Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 583(7816): 425-430, 2020 07.
Article in English | MEDLINE | ID: mdl-32612231

ABSTRACT

The vascular interface of the brain, known as the blood-brain barrier (BBB), is understood to maintain brain function in part via its low transcellular permeability1-3. Yet, recent studies have demonstrated that brain ageing is sensitive to circulatory proteins4,5. Thus, it is unclear whether permeability to individually injected exogenous tracers-as is standard in BBB studies-fully represents blood-to-brain transport. Here we label hundreds of proteins constituting the mouse blood plasma proteome, and upon their systemic administration, study the BBB with its physiological ligand. We find that plasma proteins readily permeate the healthy brain parenchyma, with transport maintained by BBB-specific transcriptional programmes. Unlike IgG antibody, plasma protein uptake diminishes in the aged brain, driven by an age-related shift in transport from ligand-specific receptor-mediated to non-specific caveolar transcytosis. This age-related shift occurs alongside a specific loss of pericyte coverage. Pharmacological inhibition of the age-upregulated phosphatase ALPL, a predicted negative regulator of transport, enhances brain uptake of therapeutically relevant transferrin, transferrin receptor antibody and plasma. These findings reveal the extent of physiological protein transcytosis to the healthy brain, a mechanism of widespread BBB dysfunction with age and a strategy for enhanced drug delivery.


Subject(s)
Aging/metabolism , Aging/pathology , Blood-Brain Barrier/metabolism , Transcytosis , Alkaline Phosphatase/metabolism , Animals , Antibodies/metabolism , Biological Transport , Blood Proteins/administration & dosage , Blood Proteins/metabolism , Blood Proteins/pharmacokinetics , Brain/blood supply , Brain/metabolism , Drug Delivery Systems , Health , Humans , Male , Mice , Mice, Inbred C57BL , Plasma/metabolism , Proteome/administration & dosage , Proteome/metabolism , Proteome/pharmacokinetics , Receptors, Transferrin/immunology , Transcription, Genetic , Transferrin/metabolism
2.
J Comput Biol ; 24(10): 1050-1059, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28682641

ABSTRACT

Lysine succinylation is an extremely important protein post-translational modification that plays a fundamental role in regulating various biological reactions, and dysfunction of this process is associated with a number of diseases. Thus, determining which Lys residues in an uncharacterized protein sequence are succinylated underpins both basic research and drug development endeavors. To solve this problem, we have developed a predictor called pSuc-PseRat. The features of the pSuc-PseRat predictor are derived from two aspects: (1) the binary encoding from succinylated sites and non-succinylated sites; (2) the sequence-coupling effects between succinylated sites and non-succinylated sites. Eleven gradient boosting machine classifiers were trained with these features to build the predictor. The pSuc-PseRat predictor achieved an average ACU (area under the receiver operating characteristic curve) score of 0.805 in the fivefold cross-validation set and performed better than existing predictors on two comprehensive independent test sets. A freely available web server has been developed for pSuc-PseRat.


Subject(s)
Lysine/metabolism , Protein Processing, Post-Translational , Proteins/metabolism , Proteome/metabolism , Proteome/pharmacokinetics , Software , Succinic Acid/metabolism , Algorithms , Computational Biology/methods , Databases, Protein , Humans
3.
Proteomics Clin Appl ; 7(1-2): 171-80, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23184895

ABSTRACT

The emerging field of chemo- and pharmacoproteomics studies the mechanisms of action of bioactive molecules in a systems pharmacology context. In contrast to traditional drug discovery, pharmacoproteomics integrates the mechanism of a drug's action, its side effects including toxicity, and the discovery of new drug targets in a single approach. Thus, it determines early favorable (e.g. multiple kinase target in cancer drugs) and unfavorable (e.g. side effects) polypharmacology. Target profiling is accomplished using either active site-labeling probes or immobilized drugs. This strategy identifies direct targets and has in fact enabled even the determination of binding curves and half maximum inhibitory concentrations of these targets. In addition, the enrichment greatly reduces the complexity of the proteome to be analyzed by quantitative MS. Complementary to these approaches, global proteomics profiling studying drug treatement-induced changes in protein expression levels and/or post-translational modification status have started to become possible mostly due to significant improvements in instrumentation. Particularly, when using multidimensional separations, a considerable proteome depth of up to 10 000 proteins can be achieved with current state-of-the-art mass spectrometers and bioinformatics tools. In summary, chemo- and pharmacoproteomics has already contributed significantly to the identification of novel drug targets and their mechanisms of action(s). Aided by further technological advancements, this interdisciplinary approach will likely be used more broadly in the future.


Subject(s)
Proteome/drug effects , Proteome/pharmacokinetics , Proteomics , Humans , Pharmaceutical Preparations/metabolism , Proteome/chemistry , Proteome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...