Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.867
Filter
1.
Transl Vis Sci Technol ; 13(8): 21, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39133496

ABSTRACT

Purpose: Glaucoma is the primary cause of permanent vision loss worldwide. However, the pathogenesis of primary open-angle glaucoma (POAG), the main type of glaucoma, has not yet been completely understood. Methods: In our study, the POAG cohorts were obtained from the Gene Expression Omnibus (GEO) database (GSE45570). Biomarkers with diagnostic utility for POAG were identified through combining differentially expressed analysis, enrichment analysis, machine learning algorithms, and receiver operating characteristic (ROC) analysis. The regulatory networks (including a competing endogenous RNA (ceRNA) regulatory network and a small molecule compounds-mRNA network) were created. In addition, the Mendelian randomization (MR) analysis was used to identify exposures causally associated with POAG. Finally, the expression of the biomarkers was validated via real-time quantitative polymerase chain reaction (RT-qPCR). Results: The Gene Ontology (GO) items that the differentially expressed genes (DEGs) between POAG and control groups enriched were relevant to light stimulation and DNA methylation. A total of three light stimulation-related biomarkers (RAB8A, PRG3, and SMAD3) were identified, which had diagnostic value for POAG patients. Besides, the ceRNA regulatory network contained 88 nodes and 93 edges, and a small molecule compounds-mRNA network included 66 nodes and 76 edges. The MR results indicated a causal association between DNA methylation GrimAge acceleration and POAG. Additionally, the results of RT-qPCR revealed that the expression trend of RAB8A was consistent with that of GSE45570. Conclusions: Taken together, this study provides three light stimulation-related biomarkers (RAB8A, PRG3, and SMAD3) for the diagnosis of POAG, providing scientifically valuable insights for further studies of POAG. Translational Relevance: Discovering biomarkers that possess diagnostic significance for POAG has the potential to offer new insights into the pathogenesis of POAG and present novel objectives for clinical intervention.


Subject(s)
Biomarkers , Computational Biology , Gene Regulatory Networks , Glaucoma, Open-Angle , Mendelian Randomization Analysis , Humans , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/diagnosis , Biomarkers/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism , Optic Nerve/metabolism , rab GTP-Binding Proteins/genetics , ROC Curve , Proteoglycans/genetics , Real-Time Polymerase Chain Reaction , DNA Methylation
2.
BMJ Case Rep ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955384

ABSTRACT

Camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP) is a rare autosomal recessive disease caused by mutation in proteoglycan 4 (PRG4) gene on chromosome 1q25-q31. We faced a dilemma and delay in diagnosis in two sisters. The elder sister had pericardial effusion with constrictive pericarditis, underwent pericardiectomy and received empirical treatment for suspected tuberculosis. After 2 years, she developed bilateral knee swelling with restriction of movement. At the same time, her younger sister also presented with bilateral knee swelling which aroused the suspicion of genetic disease. The whole-genome sequencing revealed homozygous PRG4 mutation suggestive of CACP syndrome.


Subject(s)
Coxa Vara , Humans , Female , Coxa Vara/diagnosis , Proteoglycans/genetics , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/diagnosis , Arthropathy, Neurogenic/genetics , Arthropathy, Neurogenic/diagnosis , Pericardial Effusion/diagnosis , Upper Extremity Deformities, Congenital/genetics , Upper Extremity Deformities, Congenital/diagnosis , Upper Extremity Deformities, Congenital/complications , Pericarditis, Constrictive/diagnosis , Pericarditis, Constrictive/complications , Pericarditis, Constrictive/surgery , Lower Extremity Deformities, Congenital/genetics , Lower Extremity Deformities, Congenital/diagnosis , Pericardiectomy , Mutation , Diagnosis, Differential , Synovitis
3.
Biochem Biophys Res Commun ; 729: 150354, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38981403

ABSTRACT

Intra-articular injection of mesenchymal stem cells (MSCs) is envisioned as a solution for knee osteoarthritis (OA). Although synovial MSCs (SyMSCs) are promising for cartilage regeneration, the clinical choice is usually adipose MSCs (AdMSCs). However, the similarities/differences in the mode of action between SyMSCs and AdMSCs remain unclear. Here, we compared factors secreted by human SyMSCs and AdMSCs after injection into OA knees. Human SyMSCs or AdMSCs were injected into the knees of rat partial meniscectomy models. The next day, the knee joints were collected to analyze the distribution of injected MSCs and transcriptome changes in the human MSCs and rat synovium. Non-injected MSCs were mixed with rat synovium as a control. After injection, no difference was apparent in intra-articular distribution of the SyMSCs or AdMSCs. RNA sequencing demonstrated an enrichment of cytokine-cytokine receptor interaction-related genes in both human SyMSCs and AdMSCs after injection. Differentially expressed genes (DEGs) specific to SyMSCs were associated with cartilage matrix synthesis and homeostasis. PCR analysis of the matrisome-related DEGs showed significantly higher expression of PRG4 in SyMSCs than in AdMSCs after injection. Immunostaining also confirmed a significantly greater expression of lubricin by SyMSCs than by AdMSCs. These findings indicate that SyMSCs will be a more promising treatment for OA.


