Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62.486
Filter
1.
Nat Commun ; 15(1): 4792, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839760

ABSTRACT

Innate lymphoid cell precursors (ILCPs) develop into distinct subsets of innate lymphoid cells (ILCs) with specific functions. The epigenetic program underlying the differentiation of ILCPs into ILC subsets remains poorly understood. Here, we reveal the genome-wide distribution and dynamics of the DNA methylation and hydroxymethylation in ILC subsets and their respective precursors. Additionally, we find that the DNA hydroxymethyltransferase TET1 suppresses ILC1 but not ILC2 or ILC3 differentiation. TET1 deficiency promotes ILC1 differentiation by inhibiting TGF-ß signaling. Throughout ILCP differentiation at postnatal stage, gut microbiota contributes to the downregulation of TET1 level. Microbiota decreases the level of cholic acid in the gut, impairs TET1 expression and suppresses DNA hydroxymethylation, ultimately resulting in an expansion of ILC1s. In adult mice, TET1 suppresses the hyperactivation of ILC1s to maintain intestinal homeostasis. Our findings provide insights into the microbiota-mediated epigenetic programming of ILCs, which links microbiota-DNA methylation crosstalk to ILC differentiation.


Subject(s)
Cell Differentiation , DNA Methylation , DNA-Binding Proteins , Immunity, Innate , Lymphocytes , Proto-Oncogene Proteins , Animals , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Lymphocytes/metabolism , Lymphocytes/immunology , Mice, Inbred C57BL , Gastrointestinal Microbiome , Epigenesis, Genetic , Mice, Knockout , Transforming Growth Factor beta/metabolism , Signal Transduction
2.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38830768

ABSTRACT

Hematopoietic stem cells and multipotential progenitors emerge in multiple, overlapping waves of fetal development. Some of these populations seed the bone marrow and sustain adult B- and T-cell development long-term after birth. However, others are present transiently, but whether they are vestigial or generate B and T cells that contribute to the adult immune system is not well understood. We now report that transient fetal progenitors distinguished by expression of low levels of the PU.1 transcription factor generated activated and memory T and B cells that colonized and were maintained in secondary lymphoid tissues. These included the small and large intestines, where they may contribute to the maintenance of gut homeostasis through at least middle age. At least some of the activated/memory cells may have been the progeny of B-1 and marginal zone B cells, as transient PU.1low fetal progenitors efficiently generated those populations. Taken together, our data demonstrate the potential of B- and T-cell progeny of transient PU.1low fetal progenitors to make an early and long-term contribution to the adult immune system.


Subject(s)
B-Lymphocytes , Proto-Oncogene Proteins , T-Lymphocytes , Trans-Activators , Trans-Activators/metabolism , Trans-Activators/genetics , Animals , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Cell Differentiation/immunology , Female , Fetus/cytology , Fetal Stem Cells/metabolism , Fetal Stem Cells/cytology
3.
Sci Transl Med ; 16(750): eadk7640, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838132

ABSTRACT

Approximately 50% of patients with hematologic malignancies relapse after chimeric antigen receptor (CAR) T cell treatment; mechanisms of failure include loss of CAR T persistence and tumor resistance to apoptosis. We hypothesized that both of these challenges could potentially be overcome by overexpressing one or more of the Bcl-2 family proteins in CAR T cells to reduce their susceptibility to apoptosis, both alone and in the presence of BH3 mimetics, which can be used to activate apoptotic machinery in malignant cells. We comprehensively investigated overexpression of different Bcl-2 family proteins in CAR T cells with different signaling domains as well as in different tumor types. We found that Bcl-xL and Bcl-2 overexpression in CAR T cells bearing a 4-1BB costimulatory domain resulted in increased expansion and antitumor activity, reduced exhaustion, and decreased apoptotic priming. In addition, CAR T cells expressing either Bcl-xL or a venetoclax-resistant Bcl-2 variant led to enhanced antitumor efficacy and survival in murine xenograft models of lymphoma and leukemia in the presence or absence of the BH3 mimetic venetoclax, a clinically approved BH3 mimetic. In this setting, Bcl-xL overexpression had stronger effects than overexpression of Bcl-2 or the Bcl-2(G101V) variant. These findings suggest that CAR T cells could be optimally engineered by overexpressing Bcl-xL to enhance their persistence while opening a therapeutic window for combination with BH3 mimetics to prime tumors for apoptosis.


Subject(s)
Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Proto-Oncogene Proteins c-bcl-2 , Receptors, Chimeric Antigen , Sulfonamides , Humans , Animals , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Chimeric Antigen/metabolism , Sulfonamides/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Xenograft Model Antitumor Assays , Mice , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Cell Line, Tumor , Immunotherapy, Adoptive/methods , bcl-X Protein/metabolism , Peptide Fragments , Proto-Oncogene Proteins
4.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 578-584, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825903

ABSTRACT

Objective: To correlate the common driver gene variations in primary lung adenocarcinoma with their clinical characteristics and histopathological subtypes. Methods: There were 4 995 cases of primary lung adenocarcinoma diagnosed at Weifang People's Hospital of Shandong Province from January 2015 to December 2021 which were retrospectively analyzed. Among them 1 983 cases were evaluated for their histopathological subtype; 3 012 were analyzed for the correlation of their histopathological subtypes and corresponding driver gene variations, including invasive non-mucinous adenocarcinoma (INMA) and invasive mucinous adenocarcinoma (IMA), and morphologically, poorly-differentiated, moderately-differentiated and well-differentiated adenocarcinomas. Next-generation sequencing was used to detect variations in EGFR, KRAS, ALK, RET, ROS1, MET, HER2, or BRAF driver genes. Results: There were 2 384 males and 2 611 females. EGFR and ALK variations were more commonly found in female patients aged 60 years or older, with EGFR mutation rate in clinical stage Ⅰ (25.80%) significantly higher than in other stages (P<0.05). KRAS mutations were more commonly detected in male smokers aged 60 years or older, HER2 mutations were more commonly in patients younger than 60 years, and RET mutations were more commonly in non-smokers (all P<0.05). No correlation was found between ROS1, MET, and BRAF gene variations and their clinical characteristics (P>0.05). For the histopathological subtypes, among the 1 899 cases of acinar adenocarcinoma, EGFR mutation rate was the highest (67.30%) compared to the other genes. Exon 21 L858R and exon 19 del were the main mutation sites in IMA and INMA, with a higher mutation rate at exon 20 T790M (11.63%) in micropapillary adenocarcinoma. In IMA, KRAS had the highest overall mutation rate (43.80%), with statistically significant difference in mutation rates of exon 2 G12D and exon 2 G12V in acinar adenocarcinoma, solid, and IMA (P<0.05). KRAS mutation at various sites were higher in poorly differentiated groups compared to moderately- and well-differentiated groups (P<0.05). HER2 mutations were more commonly observed in acinar adenocarcinoma, papillary, and micropapillary adenocarcinoma of INMA. BRAF mutation was higher in micropapillary adenocarcinoma compared with other types (P<0.05). Conclusions: Variations in EGFR, ALK, KRAS, HER2, and RET in primary lung adenocarcinoma are associated with patients' age, smoking history, and clinical stage, and driver gene mutations vary among different histopathological subtypes. EGFR mutations are predominant in INMA, while KRAS mutations are predominant in IMA.


Subject(s)
Adenocarcinoma of Lung , Anaplastic Lymphoma Kinase , ErbB Receptors , Lung Neoplasms , Mutation , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Receptor, ErbB-2 , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Female , Retrospective Studies , Anaplastic Lymphoma Kinase/genetics , ErbB Receptors/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins c-ret/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Proto-Oncogene Proteins/genetics , Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/pathology , Middle Aged
5.
BMC Endocr Disord ; 24(1): 78, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834984

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) has become an epidemic. Delays in diagnosis and as a consequent late treatment has resulted in high prevalence of complications and mortality. Secreted frizzled-related protein 4 (SFRP4), has been recently identified as a potential early biomarker of T2D related to obesity, due to its association with low grade inflammation in adipose tissue and impaired glucose metabolism. We aimed to evaluate the role of SFRP4 in prediabetes and T2D in a Mexican population. METHODS: This was a cross-sectional study that included 80 subjects with T2D, 50 subjects with prediabetes and 50 healthy individuals. Fasting SFRP4 and insulin concentrations were measured by ELISA. Human serum IL-10, IL-6, IL-1ß and IL-8 levels were quantified by flow cytometry. Genotyping was performed by TaqMan® probes. RESULTS: Prediabetes and T2D patients had significantly higher SFRP4 levels than controls (P < 0.05). In turn, prediabetes subjects had higher SFRP4 concentrations than control subjects (P < 0.05). Additionally, the prediabetes and T2D groups had higher concentrations of proinflammatory molecules such as IL-6, IL-1ß and IL-8, and lower concentrations of IL-10, an anti-inflammatory cytokine, than controls (P < 0.001). The serum SFRP4 concentrations were positively correlated with parameters that are elevated in prediabetes and T2D states, such as, HbA1c and homeostasis model assessment insulin resistance (HOMA-IR), (r = 0.168 and 0.248, respectively, P < 0.05). Also, serum SFRP4 concentrations were positively correlated with concentrations of pro-inflammatory molecules (CRP, IL-6, IL-1ß and IL-8) and negatively correlated with the anti-inflammatory molecule IL-10, even after adjusting for body mass index and age (P < 0.001). The genetic variant rs4720265 was correlated with low HDL concentrations in T2D (P < 0.05). CONCLUSIONS: SFRP4 correlates positively with the stage of prediabetes, suggesting that it may be an early biomarker to predict the risk of developing diabetes in people with high serum concentrations of SFRP4, although further longitudinal studies are required.


Subject(s)
Biomarkers , Diabetes Mellitus, Type 2 , Prediabetic State , Humans , Prediabetic State/blood , Prediabetic State/diagnosis , Prediabetic State/epidemiology , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Male , Female , Middle Aged , Biomarkers/blood , Case-Control Studies , Adult , Prognosis , Proto-Oncogene Proteins
6.
Int J Nanomedicine ; 19: 4759-4777, 2024.
Article in English | MEDLINE | ID: mdl-38828199

ABSTRACT

Background: Opioids are irreplaceable analgesics owing to the lack of alternative analgesics that offer opioid-like pain relief. However, opioids have many undesirable central side effects. Restricting opioids to peripheral opioid receptors could reduce those effects while maintaining analgesia. Methods: To achieve this goal, we developed Tet1-LNP (morphine), a neural-targeting lipid nanoparticle encapsulating morphine that could specifically activate the peripheral opioid receptor in the dorsal root ganglion (DRG) and significantly reduce the side effects caused by the activation of opioid receptors in the brain. Tet1-LNP (morphine) were successfully prepared using the thin-film hydration method. In vitro, Tet1-LNP (morphine) uptake was assessed in differentiated neuron-like PC-12 cells and dorsal root ganglion (DRG) primary cells. The uptake of Tet1-LNP (morphine) in the DRGs and the brain was assessed in vivo. Von Frey filament and Hargreaves tests were used to assess the antinociception of Tet1-LNP (morphine) in the chronic constriction injury (CCI) neuropathic pain model. Morphine concentration in blood and brain were evaluated using ELISA. Results: Tet1-LNP (morphine) had an average size of 131 nm. Tet1-LNP (morphine) showed high cellular uptake and targeted DRG in vitro. CCI mice treated with Tet1-LNP (morphine) experienced prolonged analgesia for nearly 32 h compared with 3 h with free morphine (p < 0.0001). Notably, the brain morphine concentration in the Tet1-LNP (morphine) group was eight-fold lower than that in the morphine group (p < 0.0001). Conclusion: Our study presents a targeted lipid nanoparticle system for peripheral neural delivery of morphine. We anticipate Tet1-LNP (morphine) will offer a safe formulation for chronic neuropathic pain treatment, and promise further development for clinical applications.


Subject(s)
Analgesics, Opioid , Ganglia, Spinal , Morphine , Nanoparticles , Animals , Morphine/administration & dosage , Morphine/pharmacokinetics , Morphine/chemistry , Morphine/pharmacology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Nanoparticles/chemistry , Rats , PC12 Cells , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacokinetics , Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacology , Male , Neuralgia/drug therapy , Mice , Lipids/chemistry , Proto-Oncogene Proteins/metabolism , Peripheral Nerves/drug effects , Mixed Function Oxygenases/metabolism , DNA-Binding Proteins , Liposomes
7.
J Clin Invest ; 134(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828722

ABSTRACT

The occurrence of clonal hematopoiesis of indeterminate potential (CHIP), in which advantageous somatic mutations result in the clonal expansion of blood cells, increases with age, as do an increased risk of mortality and detrimental outcomes associated with CHIP. However, the role of CHIP in susceptibility to pulmonary infections, which also increase with age, is unclear. In this issue of the JCI, Quin and colleagues explored the role of CHIP in bacterial pneumonia. Using characterization of immune cells from human donors and mice lacking tet methylcytosine dioxygenase 2 (Tet2), the authors mechanistically link myeloid immune cell dysfunction to CHIP-mediated risk of bacterial pneumonia. The findings suggest that CHIP drives inflammaging and immune senescence, and provide Tet2 status in older adults as a potential prognostic tool for informing treatment options related to immune modulation.


Subject(s)
Clonal Hematopoiesis , DNA-Binding Proteins , Dioxygenases , Pneumonia, Bacterial , Humans , Animals , Clonal Hematopoiesis/immunology , Clonal Hematopoiesis/genetics , Mice , Dioxygenases/genetics , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , Proto-Oncogene Proteins/metabolism
8.
J Am Coll Cardiol ; 83(18): 1717-1727, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38692825

ABSTRACT

BACKGROUND: The expansion of hematopoietic stem cells caused by acquired somatic mutations (clonal hematopoiesis [CH]) is a novel cardiovascular risk factor. The prognostic value of CH in patients with carotid atherosclerosis remains to be evaluated. OBJECTIVES: This study assessed the prognostic significance of CH in patients with atherosclerosis as detected by ultrasound of the carotid artery. METHODS: We applied deep sequencing of selected genomic regions within the genes DNMT3A, TET2, ASXL1, and JAK2 to screen for CH in 968 prospectively collected patients with asymptomatic carotid atherosclerosis evaluated by duplex sonography. RESULTS: We detected clonal markers at variant allele frequency ≥2% in 133 (13.7%) of 968 patients (median age 69.2 years), with increasing prevalence at advanced age. Multivariate analyses including age and established cardiovascular risk factors revealed overall presence of CH to be significantly associated with increased risk of cardiovascular death (HR: 1.50; 95% CI: 1.12-2.00; P = 0.007), reflected also at the single gene level. The effect of CH was more pronounced in older patients and independent of the patients' inflammatory status as measured by high-sensitivity C-reactive protein. Simultaneous assessment of CH and degree of carotid stenosis revealed combined effects on cardiovascular mortality, depicted by a superior risk for patients with >50% stenosis and concomitant CH (adjusted HR: 1.60; 95% CI: 1.08-2.38; P = 0.020). CONCLUSIONS: CH status in combination with the extent of carotid atherosclerosis jointly predict long-term mortality. Determination of CH can provide additional prognostic information in patients with asymptomatic carotid atherosclerosis.


Subject(s)
Carotid Stenosis , Clonal Hematopoiesis , Janus Kinase 2 , Humans , Male , Female , Aged , Clonal Hematopoiesis/genetics , Carotid Stenosis/genetics , Carotid Stenosis/complications , Carotid Stenosis/diagnostic imaging , Middle Aged , DNA Methyltransferase 3A , Dioxygenases , Prospective Studies , DNA-Binding Proteins/genetics , Repressor Proteins/genetics , Proto-Oncogene Proteins/genetics , Prognosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/mortality , DNA (Cytosine-5-)-Methyltransferases/genetics
9.
Lung Cancer ; 192: 107827, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795459

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) harboring ROS1 rearrangements is a molecular subset that exhibits favorable responses to tyrosine kinase inhibitor (TKI) treatment than chemotherapy. This study investigated real-world treatment patterns and survival outcomes among patients with ROS1-rearranged advanced NSCLC. METHODS: We conducted a retrospective analysis of patients with ROS1-rearranged advanced NSCLC treated in four different hospitals in China from August 2018 to March 2022. The study analyzed gene fusion distribution, resistance patterns, and survival outcomes. RESULTS: ROS1 rearrangement occurs in 1.8 % (550/31,225) of our study cohort. CD74 was the most common ROS1 fusion partner, accounting for 45.8 %. Crizotinib was used in 73.9 % of patients in the first-line treatment, and an increased use of chemotherapy, ceritinib, and lorlatinib was seen in the second-line setting. Lung (43.2 %) and brain (27.6 %) were the most common sites of progression in first-line setting, while brain progression (39.2 %) was the most common site of progression in second-line. Median overall survival was 46 months (95 % confidence intervals: 39.6-52.4). First-line crizotinib use yielded significantly superior survival outcomes over chemotherapy in terms of progression-free (18.5 vs. 6.0; p < 0.001) and overall survival (49.8 vs. 37; p = 0.024). The choice of treatment in the latter line also had survival implications, wherein survival outcomes were better when first-line crizotinib was followed by sequential TKI therapy than first-line chemotherapy followed by TKI therapy. CONCLUSIONS: Our study provided insights into the real-world treatment, drug resistance patterns, and survival outcomes among patients with ROS1-rearranged NSCLC. This information serves as a valuable reference for guiding the treatment of this molecular subset of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Crizotinib , Gene Rearrangement , Lung Neoplasms , Protein-Tyrosine Kinases , Proto-Oncogene Proteins , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Retrospective Studies , Male , Proto-Oncogene Proteins/genetics , Female , Protein-Tyrosine Kinases/genetics , Middle Aged , Aged , Crizotinib/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Adult , Survival Rate , Prognosis , Drug Resistance, Neoplasm/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged, 80 and over , Pyrazoles/therapeutic use , China/epidemiology , Aminopyridines , Antigens, Differentiation, B-Lymphocyte , Histocompatibility Antigens Class II , Lactams
10.
Cell Death Dis ; 15(5): 375, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811536

ABSTRACT

ARID1A, a component of the SWI/SNF chromatin-remodeling complex, is frequently mutated in various cancer types and has emerged as a potential therapeutic target. In this study, we observed that ARID1A-deficient colorectal cancer (CRC) cells showed synthetic lethal effects with a p53 activator, RITA (reactivating p53 and inducing tumor apoptosis). RITA, an inhibitor of the p53-MDM2 interaction, exhibits increased sensitivity in ARID1A-deficient cells compared to ARID1A wild-type cells. Mechanistically, the observed synthetic lethality is dependent on both p53 activation and DNA damage accumulation, which are regulated by the interplay between ARID1A and RITA. ARID1A loss exhibits an opposing effect on p53 targets, leading to decreased p21 expression and increased levels of proapoptotic genes, PUMA and NOXA, which is further potentiated by RITA treatment, ultimately inducing cell apoptosis. Meanwhile, ARID1A loss aggravates RITA-induced DNA damage accumulation by downregulating Chk2 phosphorylation. Taken together, ARID1A loss significantly heightens sensitivity to RITA in CRC, revealing a novel synthetic lethal interaction between ARID1A and RITA. These findings present a promising therapeutic approach for colorectal cancer characterized by ARID1A loss-of-function mutations.


