Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1859(2): 269-79, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26603102

ABSTRACT

BACKGROUND: Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of free cholesterol in lysosomes. There are currently no effective FDA-approved treatments for NPC, although in the last years the inhibition of histone deacetylases (HDACs) has emerged as a potential treatment for this disease. However, the molecular mechanisms that deregulate HDAC activity in NPC disease are unknown. Previously our group had shown that the proapoptotic tyrosine kinase c-Abl signaling is activated in NPC neurons. Here, we demonstrate that c-Abl activity increases HDAC2 levels inducing neuronal gene repression of key synaptic genes in NPC models. RESULTS: Our data show that: i) HDAC2 levels and activity are increased in NPC neuronal models and in Npc1(-/-) mice; ii) inhibition of c-Abl or c-Abl deficiency prevents the increase of HDAC2 protein levels and activity in NPC neuronal models; iii) c-Abl inhibition decreases the levels of HDAC2 tyrosine phosphorylation; iv) treatment with methyl-ß-cyclodextrin and vitamin E decreases the activation of the c-Abl/HDAC2 pathway in NPC neurons; v) in vivo treatment with two c-Abl inhibitors prevents the increase of HDAC2 protein levels in the brain of Npc1(-/-) mice; and vi) c-Abl inhibition prevents HDAC2 recruitment to the promoter of neuronal genes, triggering an increase in their expression. CONCLUSION: Our data show the involvement of the c-Abl/HDAC2 signaling pathway in the regulation of neuronal gene expression in NPC neuronal models. Thus, inhibition of c-Abl could be a pharmacological target for preventing the deleterious effects of increased HDAC2 levels in NPC disease.


Subject(s)
Histone Deacetylase 2/genetics , Neurons/metabolism , Niemann-Pick Disease, Type C/genetics , Proto-Oncogene Proteins c-abl/genetics , Animals , Cholesterol/genetics , Cholesterol/metabolism , Cyclodextrins/administration & dosage , Disease Models, Animal , Gene Expression Regulation/drug effects , Histone Deacetylase 2/biosynthesis , Humans , Lysosomes/metabolism , Mice , Neurons/pathology , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/pathology , Proto-Oncogene Proteins c-abl/biosynthesis , Signal Transduction/drug effects , Vitamin E/administration & dosage
2.
Oncol Rep ; 31(1): 422-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24190424

ABSTRACT

Early growth response-1 (Egr-1) and the non-receptor protein tyrosine kinase (c-Abl) are 2 response genes that can act as regulators of cell growth and apoptosis in response to stress. Both Egr-1 and c-Abl regulate cell proliferation and survival in different types of cancer cells. To study the effect of overexpression of EGR-1 on the activity of c-Abl in prostate cancer cells, human PC-3 and LNCaP cells were transfected with a control vector or a vector containing the murine Egr-1 cDNA and assessed for the expression of the c-Abl gene. Cells overexpressing Egr-1 were studied with respect to apoptosis (Annexin V)/DEVDase activity, Egr-1/c-Abl activation (western blotting) and cell proliferation (MTT assay). The cells were exposed to tumor necrosis factor α (TNF-α), a known inductor of Egr-1, to c-Abl inhibitor STI-571 and to small interfering RNA (siRNA)-Egr-1, respectively. The results from our studies strongly suggest that overexpression of Egr-1 decreased c-Abl activity independent of endogenous Egr-1 inhibition by siRNA-Egr-1.


Subject(s)
Early Growth Response Protein 1/genetics , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-abl/genetics , Apoptosis/genetics , Benzamides/pharmacology , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Early Growth Response Protein 1/biosynthesis , Humans , Imatinib Mesylate , Male , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Proto-Oncogene Proteins c-abl/biosynthesis , Pyrimidines/pharmacology , RNA Interference , RNA, Small Interfering , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL