , Small Cell Lung Carcinoma/genetics , Heterografts , Biomarkers, Tumor/analysis
19.
Mol Cell Proteomics ; 23(2): 100719, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38242438

ABSTRACT

Although the human gene annotation has been continuously improved over the past 2 decades, numerous studies demonstrated the existence of a "dark proteome", consisting of proteins that were critical for biological processes but not included in widely used gene catalogs. The Genotype-Tissue Expression project generated more than 15,000 RNA-seq datasets from multiple tissues, which modeled 30 million transcripts in the human genome. To provide a resource of high-confidence novel proteins from the dark proteome, we screened 50,000 mass spectrometry runs from over 900 projects to identify proteins translated from the Genotype-Tissue Expression transcript model with proteomic support. We also integrated 3.8 million common genetic variants from the gnomAD database to improve peptide identification. As a result, we identified 170,529 novel peptides with proteomic evidence, of which 6048 passed the strictest standard we defined and were supported by PepQuery. We provided a user-friendly website (https://ncorf.genes.fun/) for researchers to check the evidence of novel peptides from their studies. The findings will improve our understanding of coding genes and facilitate genomic data interpretation in biomedical research.


Subject(s)
Proteogenomics , Humans , Proteogenomics/methods , Proteome/metabolism , Proteomics/methods , Peptides/genetics , Genome, Human
20.
Cancer Cell ; 42(3): 358-377.e8, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38215747

ABSTRACT

The evolutionary trajectory of glioblastoma (GBM) is a multifaceted biological process that extends beyond genetic alterations alone. Here, we perform an integrative proteogenomic analysis of 123 longitudinal glioblastoma pairs and identify a highly proliferative cellular state at diagnosis and replacement by activation of neuronal transition and synaptogenic pathways in recurrent tumors. Proteomic and phosphoproteomic analyses reveal that the molecular transition to neuronal state at recurrence is marked by post-translational activation of the wingless-related integration site (WNT)/ planar cell polarity (PCP) signaling pathway and BRAF protein kinase. Consistently, multi-omic analysis of patient-derived xenograft (PDX) models mirror similar patterns of evolutionary trajectory. Inhibition of B-raf proto-oncogene (BRAF) kinase impairs both neuronal transition and migration capability of recurrent tumor cells, phenotypic hallmarks of post-therapy progression. Combinatorial treatment of temozolomide (TMZ) with BRAF inhibitor, vemurafenib, significantly extends the survival of PDX models. This study provides comprehensive insights into the biological mechanisms of glioblastoma evolution and treatment resistance, highlighting promising therapeutic strategies for clinical intervention.


Subject(s)
Brain Neoplasms , Glioblastoma , Proteogenomics , Animals , Humans , Glioblastoma/genetics , Proto-Oncogene Proteins B-raf , Proteomics , Cell Line, Tumor , Neoplasm Recurrence, Local , Disease Models, Animal , Brain Neoplasms/genetics , Drug Resistance, Neoplasm , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...