Subject(s)
Apoptosis , Colorectal Neoplasms , DNA-Binding Proteins , Transcription Factors , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/deficiency , Apoptosis/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Cell Line, Tumor , DNA Damage , Animals , Mice , HCT116 Cells , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Mice, Nude , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Furans , Proto-Oncogene Proteins
11.
J Transl Med ; 22(1): 477, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764038

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a malignant tumor with a poor prognosis. Traditional treatments have limited effectiveness. Regulation of the immune response represents a promising new approach for OSCC treatment. B cells are among the most abundant immune cells in OSCC. However, the role of B cells in OSCC treatment has not been fully elucidated. METHODS: Single-cell RNA sequencing analysis of 13 tissues and 8 adjacent normal tissues from OSCC patients was performed to explore differences in B-cell gene expression between OSCC tissues and normal tissues. We further investigated the relationship between differentially expressed genes and the immune response to OSCC. We utilized tissue microarray data for 146 OSCC clinical samples and RNA sequencing data of 359 OSCC samples from The Cancer Genome Atlas (TCGA) to investigate the role of T-cell leukemia 1 A (TCL1A) in OSCC prognosis. Multiplex immunohistochemistry (mIHC) was employed to investigate the spatial distribution of TCL1A in OSCC tissues. We then investigated the effect of TCL1A on B-cell proliferation and trogocytosis. Finally, lentiviral transduction was performed to induce TCL1A overexpression in B lymphoblastoid cell lines (BLCLs) to verify the function of TCL1A. RESULTS: Our findings revealed that TCL1A was predominantly expressed in B cells and was associated with a better prognosis in OSCC patients. Additionally, we found that TCL1A-expressing B cells are located at the periphery of lymphatic follicles and are associated with tertiary lymphoid structures (TLS) formation in OSCC. Mechanistically, upregulation of TCL1A promoted the trogocytosis of B cells on dendritic cells by mediating the upregulation of CR2, thereby improving antigen-presenting ability. Moreover, the upregulation of TCL1A expression promoted the proliferation of B cells. CONCLUSION: This study revealed the role of B-cell TCL1A expression in TLS formation and its effect on OSCC prognosis. These findings highlight TCL1A as a novel target for OSCC immunotherapy.


Subject(s)
B-Lymphocytes , Carcinoma, Squamous Cell , Gene Expression Regulation, Neoplastic , Mouth Neoplasms , Proto-Oncogene Proteins , Tertiary Lymphoid Structures , Humans , Prognosis , Mouth Neoplasms/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/immunology , Tertiary Lymphoid Structures/pathology , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Female , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Male , Middle Aged , Cell Line, Tumor , Cell Proliferation
12.
Proc Natl Acad Sci U S A ; 121(22): e2322524121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781216

ABSTRACT

Long noncoding RNAs (lncRNAs) account for the largest portion of RNA from the transcriptome, yet most of their functions remain unknown. Here, we performed two independent high-throughput CRISPRi screens to understand the role of lncRNAs in monocyte function and differentiation. The first was a reporter-based screen to identify lncRNAs that regulate TLR4-NFkB signaling in human monocytes and the second screen identified lncRNAs involved in monocyte to macrophage differentiation. We successfully identified numerous noncoding and protein-coding genes that can positively or negatively regulate inflammation and differentiation. To understand the functional roles of lncRNAs in both processes, we chose to further study the lncRNA LOUP [lncRNA originating from upstream regulatory element of SPI1 (also known as PU.1)], as it emerged as a top hit in both screens. Not only does LOUP regulate its neighboring gene, the myeloid fate-determining factor SPI1, thereby affecting monocyte to macrophage differentiation, but knockdown of LOUP leads to a broad upregulation of NFkB-targeted genes at baseline and upon TLR4-NFkB activation. LOUP also harbors three small open reading frames capable of being translated and are responsible for LOUP's ability to negatively regulate TLR4/NFkB signaling. This work emphasizes the value of high-throughput screening to rapidly identify functional lncRNAs in the innate immune system.


Subject(s)
Cell Differentiation , Inflammation , Macrophages , Monocytes , RNA, Long Noncoding , Signal Transduction , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Macrophages/metabolism , Macrophages/cytology , Cell Differentiation/genetics , Monocytes/metabolism , Monocytes/cytology , Inflammation/genetics , Inflammation/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , NF-kappa B/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , CRISPR-Cas Systems , Gene Expression Regulation
13.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38805014

ABSTRACT

Phenotypic plasticity is a rising cancer hallmark, and lung adeno-to-squamous transition (AST) triggered by LKB1 inactivation is significantly associated with drug resistance. Mechanistic insights into AST are urgently needed to identify therapeutic vulnerability in LKB1-deficient lung cancer. Here, we find that ten-eleven translocation (TET)-mediated DNA demethylation is elevated during AST in KrasLSL-G12D/+; Lkb1L/L (KL) mice, and knockout of individual Tet genes reveals that Tet2 is required for squamous transition. TET2 promotes neutrophil infiltration through STAT3-mediated CXCL5 expression. Targeting the STAT3-CXCL5 nexus effectively inhibits squamous transition through reducing neutrophil infiltration. Interestingly, tumor-infiltrating neutrophils are laden with triglycerides and can transfer the lipid to tumor cells to promote cell proliferation and squamous transition. Pharmacological inhibition of macropinocytosis dramatically inhibits neutrophil-to-cancer cell lipid transfer and blocks squamous transition. These data uncover an epigenetic mechanism orchestrating phenotypic plasticity through regulating immune microenvironment and metabolic communication, and identify therapeutic strategies to inhibit AST.


Subject(s)
Chemokine CXCL5 , DNA-Binding Proteins , Dioxygenases , Lung Neoplasms , Neutrophils , Proto-Oncogene Proteins , STAT3 Transcription Factor , Animals , Neutrophils/metabolism , STAT3 Transcription Factor/metabolism , Mice , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Chemokine CXCL5/metabolism , Chemokine CXCL5/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Humans , Dioxygenases/metabolism , Pinocytosis , Cell Line, Tumor , Neutrophil Infiltration , Mice, Knockout , Mice, Inbred C57BL , Lipid Metabolism
14.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38785133

ABSTRACT

The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in regulating mRNA translation in oocytes. However, the specifics of how and which protein kinase cascades modulate CPEB1 activity are still controversial. Using genetic and pharmacological tools, and detailed time courses, we have re-evaluated the relationship between CPEB1 phosphorylation and translation activation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on CPEB1 phosphorylation during prometaphase of meiosis I. Only inactivation of the CDK1/MAPK pathway disrupts translation, whereas inactivation of either pathway alone leads to CPEB1 stabilization. However, CPEB1 stabilization induced by inactivation of the AURKA/PLK1 pathway does not affect translation, indicating that destabilization and/or degradation is not linked to translational activation. The accumulation of endogenous CCNB1 protein closely recapitulates the translation data that use an exogenous template. These findings support the overarching hypothesis that the activation of translation during prometaphase in mouse oocytes relies on a CDK1/MAPK-dependent CPEB1 phosphorylation, and that translational activation precedes CPEB1 destabilization.


Subject(s)
Meiosis , Oocytes , Protein Biosynthesis , mRNA Cleavage and Polyadenylation Factors , Animals , Oocytes/metabolism , Oocytes/cytology , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Phosphorylation , Mice , Female , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Cyclin B1/metabolism , Cyclin B1/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Signal Transduction
15.
Front Immunol ; 15: 1394429, 2024.
Article in English | MEDLINE | ID: mdl-38799467

ABSTRACT

Background: The severity, symptoms, and outcome of COVID-19 is thought to be closely linked to how the virus enters host cells. This process involves the key roles of angiotensin-converting enzyme 2 (ACE2) and the Tyrosine protein kinase receptor UFO (AXL) receptors. However, there is limited research on the circulating levels of ACE2 and AXL and their implications in COVID-19. Methods: A control group of 71 uninfected individuals was also included in the study. According to the Guidance for Corona Virus Disease 2019 (10th edition), a cohort of 358 COVID-19 patients were categorized into non-severe and severe cases. Serum ACE2/AXL levels in COVID-19 patients were detected by enzyme-linked immunosorbent assay (ELISA) at different time points post-COVID-19 infection, including days 0-7, 8-15, 31-179 and >180 days. Serum SARS-CoV-2 IgG/IgM antibodies in COVID-19 patients at the same intervals were assessed by using an iFlash 3000 Chemiluminescence Immunoassay Analyzer. The receiver operating characteristic (ROC) curves were used to assess the diagnostic value of the biological markers, and the association between laboratory parameters and illness progression were explored. Results: Compared with the uninfected group, the levels of ACE2 and AXL in the COVID-19 group were decreased, and the SARS-COV-2 IgG level was increased. AXL (AUC = 0.774) demonstrated a stronger predictive ability for COVID-19 than ACE2. In the first week after infection, only the level of AXL was statistically different between severe group and non-severe group. After first week, the levels of ACE2 and AXL were different in two groups. Moreover, in severe COVID-19 cases, the serum ACE2, AXL, and SARS-COV-2 IgM levels reached a peak during days 8-15 before declining, whereas serum SARS-COV-2 IgG levels continued to rise, reaching a peak at day 31-180 days before decreasing. In addition, the AXL level continued to decrease and the SARS-COV-2 IgG level continued to increase in the infected group after 180 days compared to the uninfected group. Conclusions: The levels of serum ACE2 and AXL correlate with COVID-19 severity. However, AXL can also provide early warning of clinical deterioration in the first week after infection. AXL appears to be a superior potential molecular marker for predicting COVID-19 progression.


Subject(s)
Angiotensin-Converting Enzyme 2 , Axl Receptor Tyrosine Kinase , Biomarkers , COVID-19 , Disease Progression , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , SARS-CoV-2 , Humans , COVID-19/blood , COVID-19/immunology , COVID-19/diagnosis , Receptor Protein-Tyrosine Kinases/blood , Receptor Protein-Tyrosine Kinases/immunology , Male , Proto-Oncogene Proteins/blood , Female , Angiotensin-Converting Enzyme 2/blood , Biomarkers/blood , Middle Aged , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/blood , Immunoglobulin G/blood , Severity of Illness Index , Immunoglobulin M/blood , ROC Curve
16.
Sci Rep ; 14(1): 12480, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816489

ABSTRACT

Companion diagnostic (CDx) tests play important roles in identifying oncogenic driver genes and tailoring effective molecularly targeted therapies for lung cancer patients. In Japan, the Oncomine Dx target test (ODxTT) and the AmoyDx pan lung cancer PCR panel (AmoyDx) are prominent CDx tests and only one of these tests is covered by the domestic insurance system. However, these CDx tests cover different target regions and apply different technologies (ODxTT is amplicon-based next-generation sequencing and AmoyDx is multiplex PCR-based assay), which may lead to missing of actionable mutations affecting patient prognosis. Here, we performed a direct comparison analysis of 1059 genetic alterations of eight driver genes from 131 samples and evaluated the concordance between two CDx tests for detecting actionable variants and fusions. When excluding the eight uncovered variants (ODxTT: two variants, AmoyDx: six variants), the overall percent agreement was 97.6% (1026/1051) with 89.0% of overall positive percent agreement (89/100) and 98.5% of overall negative percent agreement (937/951). Of the 25 discordant genetic alterations, two were undetected despite being covered in the AmoyDx (one EGFR variant and one ROS1 fusion). Furthermore, there were potential false positives in the ODxTT (nine MET exon 14 skippings) and in the AmoyDx (five variants, six ROS1 and three RET fusions). These potential false positives in the AmoyDx likely due to non-specific amplification, which was validated by the unique molecular barcoding sequencing. The ODxTT missed two uncovered EGFR rare variants, which was visually confirmed in the raw sequencing data. Our study provides insights into real-world performance of CDx tests for lung cancer and ensures reliability to advance precision medicine.


Subject(s)
High-Throughput Nucleotide Sequencing , Lung Neoplasms , Mutation , Humans , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , High-Throughput Nucleotide Sequencing/methods , Female , Male , ErbB Receptors/genetics , Middle Aged , Proto-Oncogene Proteins c-ret/genetics , Biomarkers, Tumor/genetics , Aged , Proto-Oncogene Proteins c-met/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Multiplex Polymerase Chain Reaction/methods
17.
Biomed Pharmacother ; 175: 116719, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749173

ABSTRACT

INTRODUCTION: Head and neck squamous cell carcinoma (HNSCC) is a common cancer with a five-year survival rate around 60%, indicating a need for new treatments. BH3 mimetics are small molecules that inhibit anti-apoptotic Bcl-2 family proteins, resulting in apoptosis induction. METHODS: We performed a high-throughput screen using a Myogel matrix to identify the synergy between irradiation and the novel BH3 mimetics A-1155463, A-1331852, and navitoclax in 12 HNSCC cell lines, normal (NOF) and cancer-associated fibroblasts (CAF), and dysplastic keratinocytes (ODA). Next, we examined synergy in an apoptosis assay, followed by a clonogenic assay and a Myogel spheroid on selected HNSCC cell lines. Finally, we applied zebrafish larvae xenograft to validate the effects of navitoclax and A-1331852. RESULTS: All three BH3 mimetics exhibited a strong synergy with irradiation in eight HNSCC cell lines and ODAs, but not in NOFs and CAFs. A-1155463 and A-1331852 induced apoptosis and reduced proliferation, and together with irradiation, significantly increased apoptosis and arrested proliferation. A-1331852 and navitoclax significantly decreased the clonogenicity compared with the control, and combination treatment led to a decreased clonogenicity compared with monotherapy or irradiation. However, unlike navitoclax or A-1155463, only A-1331852 significantly reduced cancer cell invasion. Furthermore, in spheroid and zebrafish, irradiation appeared ineffective and failed to significantly increase the drug effect. In the zebrafish, A-1331852 and navitoclax significantly reduced the tumor area and metastasis. CONCLUSIONS: Our findings encourage the further preclinical investigation of BH3 mimetics, particularly A-1331852, as a single agent or combined with irradiation as a treatment for HNSCC.


Subject(s)
Apoptosis , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Zebrafish , Humans , Animals , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Cell Line, Tumor , Apoptosis/drug effects , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , Xenograft Model Antitumor Assays , Aniline Compounds/pharmacology , Sulfonamides/pharmacology , Cell Proliferation/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/radiotherapy , Antineoplastic Agents/pharmacology , Combined Modality Therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Peptide Fragments , Proto-Oncogene Proteins
18.
Lung Cancer ; 192: 107816, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749072

ABSTRACT

BACKGROUND: Crizotinib was approved to treat patients with advanced non-small cell lung cancer (aNSCLC) with ROS proto-oncogene 1 (ROS1) gene fusion in 2016. We conducted a systematic literature review to identify real-world evidence (RWE) studies and estimated the efficacy and safety of crizotinib using meta-analyses (MA) for objective response rate (ORR), real-world progression-free survival (PFS), and overall survival (OS). METHODS: We searched MEDLINE®, Embase, and Cochrane CENTRAL from January 2016 to March 2023 using Ovid® for published single-arm or comparative RWE studies evaluating patients (N ≥ 20) receiving crizotinib monotherapy for aNSCLC with ROS1 gene fusion. Pooled estimates for ORR and grade 3/4 adverse events (AEs) were derived using the metafor package in R while pooled estimates for median real-world PFS (rwPFS) and OS were derived using reconstructed individual patient data from published Kaplan-Meier curves. The primary analysis included all studies regardless of crizotinib line of therapy; a subgroup analysis (SA) was conducted using studies evaluating patients receiving first-line crizotinib. RESULTS: Fourteen studies met the eligibility criteria and were considered feasible for MA. For the primary analysis, the pooled ORR (N = 9 studies) was 70.6 % (95 % confidence interval [CI]: 57.0, 81.3), median rwPFS was 14.5 months (N = 11 studies), and OS was 40.2 months (N = 9 studies). In the SA, the pooled ORR (N = 4 studies) was 81.1 % (95 % CI: 76.1, 85.2) and the median rwPFS (N = 4 studies) and OS (N = 2 studies) were 18.1 and 60 months, respectively. All MAs were associated with significant heterogeneity (I2 > 25 %). Grade 3/4 AEs occurred in 18.7 % of patients (pooled estimate). CONCLUSION: The results from this study are consistent with clinical trial data and, taken collectively, supports crizotinib as a safe and effective treatment across different lines of therapy in patients with ROS1 aNSCLC in the real-world setting.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Crizotinib , Lung Neoplasms , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Proto-Oncogene Mas , Proto-Oncogene Proteins , Crizotinib/therapeutic use , Crizotinib/adverse effects , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Proto-Oncogene Proteins/genetics , Protein-Tyrosine Kinases/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Oncogene Proteins, Fusion/genetics , Treatment Outcome , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects , Gene Fusion
19.
Nat Commun ; 15(1): 4325, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773071

ABSTRACT

Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.


Subject(s)
DNA-Binding Proteins , Dioxygenases , Epigenesis, Genetic , Hematopoietic Stem Cells , Mutation , Proto-Oncogene Proteins , Dioxygenases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Humans , Hematopoiesis/genetics , Mice , Cell Differentiation/genetics
20.
Int J Biol Sci ; 20(7): 2403-2421, 2024.
Article in English | MEDLINE | ID: mdl-38725848

ABSTRACT

Ciliogenesis-associated kinase 1 (CILK1) plays a key role in the ciliogenesis and ciliopathies. It remains totally unclear whether CILK1 is involved in tumor progression and therapy resistance. Here, we report that the aberrant high-expression of CILK1 in breast cancer is required for tumor cell proliferation and chemoresistance. Two compounds, CILK1-C30 and CILK1-C28, were identified with selective inhibitory effects towards the Tyr-159/Thr-157 dual-phosphorylation of CILK1, pharmacological inhibition of CILK1 significantly suppressed tumor cell proliferation and overcame chemoresistance in multiple experimental models. Large-scale screen of CILK1 substrates confirmed that the kinase directly phosphorylates ERK1, which is responsible for CILK1-mediated oncogenic function. CILK1 is also indicated to be responsible for the chemoresistance of small-cell lung cancer cells. Our data highlight the importance of CILK1 in cancer, implicating that targeting CILK1/ERK1 might offer therapeutic benefit to cancer patients.


Subject(s)
Breast Neoplasms , Cell Proliferation , Drug Resistance, Neoplasm , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Female , Phosphorylation , Cell Line, Tumor , Mitogen-Activated Protein Kinase 3/metabolism , Animals , Proto-Oncogene Proteins , MAP Kinase Kinase Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...