Subject(s)
Adipose Tissue , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoarthritis, Knee , Synovial Membrane , Animals , Mesenchymal Stem Cells/metabolism , Humans , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/therapy , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/genetics , Rats , Synovial Membrane/metabolism , Synovial Membrane/pathology , Mesenchymal Stem Cell Transplantation/methods , Adipose Tissue/metabolism , Adipose Tissue/cytology , Injections, Intra-Articular , Male , Rats, Sprague-Dawley , Glycoproteins/metabolism , Glycoproteins/genetics , Cells, Cultured , Proteoglycans/metabolism , Proteoglycans/genetics
4.
J Oral Biosci ; 66(3): 539-545, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38830403

ABSTRACT

OBJECTIVES: Extracellular matrix components play a significant role in maintaining tissue integrity and pathological processes of the temporomandibular joint (TMJ). This study aimed to evaluate the influence of a soft diet on the mRNA expression of proteoglycans and glycosaminoglycans (GAGs) linked to proteoglycan core proteins in rat TMJ discs. METHODS: Thirty 4-week-old male Wistar rats were assigned to one of two groups: a control group fed a regular pellet diet and a soft diet group fed a powdered diet for 4 weeks. The mRNA expression levels of 12 proteoglycans in TMJ discs were evaluated using real-time polymerase chain reaction (PCR). In addition, histomorphometric and biochemical analyses were performed to evaluate the thickness and deoxyribonucleic acid (DNA), GAG, and water content of the TMJ discs. RESULTS: The TMJ disc thickness in the anterior, intermediate, and posterior bands decreased significantly in the soft diet group. The GAG content decreased significantly in the soft-diet group, whereas no significant differences in DNA content or water content ratio were observed between the groups. Real-time PCR indicated that the expression levels of aggrecan, versican, biglycan, decorin, fibromodulin, lumican, and chondroadherin decreased in the soft diet group. The expression levels of all versican isoforms decreased in the soft diet group. CONCLUSIONS: These results indicate that the biomechanical environment of the TMJ caused by a soft diet is closely related to the expression of proteoglycans in TMJ discs, which may eventually increase the fragility of the TMJ discs.


Subject(s)
Proteoglycans , Rats, Wistar , Temporomandibular Joint Disc , Animals , Proteoglycans/metabolism , Proteoglycans/genetics , Rats , Male , Temporomandibular Joint Disc/metabolism , Temporomandibular Joint Disc/pathology , Real-Time Polymerase Chain Reaction , Diet/adverse effects , Glycosaminoglycans/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
5.
Exp Dermatol ; 33(6): e15092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888196

ABSTRACT

Secreted protein acidic and cysteine rich/osteonectin, cwcv and kazal-like domain proteoglycan 2 (SPOCK2) is a protein that regulates cell differentiation and growth. Recent studies have reported that SPOCK2 plays important roles in the progression of various human cancers; however, the role of SPOCK2 in melanoma remains unknown. Therefore, this study investigated the roles of SPOCK2 and the related mechanisms in melanoma progression. To evaluate the clinical significance of SPOCK2 expression in patients with melanoma, we analysed the association between SPOCK2 expression and its prognostic value for patients with melanoma using systematic multiomic analysis. Subsequently, to investigate the roles of Spock2 in melanoma progression in vitro and in vivo, we knocked down Spock2 in the B16F10 melanoma cell line. High SPOCK2 levels were positively associated with good prognosis and long survival rate of patients with melanoma. Spock2 knockdown promoted melanoma cell proliferation by inducing the cell cycle and inhibiting apoptosis. Moreover, Spock2 downregulation significantly increased cell migration and invasion by upregulating MMP2 and MT1-MMP. The increased cell proliferation and migration were inhibited by MAPK inhibitor, and ERK phosphorylation was considerably enhanced in Spock2 knockdown cells. Therefore, Spock2 could function as a tumour suppressor gene to regulate melanoma progression by regulating the MAPK/ERK signalling pathway. Additionally, Spock2 knockdown cell injection induced considerable tumour growth and lung metastasis in C57BL6 mice compared to that in the control group. Our findings suggest that SPOCK2 plays crucial roles in malignant progression of melanoma and functions as a novel therapeutic target of melanoma.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Disease Progression , Melanoma , Skin Neoplasms , Animals , Female , Humans , Male , Mice , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Cycle , Cell Line, Tumor , Gene Knockdown Techniques , MAP Kinase Signaling System , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL , Neoplasm Invasiveness , Prognosis , Proteoglycans/metabolism , Proteoglycans/genetics , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism
6.
Endocr J ; 71(8): 789-797, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38945931

ABSTRACT

The aim of this study was to determine the tissue expressions of vascular endothelial growth factor (VEGF) and endocan in adrenal cortical tumors and the factors associated with them. The study included 6 subjects with adrenocortical adenoma (ACA), 7 subjects with adrenocortical carcinoma (ACC), and 13 control subjects with a normal adrenal cortex. The status of VEGF and endocan expression was determined by the proportions of cells staining on a scale ranging from negative (not staining at all) to strongly positive. VEGF expression was detected in 1 (16.7%) of 6 subjects in the ACA group and in 6 (85.7%) of 7 subjects in the ACC group. VEGF expression was not detected in any of the subjects in the control group. Endocan expression was detected in 6 (100%) of 6 subjects in the ACA group and in 7 (100%) of 7 subjects in the ACC group, while it was detected in only 4 (30.7%) of 13 subjects in the control group. VEGF was expressed with a high frequency in subjects with ACC and with a low frequency in subjects with ACA, but it was not expressed in subjects with normal adrenal cortex tissue. Although endocan was expressed with a higher frequency in subjects with ACC and ACA, it was also expressed in subjects with normal adrenal cortex tissue. The percentage of cells expressed endocan in subjects with ACC was also significantly higher than in subjects with both ACA and normal adrenal cortex.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Adenoma , Adrenocortical Carcinoma , Neoplasm Proteins , Proteoglycans , Vascular Endothelial Growth Factor A , Humans , Adrenal Cortex Neoplasms/metabolism , Adrenal Cortex Neoplasms/pathology , Adrenal Cortex Neoplasms/genetics , Male , Neoplasm Proteins/metabolism , Neoplasm Proteins/biosynthesis , Female , Proteoglycans/metabolism , Proteoglycans/genetics , Middle Aged , Vascular Endothelial Growth Factor A/metabolism , Adult , Prognosis , Adrenocortical Adenoma/metabolism , Adrenocortical Adenoma/pathology , Adrenocortical Adenoma/genetics , Adrenocortical Carcinoma/metabolism , Adrenocortical Carcinoma/pathology , Aged , Adrenal Cortex/metabolism , Adrenal Cortex/pathology , Young Adult
7.
Am J Physiol Renal Physiol ; 326(6): F1016-F1031, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38601985

ABSTRACT

Esm-1, endothelial cell-specific molecule-1, is a susceptibility gene for diabetic kidney disease (DKD) and is a secreted proteoglycan, with notable expression in kidney, which attenuates inflammation and albuminuria. However, little is known about Esm1 expression in mature tissues in the presence or absence of diabetes. We utilized publicly available single-cell RNA sequencing data to characterize Esm1 expression in 27,786 renal endothelial cells (RECs) obtained from three mouse and four human databases. We validated our findings using bulk transcriptome data from 20 healthy subjects and 41 patients with DKD and using RNAscope. In both mice and humans, Esm1 is expressed in a subset of all REC types and represents a minority of glomerular RECs. In patients, Esm1(+) cells exhibit conserved enrichment for blood vessel development genes. With diabetes, these cells are fewer in number and shift expression toward chemotaxis pathways. Esm1 correlates with a majority of genes within these pathways, delineating a glomerular transcriptional polarization reflected by the magnitude of Esm1 deficiency. Diabetes correlates with lower Esm1 expression and with changes in the functional characterization of Esm1(+) cells. Thus, Esm1 appears to be a marker for glomerular transcriptional polarization in DKD.NEW & NOTEWORTHY Esm-1 is primarily expressed in glomerular endothelium in humans. Cells expressing Esm1 exhibit a high degree of conservation in the enrichment of genes related to blood vessel development. In the context of diabetes, these cells are reduced in number and show a significant transcriptional shift toward the chemotaxis pathway. In diabetes, there is a transcriptional polarization in the glomerulus that is reflected by the degree of Esm1 deficiency.


Subject(s)
Diabetic Nephropathies , Endothelial Cells , Proteoglycans , Humans , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Proteoglycans/genetics , Proteoglycans/metabolism , Endothelial Cells/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Case-Control Studies , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Transcriptome , Mice , Transcription, Genetic , Chemotaxis , Neoplasm Proteins
8.
Am J Phys Med Rehabil ; 103(10): 918-924, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38630557

ABSTRACT

OBJECTIVE: TNFAIP8 and TIPE2 belong to TNFa-induced protein 8 (TNFAIP8/TIPE) family. They control apoptosis and direct leukocyte migration. Nucleus pulposus cell loss is a hallmark of intervertebral disc degeneration in response to injury, and inflammation may cause pain. Here, we examined the effects of TNFAIP8/TIPE2 deficiency on the intervertebral discs in mice with these genes deleted. DESIGN: Tail intervertebral discs in Tnfaip8 or Tipe2 single and double knockout mice ( Tnfaip8 -/- , Tipe2 -/- , and Tnfaip8/Tipe2 dko) , and wild-type controls were injured. The spine motion segments were stained with safranin O to reveal proteoglycans. Macrophages were identified by immunostaining, and selected inflammatory marker and collagen gene expression was examined by Real Time PCR. RESULTS: The injured tail intervertebral discs of Tnfaip -/- , Tipe2 -/- , and Tnfaip8/Tipe2 dko mice all displayed higher levels of proteoglycans than wild-type controls. Fewer macrophages were found in the injured intervertebral discs of Tipe2 -/- and Tnfaip8/Tipe2 dko mice than wild type. Il6 , Adam8 , and Col1 gene expression was downregulated in the injured intervertebral discs of Tnfip8/Tipe2 dko mice. CONCLUSIONS: TNFAIP8 and TIPE2 loss of function ameliorated proteoglycan loss and inflammation in the injured intervertebral discs. They may serve as molecular targets to preserve disc structure and reduce inflammation.


Subject(s)
Intracellular Signaling Peptides and Proteins , Mice, Knockout , Proteoglycans , Animals , Mice , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Proteoglycans/metabolism , Proteoglycans/genetics , Gene Deletion , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Inflammation , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Macrophages/metabolism , Disease Models, Animal , Apoptosis Regulatory Proteins
9.
Osteoarthritis Cartilage ; 32(7): 881-894, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604493

ABSTRACT

OBJECTIVE: Transient receptor potential vanilloid 4 (TRPV4) is a multi-modally activated cation channel that mediates mechanotransduction pathways by which musculoskeletal tissues respond to mechanical load and regulate tissue health. Using conditional Trpv4 knockout mice, we investigated the role of Trpv4 in regulating intervertebral disc (IVD) health and injury-induced IVD degeneration. METHODS: Col2-Cre;Trpv4fl/f (Trpv4 KO) mice were used to knockout Trpv4 in all type 2 collagen-expressing cells. Effects of gene targeting alone was assessed in lumbar spines, using vertebral bone length measurement, histological, immunohistochemistry and gene expression analyses, and mechanical testing. Disc puncture was performed on caudal IVDs of wild-type (WT) and Trpv4 KO mice at 2.5- and 6.5-months-of-age. Six weeks after puncture (4- and 8-months-of-age at sacrifice), caudal spines were assessed using histological analyses. RESULTS: While loss of Trpv4 did not significantly alter vertebral bone length and tissue histomorphology compared to age-matched WT mice, Trpv4 KO mice showed decreased proteoglycan and PRG4 staining in the annulus fibrosus compared to WT. At the gene level, Trpv4 KO mice showed significantly increased expression of Acan, Bgn, and Prg4 compared to WT. Functionally, loss of Trpv4 was associated with significantly increased neutral zone length in lumbar IVDs. Following puncture, both Trpv4 KO and WT mice showed similar signs of degeneration at the site of injury. Interestingly, loss of Trpv4 prevented mechanically-induced degeneration in IVDs adjacent to sites of injury. CONCLUSION: These studies suggest a role for Trpv4 in regulating extracellular matrix synthesis and mediating the response of IVD tissues to mechanical stress.


Subject(s)
Disease Models, Animal , Extracellular Matrix , Intervertebral Disc Degeneration , Mice, Knockout , TRPV Cation Channels , Animals , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Mice , Extracellular Matrix/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Lumbar Vertebrae , Weight-Bearing/physiology , Collagen Type II/metabolism , Mechanotransduction, Cellular/physiology , Aggrecans/metabolism , Stress, Mechanical , Proteoglycans/metabolism , Proteoglycans/genetics
10.
J Physiol ; 602(9): 1939-1951, 2024 May.
Article in English | MEDLINE | ID: mdl-38606903

ABSTRACT

Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 µm2 compared with 339 ± 15 × 103 µm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.


Subject(s)
Atherosclerosis , Inflammation , Mice, Knockout , Proteoglycans , Receptors, LDL , Recombinant Proteins , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Female , Proteoglycans/pharmacology , Proteoglycans/metabolism , Proteoglycans/genetics , Receptors, LDL/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/administration & dosage , Mice , Humans , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Macrophages/metabolism , Macrophages/drug effects , Foam Cells/metabolism , Foam Cells/drug effects
11.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673852

ABSTRACT

One of the challenges of the mature nervous system is to maintain the stability of neural networks while providing a degree of plasticity to generate experience-dependent modifications. This plasticity-stability dynamism is regulated by perineuronal nets (PNNs) and is crucial for the proper functioning of the system. Previously, we found a relation between spinal PNNs reduction and maladaptive plasticity after spinal cord injury (SCI), which was attenuated by maintaining PNNs with activity-dependent therapies. Moreover, transgenic mice lacking the cartilage link protein 1 (Crtl1 KO mice) showed aberrant spinal PNNs and increased spinal plasticity. Therefore, the aim of this study is to evaluate the role of link protein 1 in the activity-dependent modulation of spinal PNNs surrounding motoneurons and its impact on the maladaptive plasticity observed following SCI. We first studied the activity-dependent modulation of spinal PNNs using a voluntary wheel-running protocol. This training protocol increased spinal PNNs in WT mice but did not modify PNN components in Crtl1 KO mice, suggesting that link protein 1 mediates the activity-dependent modulation of PNNs. Secondly, a thoracic SCI was performed, and functional outcomes were evaluated for 35 days. Interestingly, hyperreflexia and hyperalgesia found at the end of the experiment in WT-injured mice were already present at basal levels in Crtl1 KO mice and remained unchanged after the injury. These findings demonstrated that link protein 1 plays a dual role in the correct formation and in activity-dependent modulation of PNNs, turning it into an essential element for the proper function of PNN in spinal circuits.


Subject(s)
Extracellular Matrix Proteins , Mice, Knockout , Spinal Cord Injuries , Spinal Cord , Animals , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Mice , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Neuronal Plasticity , Motor Neurons/metabolism , Nerve Net/metabolism , Male , Proteoglycans/metabolism , Proteoglycans/genetics , Mice, Inbred C57BL
12.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672477

ABSTRACT

Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFßRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFß signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFßRI associated with lower responsiveness to the manipulation of TGFß/TGFßRI pathway and the regulation of pro-tumorigenic properties. Active TGFßRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1ß, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.


Subject(s)
Fibroblasts , Glioblastoma , Proteoglycans , Receptors, Interleukin-8B , Signal Transduction , Vesicular Transport Proteins , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Proteoglycans/metabolism , Proteoglycans/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Paracrine Communication , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Stromal Cells/metabolism , Stromal Cells/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology
13.
BMC Cardiovasc Disord ; 24(1): 197, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580957

ABSTRACT

BACKGROUND: Heart failure (HF) is a heterogeneous syndrome that affects millions worldwide, resulting in substantial health and economic burdens. However, the molecular mechanism of HF pathogenesis remains unclear. METHODS: HF-related key genes were screened by a bioinformatics approach.The impacts of HAPLN1 knockdown on Angiotensin II (Ang II)-induced AC16 cells were assessed through a series of cell function experiments. Enzyme-linked immunosorbent assay (ELISA) was used to measure levels of oxidative stress and apoptosis-related factors. The HF rat model was induced by subcutaneous injection isoprenaline and histopathologic changes in the cardiac tissue were assessed by hematoxylin and eosin (HE) staining and echocardiographic index. Downstream pathways regulated by HAPLN1 was predicted through bioinformatics and then confirmed in vivo and in vitro by western blot. RESULTS: Six hub genes were screened, of which HAPLN1, FMOD, NPPB, NPPA, and COMP were overexpressed, whereas NPPC was downregulated in HF. Further research found that silencing HAPLN1 promoted cell viability and reduced apoptosis in Ang II-induced AC16 cells. HAPLN1 knockdown promoted left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS), while decreasing left ventricular end-systolic volume (LVESV) in the HF rat model. HAPLN1 knockdown promoted the levels of GSH and suppressed the levels of MDA, LDH, TNF-α, and IL-6. Mechanistically, silencing HAPLN1 activated the PKA pathway, which were confirmed both in vivo and in vitro. CONCLUSION: HAPLN1 knockdown inhibited the progression of HF by activating the PKA pathway, which may provide novel perspectives on the management of HF.


Subject(s)
Extracellular Matrix Proteins , Heart Failure , Ventricular Function, Left , Animals , Rats , Heart Failure/genetics , Heart Failure/metabolism , Rats, Sprague-Dawley , Signal Transduction , Stroke Volume , Proteoglycans/genetics , Proteoglycans/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism
14.
J Matern Fetal Neonatal Med ; 37(1): 2332914, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38522947

ABSTRACT

BACKGROUND: Bronchopulmonary dysplasia (BPD) has a lasting effect on the respiratory function of infants, imposing chronic health burdens. BPD is influenced by various prenatal, postnatal, and genetic factors. This study explored the connection between BPD and home oxygen therapy (HOT), and then we examined the association between HOT and a specific single-nucleotide polymorphism (SNP) in the hyaluronan and proteoglycan link protein 1 (HAPLN1) gene among premature Japanese infants. MATERIALS AND METHODS: Prenatal and postnatal data from 212 premature infants were collected and analyzed by four SNPs (rs975563, rs10942332, rs179851, and rs4703570) around HAPLN1 using the TaqMan polymerase chain reaction method. The clinical characteristics and genotype frequencies of HAPLN1 were assessed and compared between HOT and non-HOT groups. RESULTS: Individuals with AA/AC genotypes in the rs4703570 SNP exhibited significantly higher HOT rates at discharge than those with CC homozygotes (odds ratio, 1.20, 95% confidence interval, 1.07-1.35, p = .038). A logistic regression analysis determined that CC homozygotes in the rs4703570 SNP did not show a statistically significant independent association with HOT at discharge. CONCLUSIONS: Although our study did not reveal a correlation between HAPLN1 and the onset of BPD, we observed that individuals with CC homozygosity at the rs4703570 SNP exhibit a reduced risk of HOT.


Subject(s)
Bronchopulmonary Dysplasia , Extracellular Matrix Proteins , Hyaluronic Acid , Infant, Newborn , Infant , Female , Humans , Pregnancy , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/therapy , Japan , Infant, Premature , Proteoglycans/genetics , Oxygen
15.
Eur J Ophthalmol ; 34(2): NP1-NP4, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37661650

ABSTRACT

INTRODUCTION: Adult-onset vitelliform macular dystrophy (AVMD) is an inherited maculopathy characterized by metamorphopsias and decrease in visual acuity occurring between the fourth and the sixth decade. It is characterized by an 'egg yolk' macular lesion eventually evolving towards foveal atrophy and fibrosis. It is usually an autosomal dominant inherited disorder with variable penetrance, mainly related to variants in BEST1, PRPH2, IMPG1, and IMPG2 genes. CASE DESCRIPTION: A 47-year-old woman complaining of "wavy" vision was referred to our clinic. Her past medical history and reported family history did not reveal any ocular disease. Complete ophthalmological evaluation was performed. Funduscopic examination and multimodal imaging revealed a round vitelliform lesion in both eyes, leading to a diagnosis of AVMD. Genetic analysis revealed a novel, likely pathogenetic, heterozygous c.478G > T (p.Glu160Ter), (NM_016247) variant in the IMPG2 gene. DISCUSSION: Our patient exhibits a novel pathogenetic variant in a gene associated with AVMD. Heterozygous variants in the IMPG2 gene have been reported in multiple individuals with vitelliform macular dystrophy, with an autosomal dominant mode of inheritance. Genetic screening is essential to characterize patients, to predict vision loss in patients with a positive family history and to characterize eligible patients for new potential emerging therapies. Genotype-phenotype correlation studies are needed to have a clearer picture of pathogenetic mechanisms. Our study characterizes the phenotype related to a novel IMPG2 pathogenic variant through multimodal imaging.


Subject(s)
Vitelliform Macular Dystrophy , Female , Humans , Middle Aged , Bestrophins/genetics , Extracellular Matrix Proteins/genetics , Eye Proteins/genetics , Genetic Testing , Mutation , Phenotype , Proteoglycans/genetics , Retina/pathology , Tomography, Optical Coherence , Vision Disorders , Vitelliform Macular Dystrophy/diagnosis , Vitelliform Macular Dystrophy/genetics
16.
Am J Ophthalmol ; 258: 32-42, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37806544

ABSTRACT

PURPOSE: To investigate the phenotype, variability, and penetrance of IMPG2-related maculopathy. DESIGN: Retrospective observational case series. METHODS: Clinical evaluation, multimodal retinal imaging, genetic testing, and molecular modeling. RESULTS: A total of 25 individuals with a mono-allelic IMPG2 variant were included, 5 of whom were relatives of patients with IMPG2-associated retinitis pigmentosa. A distinct maculopathy was present in 17 individuals (median age, 52 years; range, 20-72 years), and included foveal elevation with or without subretinal vitelliform material or focal atrophy of the retinal pigment epithelium. Best-corrected visual acuity (BCVA) was ≥20/50 in the better eye (n = 15), and 5 patients were asymptomatic. Longitudinal observation (n = 8, up to 19 years) demonstrated stable maculopathy (n = 3), partial/complete resorption (n = 4) or increase (n = 1) of the subretinal material, with overall stable vision (n = 6). No manifest maculopathy was observed in 8 individuals (median age, 58 years; range, 43-83 years; BCVA ≥20/25), all were identified through segregation analysis. All 8 individuals were asymptomatic, with minimal foveal changes observed on optical coherence tomography in 3 cases. A total of 18 different variants were detected, 11 of them truncating. Molecular modeling of 5 missense variants [c.727G>C, c.1124C>A, c.2816T>A, c.3047T>C, and c.3193G>A] supported the hypothesis that these have a loss-of-function effect. CONCLUSIONS: Mono-allelic IMPG2 variants may result in haploinsufficiency manifesting as a maculopathy with variable penetrance and expressivity. Family members of patients with IMPG2-related retinitis pigmentosa may present with vitelliform lesions. The maculopathy often remains limited to the fovea and is usually associated with moderate visual impairment.


Subject(s)
Macular Degeneration , Retinal Diseases , Retinitis Pigmentosa , Humans , Middle Aged , Fluorescein Angiography , Macular Degeneration/genetics , Proteoglycans/genetics , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Retrospective Studies , Tomography, Optical Coherence , Visual Acuity
17.
Hum Mol Genet ; 33(5): 448-464, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-37975905

ABSTRACT

Biallelic mutations in interphotoreceptor matrix proteoglycan 2 (IMPG2) in humans cause retinitis pigmentosa (RP) with early macular involvement, albeit the disease progression varies widely due to genetic heterogeneity and IMPG2 mutation type. There are currently no treatments for IMPG2-RP. To aid preclinical studies toward eventual treatments, there is a need to better understand the progression of disease pathology in appropriate animal models. Toward this goal, we developed mouse models with patient mimicking homozygous frameshift (T807Ter) or missense (Y250C) Impg2 mutations, as well as mice with a homozygous frameshift mutation (Q244Ter) designed to completely prevent IMPG2 protein expression, and characterized the trajectory of their retinal pathologies across postnatal development until late adulthood. We found that the Impg2T807Ter/T807Ter and Impg2Q244Ter/Q244Ter mice exhibited early onset gliosis, impaired photoreceptor outer segment maintenance, appearance of subretinal deposits near the optic disc, disruption of the outer retina, and neurosensorial detachment, whereas the Impg2Y250C/Y250C mice exhibited minimal retinal pathology. These results demonstrate the importance of mutation type in disease progression in IMPG2-RP and provide a toolkit and preclinical data for advancing therapeutic approaches.


Subject(s)
Proteoglycans , Retinitis Pigmentosa , Humans , Animals , Mice , Adult , Proteoglycans/genetics , Retina , Mutation , Retinitis Pigmentosa/genetics , Disease Progression
18.
Development ; 151(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38117077

ABSTRACT

During endochondral ossification, chondrocytes secrete a proteoglycan (PG)-rich extracellular matrix that can inhibit the process of cartilage maturation, including expression of Ihh and Col10a1. Because bone morphogenetic proteins (BMPs) can promote cartilage maturation, we hypothesized that cartilage PGs normally inhibit BMP signalling. Accordingly, BMP signalling was evaluated in chondrocytes of wild-type and PG mutant (fam20b-/-) zebrafish and inhibited with temporal control using the drug DMH1 or an inducible dominant-negative BMP receptor transgene (dnBMPR). Compared with wild type, phospho-Smad1/5/9, but not phospho-p38, was increased in fam20b-/- chondrocytes, but only after they secreted PGs. Phospho-Smad1/5/9 was decreased in DMH1-treated or dnBMPR-activated wild-type chondrocytes, and DMH1 also decreased phospho-p38 levels. ihha and col10a1a were decreased in DMH1-treated or dnBMPR-activated chondrocytes, and less perichondral bone formed. Finally, early ihha and col10a1a expression and early perichondral bone formation of fam20b mutants were rescued with DMH1 treatment or dnBMPR activation. Therefore, PG inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification, and these results offer hope for the development of growth factor therapies for skeletal defects of PG diseases.


Subject(s)
Osteogenesis , Proteoglycans , Animals , Osteogenesis/genetics , Proteoglycans/genetics , Proteoglycans/metabolism , Zebrafish/genetics , Cartilage/metabolism , Chondrocytes/metabolism , Bone Morphogenetic Proteins/metabolism
19.
World J Surg Oncol ; 21(1): 312, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37779184

ABSTRACT

BACKGROUND: Colorectal cancer is one of the most common malignant tumors worldwide with high morbidity and mortality. This study aimed to identify different methylation sites as new methylation markers in CRC and colorectal adenoma through tissue detection. METHODS: DNA extraction and bisulfite modification as well as Infinium 450K methylation microarray detection were performed in 46 samples of sporadic colorectal cancer tissue, nine samples of colorectal adenoma, and 20 normal samples, and bioinformatic analysis was conducted involving genes enrichments of GO and KEGG. Pyrosequencing methylation detection was further performed in 68 sporadic colorectal cancer tissues, 31 samples of colorectal adenoma, and 49 normal colorectal mucosae adjacent to carcinoma to investigate the differentially methylated genes obtained from methylation microarray. RESULTS: There were 65,535 differential methylation marker probes, among which 25,464 were hypermethylated markers and 40,071 were hypomethylated markers in the adenoma compared with the normal group, and 395,571 were differentially methylated markers in patients with sporadic colorectal cancer compared with the normal group, including 21,710 hypermethylated markers and 17,861 hypomethylated markers. Five hypermethylated genes including ZNF471, SND1, SPOCK1, FBLIM1, and OTX1 were detected and confirmed in 68 cases of colorectal cancer, 31 cases of adenoma, and 49 cases of normal control group. CONCLUSIONS: Hypermethylated genes of ZNF471, SND1, SPOCK1, FBLIM1, and OTX1 were obtained from methylation chip detection and further confirm analysis in colorectal cancer and adenoma compared with normal tissue, which may be promising diagnostic markers of colorectal cancer and colorectal adenoma.


Subject(s)
Adenoma , Colorectal Neoplasms , Humans , DNA Methylation , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CpG Islands , Early Detection of Cancer , Colorectal Neoplasms/pathology , Adenoma/genetics , Adenoma/pathology , Cytoskeletal Proteins/genetics , Cell Adhesion Molecules/genetics , Proteoglycans/genetics , Endonucleases/genetics , Otx Transcription Factors/genetics
20.
Chem Biol Drug Des ; 102(6): 1421-1434, 2023 12.
Article in English | MEDLINE | ID: mdl-37620132

ABSTRACT

Targeted therapy has attracted more and more attention in cancer treatment in recent years. However, due to the diversity of tumor types and the mutation of target sites on the tumor surface, some existing targets are no longer suitable for tumor therapy. In addition, the long-term administration of a single targeted drug can also lead to drug resistance and attenuate drug potency, so it is important to develop new targets for tumor therapy. The expression of Type III transforming growth factor ß receptor (TGFBR3) is upregulated in colon, breast, and prostate cancer cells, and plays an important role in the occurrence and development of these cancers, so TGFBR3 may be developed as a novel target for tumor therapy, but so far there is no report on this research. In this study, the structure of bone morphogenetic protein 4 (BMP4), one of the ligands of TGFBR3 was analyzed through the docking analysis with TGFBR3 and sequence charge characteristic analysis, and a functional tumor-targeting penetrating peptide T3BP was identified. The results of fluorescent labeling experiments showed that T3BP could target and efficiently enter tumor cells with high expression of TGFBR3, especially A549 cells. When the expression of TGFBR3 on the surface of tumor cells (HeLa) was knocked down by RNA interference, the high delivery efficiency of T3BP was correspondingly reduced by 40%, indicating that the delivery was TGFBR3-dependent. Trichosanthin (TCS, a plant-derived ribosome inactivating protein) fused with T3BP can enhance the inhibitory activity of the fusion protein on A549 cells by more than 200 times that of TCS alone. These results indicated that T3BP, as a novel targeting peptide that can efficiently bind TGFBR3 and be used for targeted therapy of tumors with high expression of TGFBR3. This study enriches the supply of tumor-targeting peptides and provides a new potential application option for the treatment of tumors with high expression of TGFBR3.


Subject(s)
Cell-Penetrating Peptides , Male , Humans , Cell-Penetrating Peptides/chemistry , Drug Delivery Systems , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Proteoglycans/genetics , Proteoglycans/metabolism , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL