Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Clin Transl Oncol ; 24(2): 363-370, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34460057

ABSTRACT

BACKGROUND: Gliomas is a major challenge of current medical system, and thousands of people are struggling in the pain of this disease worldwide. In the last decade, the functions of miRNAs have been revealed by many studies, and the intervention on miRNA dysfunctions has been thought as a promising way to counter cancer. MiR-493-5p has been identified as a tumor inhibitor to suppress the progressions of several tumors while its role in gliomas remains unknown. Hence, the study investigated the expression levels of miR-493-5p in glioma tissues and cell lines. METHODS: CCK-8 assay, transwell assay and flow cytometry assay were used to observe the effects of miR-493-5p on tumor cells. The downstream targets of miR-493-5p were also searched and verified with online databases and dual-luciferase reporter assay. Moreover, the activities of P53 and PI3K/AKT pathways were also explored by western blot to illustrate the regulation mechanism of miR-493-5p on glioma development. RESULTS: The results showed that miR-493-5p was significantly downregulated in pathological tissues and glioma cell lines, and the increased miR-493-5p effectively inhibited the malignant behavior and promoted the apoptosis of glioma cells. CONCLUSIONS: E2F3 was confirmed as a target of miR-493-5p, and the effects of miR-493-5p on the phenotype of glioma cells could be partly reversed by E2F3. Besides, it was also found that miR-493-5p could effectively suppress the expression of E2F3 and then improve the dysfunctions of the P53 and PI3K/AKT pathways.


Subject(s)
Brain Neoplasms/etiology , E2F3 Transcription Factor/physiology , Glioma/etiology , MicroRNAs/physiology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Tumor Suppressor Protein p53/physiology , Cell Line, Tumor , Humans , Signal Transduction
2.
Clin Transl Oncol ; 24(2): 266-275, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34318428

ABSTRACT

PURPOSE: Increasing evidences suggest dysfunctions of microRNAs (miRNAs) are playing important part in tumors. Therefore, the role of miR-802 in osteosarcoma (OS) was exploited. The object was to evaluate the effect of miR-802 and verify its influence on p27 Kip1 (p27) in OS. METHODS: RT-qPCR experiment was used to detect miR-802 and p27 expression in OS tissues and cells. We explored the function of miR-802 through Transwell assays. The phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase pathway and epithelial-mesenchymal transition (EMT) was detected by Western blot assays. Luciferase assay was used to testify the target of miR-802. RESULTS: MiR-802 expression was elevated in OS, which was related to poor clinical outcome in OS patients. MiR-802 overexpression promoted OS migration, invasion and EMT. Further, p27 is a direct target of miR-802. P27 elevation counteracted the promotion effect of OS on EMT, migration and invasion induced by miR-802. In addition, miR-802 overexpression inactivated PI3K/AKT pathway via targeting p27 in OS. CONCLUSION: MiR-802 promoted the progress of EMT, migration and invasion in OS via targeting p27. This newly identified miR-802/p27/PI3K/AKT axis may represent potential targets for OS.


Subject(s)
Bone Neoplasms/etiology , Cyclin-Dependent Kinase Inhibitor p27/physiology , MicroRNAs/physiology , Osteosarcoma/etiology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Adolescent , Bone Neoplasms/pathology , Disease Progression , Female , Humans , Male , Osteosarcoma/pathology , Young Adult
3.
Shock ; 56(5): 782-792, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33555842

ABSTRACT

ABSTRACT: Sepsis is an amplified systemic immune-inflammatory response produced by a microorganism, which involves activation of inflammatory cytokine signaling pathways and oxidative stress. A variety of studies have shown that hydralazine (HDZ) has potent antioxidant and anti-inflammatory proprieties. Therefore, we hypothesize that HDZ can improve the clinical outcome of sepsis. Thus, this work aimed to evaluate therapeutic value of HDZ in reducing inflammatory response, oxidative stress, and mortality in animal sepsis, and to investigate its possible mechanism of action. Sepsis was induced by the cecal ligation and puncture (CLP) method in Wistar rats. After surgery, the animals were randomly divided into three groups: sham, sepsis, and sepsis + HDZ (1 mg/kg, s.c.). All groups were monitored for 48 h to assess survival rate, and clinical, hemodynamic, biochemical, and cellular parameters. After euthanasia, blood, spleen, liver, and kidneys were collected for analysis. Blood serum cytokines, tissue myeloperoxidase (MPO) activity, and oxidative stress parameters were assessed. Involvement of the PI3K/Akt pathway was also investigated. Sepsis was successfully induced by the CLP technique. HDZ treatment increased the survival rate (from 50% to 90%), improved glycemia control, reduced the clinical severity sepsis and mean arterial pressure; and prevented increased MPO activity, TNF-α, IL-1ß, IL-10 levels, and oxidative damage markers. Additionally, HDZ significantly prevented the increase of Akt activation in the liver and kidney. HDZ largely mitigated the effects of sepsis by suppressing inflammatory and antioxidant responses via the PI3K/Akt pathway. These findings provide evidence that HDZ can be a new therapeutic alternative for treating sepsis.


Subject(s)
Hydralazine/pharmacology , Hydralazine/therapeutic use , Inflammation/drug therapy , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Sepsis/drug therapy , Sepsis/mortality , Animals , Rats , Rats, Wistar , Signal Transduction
4.
Clin Transl Oncol ; 23(7): 1334-1341, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33515421

ABSTRACT

PURPOSE: Endometrial cancer is the most common malignant tumor of female genital system worldwide. Homeobox A11 (HOXA11) is an evolutionarily conserved Homeobox gene closely implicated in carcinogenesis. However, the mechanisms of HOXA11 in the progression and cisplatin resistance of endometrial cancer remain unclear. METHODS: The expression of HOXA11 was analyzed based on 548 endometrial cancer and 35 control tissues from The Cancer Genome Atlas (TCGA) database. Transwell assay was performed to investigate the effect of HOXA11 on endometrial cell migration and invasion. TUNEL staining was carried out to assay the role of HOXA11 in endometrial cell apoptosis. Western blot was employed to detect the protein levels of B cell lymphoma-2 (Bcl-2), Bcl-2 associated X (Bax), cleaved caspase-3, matrix metalloproteinase-2/9 (MMP/9), phosphatase and tensin homolog (PTEN), protein kinase B (AKT) and p-AKT. RESULTS: TCGA data showed that HOXA11 expression was significantly down-regulated in endometrial cancer tissue samples. The overexpression of HOXA11 promoted the apoptosis, but inhibited the proliferation, migration and invasion of endometrial cancer cells. HOXA11 knockdown with small interfering RNA (siRNA) considerably repressed cell apoptosis, while promoted cell proliferation, migration, and invasion through PTEN/AKT signaling pathway. Interestingly, HOXA11 was lowly expressed in Ishikawa cells treated with cisplatin. In addition, HOXA11 knockdown increased the resistance of endometrial cancer to cisplatin through activating PTEN/AKT signaling pathway. CONCLUSION: Low HOXA11 expression may promote the proliferation, migration, invasion of endometrial cancer cells, and increase their resistance to cisplatin through activating PTEN/AKT pathway.


Subject(s)
Antineoplastic Agents/therapeutic use , Cisplatin/therapeutic use , Down-Regulation , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/pathology , Homeodomain Proteins/physiology , PTEN Phosphohydrolase/physiology , Proto-Oncogene Proteins c-akt/physiology , Signal Transduction , Drug Resistance, Neoplasm , Female , Humans , Tumor Cells, Cultured
5.
Clin Transl Oncol ; 22(10): 1762-1777, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32239427

ABSTRACT

PURPOSE: Long non-coding RNAs (lncRNAs) have participated in progression of colorectal cancer. This study aims to study the role of RUNX1/RNCR3/miR-1301-3p/AKT1 axis in colorectal cancer. METHODS: The cancer tissues were from patients with colorectal cancer. The qRT-PCR was used to determine expression of lncRNA RNCR3, miR-1301-3p, and AKT1. Both dual-luciferase reporter assay and ChIP assay were conducted to investigate the binding sites of RUNX1 on RNCR3 promoter. Western blot was performed to analyze expression of AKT1 protein. Both dual-luciferase reporter assay and RIP assay were performed to detect the interacting sites between RNCR3 and miR-1301-3p. The CCK-8 assay, soft agar assay, transwell assay, and annexin-V-FITC/PI staining were applied to analyze the cell growth, invasion, and apoptosis, respectively. RESULTS: The data demonstrated that RNCR3 was elevated in colorectal cancer, and it was negatively correlated with expression of miR-1301-3p which was decreased in cancers. Then, RNCR3 could interact with and suppress miR-1301-3p expression in HCT116 and SW480. Knockdown of RNCR3 or miR-1301-3p overexpression significantly inhibited cell growth, invasion, and increased apoptosis through suppressing expression of Cyclin A1, PCNA, N-cadherin, Bcl-2, and promoting expression of E-cadherin, Bax in vitro and in vivo. RUNX1 was directly bound to RNCR3 promoter to activate RNCR3 expression. Furthermore, overexpression of RNCR3 blocked tumor inhibitory effects of miR-1301-3p on proliferation, colony formation, invasion, and apoptosis in vitro and in vivo. Additionally, RNCR3 and miR-1301-3p synergistically modulated AKT1 expression. CONCLUSION: RUNX1-activated upregulation of RNCR3 promoted colorectal cancer progression by sponging miR-1301-3p to elevate AKT1 levels in vitro and in vivo.


Subject(s)
Apoptosis , Colorectal Neoplasms/pathology , Core Binding Factor Alpha 2 Subunit/physiology , MicroRNAs/physiology , Proto-Oncogene Proteins c-akt/physiology , RNA, Long Noncoding/physiology , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Female , Humans , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , Up-Regulation
6.
Clin Transl Oncol ; 22(10): 1838-1848, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32130676

ABSTRACT

PURPOSE: To investigate the role of PRDX2 in esophageal carcinoma (ESCA). METHODS: The expression of PRDX2 was detected in ESCA tissues. And PRDX2 expression in two ESCA cell lines was knocked down. Cell proliferation, metastasis and invasion were detected in these cells. RESULTS: Here, we found that PRDX2 expression was significantly increased in ESCA tissues and was associated with a poor prognosis in ESCA patients. In addition, PRDX2 expression was significantly associated with pathological grading, infiltration degree and 5-year survival time in ESCA patients. Next, we knocked down PRDX2 expression by PRDX2-shRNA transfection in two ESCA cell lines, Eca-109 and TE-1. Proliferation analysis indicated that in vitro PRDX2 knockdown decreased growth and clone formation of ESCA cells. Scratch and transwell assays indicated that cell migration and invasion were significantly inhibited by PRDX2 knockdown. In addition, PRDX2 knockdown inhibited cell cycle of ESCA cells and down-regulated Cyclin D1-CDK4/6. Moreover, PRDX2 knockdown regulated proteins involved in mitochondrial-dependent apoptosis, including increased Bax and Caspase9/3 and decreased Bcl2. Mechanism investigation indicated that PRDX2 knockdown led to inactivation of Wnt/ß-catenin and AKT pathways. CONCLUSIONS: Our data suggest that PRDX2 may function as an oncogene in the development of ESCA via regulating Wnt/ß-catenin and AKT pathways. Our study fills a gap in the understanding of the role of PRDX2 in ESCA and provides a potential target for ESCA treatment.


Subject(s)
Esophageal Neoplasms/etiology , Esophageal Squamous Cell Carcinoma/etiology , Peroxiredoxins/physiology , Proto-Oncogene Proteins c-akt/physiology , Wnt Signaling Pathway/physiology , Apoptosis , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Movement , Cell Proliferation , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Humans , Peroxiredoxins/analysis
7.
Clin Transl Oncol ; 22(4): 563-575, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31203574

ABSTRACT

PURPOSE: Type 3 innate lymphocytes (ILC3s) are reported to be involved in lung cancer, possibly by producing interleukin-22 (IL-22). However, whether ILC3s and their secreted IL-22 molecules contribute to the pathogenesis of pancreatic cancer (PC) remains unclear. To this end, in this study, we investigated the effects and possible mechanisms of ILC3s on PC pathogenesis. METHOD: The IL-22 and IL-2i2R levels and the ILC3s' frequency in cancer tissues from PC patients and in peripheral blood from PC patients and healthy controls were analyzed by flow cytometry, immunochemistry, or immunofluorescence. The effects of IL-22-induced AKT signaling on the proliferation, invasion, and migration of PC cells were examined by co-culturing PC cell lines with ILC3s isolated from PC tissues, with or without the addition of neutralizing IL-22 antibody, IL-22R antibody or AKT inhibitor. RESULTS: Our results showed that IL-22 and ILC3s were significantly upregulated in the PBMCs and cancer tissues of PC patients, and the IL-22R level was increased in PC cells. The increased frequency of ILC3s was positively correlated with the clinical features of PC patients. Co-culture experiments indicated that ILC3s promoted the proliferation, invasion, and migration of PC cell lines by secreting IL-22 to activate AKT signaling because IL-22/IL-22R or AKT blockage markedly counteracted such effects on PC cells. CONCLUSION: Our data demonstrated that ILC3s may promote PC pathogenesis through IL-22/IL-22R-AKT signaling, suggesting a potential intervention target for PC treatment in the future.


Subject(s)
Immunity, Innate/immunology , Interleukins/physiology , Lymphocytes/physiology , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/physiology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Humans , Male , Middle Aged , Neoplasm Invasiveness , Receptors, Interleukin/physiology , Signal Transduction/physiology , Interleukin-22
8.
Acta Cir Bras ; 34(1): e20190010000005, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30785506

ABSTRACT

PURPOSE: To investigate the role of PI3k/Akt signal pathway in the protective effects of propofol on intestinal and lung injury induced by intestinal ischemia/reperfusion(I/R). METHODS: Male Sprague-Dawley rats were subjected to 45 min of ischemia by occluding the superior mesenteric artery and to 2h of reperfusion to establish the model of I/R. Twenty four rats were randomly divided into four groups: Sham, intestinal I/R (II/R), propofol (P), wortmannin (W). In groups P, W, propofol was injected intravenously and continuously at the onset of reperfusion via infusion pump. PI3K inhibitor (wortmannin) was administered intravenously in group W 25 min before ischemia. Intestinal tissues and lung tissues were obtained for determination of histologic injury, wet/dry weight ratio, malondialdehyde (MDA) levels, superoxide dismutase (SOD) and myeloperoxidase (MPO) activities. Meanwhile, the expressions of caspase-3 and phosphorylated Akt (p-Akt) in intestines and lungs were detected by western blot. RESULTS: Propofol treatment alleviated intestinal and lung morphological changes which were observed in II/R group,Moreover, wet/dry weight ratio, the MDA level, MPO activity and expression of caspase-3 were significantly decreased whereas the SOD activity and p-Akt expression were significantly increased. Notably, the protections were significantly reversed by pretreatment of wortmannin. CONCLUSION: PI3K/Akt pathway activation play a critical role in the protective effects of propofol on intestinal and lung injury induced by ischemia/reperfusion.


Subject(s)
Anesthetics, Intravenous/pharmacology , Lung Injury/prevention & control , Mesenteric Ischemia/drug therapy , Phosphatidylinositol 3-Kinases/physiology , Propofol/pharmacology , Proto-Oncogene Proteins c-akt/physiology , Reperfusion Injury/drug therapy , Animals , Disease Models, Animal , Male , Mesenteric Ischemia/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Signal Transduction/physiology
9.
Biol Res ; 52(1): 8, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30808417

ABSTRACT

BACKGROUND: Cervical cancer (CC) ranks third in the morbidity and mortality of female cancer around the world. Derlin1 has been found to be overexpressed in several human cancers. However, it is still unclear about its roles in CC. The research aims to explore the relationship between Derlin1 and CC. METHODS: We purchased a human CC tissues microarray, which contained CC tissues and corresponding para-cancerous tissues from 93 patients with primary cervical squamous cell carcinoma. Immunohistochemical staining was used to confirm the expression of Derlin1 in these tissues. And we detected the differential expression of Derlin1 in cervical cancer cell lines and normal cervical epithelial cells (H8). Further, the cervical cancer cell lines SiHa and C33A were used as an in vitro model, which was down-regulated the expression of Derlin1 using siRNA interference technology. The effects of Derlin1 down-regulating in CC cell lines on cell proliferation and migration were detected by CCK8 assay and transwell assay, respectively. The effect of Derlin1 down-regulating on apoptosis was analyzed by flow cytometry, and apoptosis-related proteins were detected using western blotting. In-depth mechanisms were studied using western blotting. In addition, the effects of Derlin1 up-regulating in normal cervical epithelial cells also were exposed. RESULTS: Derlin1 was significantly elevated in CC tissues (81.7%, 76/93), and the expression of Derlin1 was positively correlated with the tumor size, pathological grade, and lymph node metastasis in CC patients. And Derlin1 was high expressed in cervical cancer cell lines compared to H8 cells. Knockdown of Derlin1 in cervical cancer cell lines inhibited cell proliferation and migration. Moreover, knockdown of Derlin1 induced apoptosis and affected the expression of apoptosis-related proteins, including Bcl-2, Bax, Bim, caspase3 and caspase9. Further experiments showed that AKT/mTOR signal pathway might be involve in this processes that knockdown of Derlin1 inhibited the expression of p-AKT and p-mTOR. Over-expression of Derlin1 in H8 cells promoted cell proliferation and migration via up-regulated the expression of p-AKT and p-mTOR. CONCLUSION: Derlin1 is an oncogene in CC via AKT/mTOR pathway. It might be a potential therapeutic target for CC.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Membrane Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism , Uterine Cervical Neoplasms/metabolism , Apoptosis , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation , Female , Humans , Immunohistochemistry , Protein Array Analysis , Proto-Oncogene Proteins c-akt/physiology , Uterine Cervical Neoplasms/pathology
10.
Acta cir. bras ; Acta cir. bras;34(1): e20190010000005, 2019. graf
Article in English | LILACS | ID: biblio-983682

ABSTRACT

Abstract Purpose: To investigate the role of PI3k/Akt signal pathway in the protective effects of propofol on intestinal and lung injury induced by intestinal ischemia/reperfusion(I/R). Methods: Male Sprague-Dawley rats were subjected to 45 min of ischemia by occluding the superior mesenteric artery and to 2h of reperfusion to establish the model of I/R. Twenty four rats were randomly divided into four groups: Sham, intestinal I/R (II/R), propofol (P), wortmannin (W). In groups P, W, propofol was injected intravenously and continuously at the onset of reperfusion via infusion pump. PI3K inhibitor (wortmannin) was administered intravenously in group W 25 min before ischemia. Intestinal tissues and lung tissues were obtained for determination of histologic injury, wet/dry weight ratio, malondialdehyde (MDA) levels, superoxide dismutase (SOD) and myeloperoxidase (MPO) activities. Meanwhile, the expressions of caspase-3 and phosphorylated Akt (p-Akt) in intestines and lungs were detected by western blot. Results: Propofol treatment alleviated intestinal and lung morphological changes which were observed in II/R group,Moreover, wet/dry weight ratio, the MDA level, MPO activity and expression of caspase-3 were significantly decreased whereas the SOD activity and p-Akt expression were significantly increased. Notably, the protections were significantly reversed by pretreatment of wortmannin. Conclusion: PI3K/Akt pathway activation play a critical role in the protective effects of propofol on intestinal and lung injury induced by ischemia/reperfusion.


Subject(s)
Animals , Male , Rats , Reperfusion Injury/drug therapy , Propofol/pharmacology , Anesthetics, Intravenous/pharmacology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Lung Injury/prevention & control , Mesenteric Ischemia/drug therapy , Reperfusion Injury/metabolism , Signal Transduction/physiology , Rats, Sprague-Dawley , Disease Models, Animal , Mesenteric Ischemia/metabolism
11.
Biol. Res ; 52: 8, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011404

ABSTRACT

BACKGROUND: Cervical cancer (CC) ranks third in the morbidity and mortality of female cancer around the world. Derlin1 has been found to be overexpressed in several human cancers. However, it is still unclear about its roles in CC. The research aims to explore the relationship between Derlin1 and CC. METHODS: We purchased a human CC tissues microarray, which contained CC tissues and corresponding para-cancerous tissues from 93 patients with primary cervical squamous cell carcinoma. Immunohistochemical staining was used to confirm the expression of Derlin1 in these tissues. And we detected the differential expression of Derlin1 in cervical cancer cell lines and normal cervical epithelial cells (H8). Further, the cervical cancer cell lines SiHa and C33A were used as an in vitro model, which was down-regulated the expression of Derlin1 using siRNA interference technology. The effects of Derlin1 down-regulating in CC cell lines on cell proliferation and migration were detected by CCK8 assay and transwell assay, respectively. The effect of Derlin1 down-regulating on apoptosis was analyzed by flow cytometry, and apoptosis-related proteins were detected using western blotting. In-depth mechanisms were studied using western blotting. In addition, the effects of Derlin1 up-regulating in normal cervical epithelial cells also were exposed. RESULTS: Derlin1 was significantly elevated in CC tissues (81.7%, 76/93), and the expression of Derlin 1 was positively correlated with the tumor size, pathological grade, and lymph node metastasis in CC patients. And Derlin 1 was high expressed in cervical cancer cell lines compared to H8 cells. Knockdown of Derlin 1 in cervical cancer cell lines inhibited cell proliferation and migration. Moreover, knockdown of Derlin 1 induced apoptosis and affected the expression of apoptosis-related proteins, including Bcl-2, Bax, Bim, caspase3 and caspase9. Further experiments showed that AKT/mTOR signal pathway might be involve in this processes that knockdown of Derlin 1 inhibited the expression of p-AKT and p-mTOR. Over-expression of Derlin 1 in H8 cells promoted cell proliferation and migration via up-regulated the expression of p-AKT and p-mTOR. CONCLUSION: Derlin 1 is an oncogene in CC via AKT/mTOR pathway. It might be a potential therapeutic target for CC.


Subject(s)
Humans , Female , Carcinoma, Squamous Cell/metabolism , Signal Transduction/physiology , Uterine Cervical Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Membrane Proteins/metabolism , Immunohistochemistry , Carcinoma, Squamous Cell/pathology , Uterine Cervical Neoplasms/pathology , Apoptosis , Protein Array Analysis , Cell Line, Tumor , Cell Proliferation , Proto-Oncogene Proteins c-akt/physiology
12.
Cir Cir ; 84(5): 434-43, 2016.
Article in Spanish | MEDLINE | ID: mdl-27423883

ABSTRACT

BACKGROUND: Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated¼ (MAPK) which consist of «modules¼ of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. OBJECTIVE: To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. CONCLUSIONS: Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway.


Subject(s)
Neoplasm Proteins/physiology , Signal Transduction , Thyroid Neoplasms/metabolism , Cell Transformation, Neoplastic , Genes, Neoplasm , Genes, ras , Humans , MAP Kinase Signaling System , Molecular Targeted Therapy , Mutation , Neoplasm Proteins/genetics , PAX8 Transcription Factor/genetics , PAX8 Transcription Factor/physiology , PPAR gamma/genetics , PPAR gamma/physiology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/physiology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/physiology , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/physiology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/therapy
13.
Tumour Biol ; 37(9): 12411-12422, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27323967

ABSTRACT

Radiotherapy is widely used for advanced rectal tumors. However, tumor recurrence after this treatment tends to be more aggressive and is associated with a poor prognosis. Uncovering the molecular mechanism that controls this recurrence is essential for developing new therapeutic applications. In the present study, we demonstrated that radiation increases the EphA4 activation level of the survivor progeny of colorectal cancer cells submitted to this treatment and that such activation promoted the internalization of a complex E-cadherin-EphA4, inducing cell-cell adhesion disruption. Moreover, EphA4 knockdown in the progeny of irradiated cells reduced the migratory and invasive potentials and metalloprotease activity induced by irradiation. Finally, we demonstrated that the cell migration and invasion potential were regulated by AKT and ERK1/2 signaling, with the ERK1/2 activity being dependent on EphA4. In summary, our study demonstrates that these signaling pathways could be responsible for the therapeutic failure, thereby promoting local invasion and metastasis in rectal cancer after radiotherapy. We also postulate that EphA4 is a potential therapeutic target for colorectal cancer treatment.


Subject(s)
Colorectal Neoplasms/radiotherapy , Receptor, EphA4/physiology , Signal Transduction/physiology , Antigens, CD , Cadherins/analysis , Colorectal Neoplasms/pathology , Doxazosin/pharmacology , Extracellular Signal-Regulated MAP Kinases/physiology , HT29 Cells , Humans , Neoplasm Invasiveness , Proto-Oncogene Proteins c-akt/physiology
14.
J Leukoc Biol ; 100(4): 801-810, 2016 10.
Article in English | MEDLINE | ID: mdl-27154356

ABSTRACT

Upon in vitro stimulation, neutrophils undergo a cell death named netosis. This process is characterized by extracellular release of chromatin scaffold associated with granular and cytoplasmic proteins, which together, ensnare and kill microbes. We have previously described that interaction of Leishmania amazonensis with human neutrophils leads to the release of neutrophil extracellular traps, which trap and kill the parasite. However, the signaling leading to Leishmania induced netosis is still unknown. Thus, we sought to evaluate signaling events that drive L. amazonensis induced neutrophil extracellular trap release from human neutrophils. Here, we found that PI3K, independently of protein kinase B, has a role in parasite-induced netosis. We also described that the main isoforms involved are PI3Kγ and PI3Kδ, which work in reactive oxygen species-dependent and -independent ways, respectively. We demonstrated that activation of ERK downstream of PI3Kγ is important to trigger reactive oxygen species-dependent, parasite-induced netosis. Pharmacological inhibition of protein kinase C also significantly decreased parasite-induced neutrophil extracellular trap release. Intracellular calcium, regulated by PI3Kδ, represents an alternative reactive oxygen species-independent pathway of netosis stimulated by L. amazonensis Finally, intracellular calcium mobilization and reactive oxygen species generation are the major regulators of parasite-induced netosis. Our results contribute to a better understanding of the signaling behind netosis induced by interactions between Leishmania and neutrophils.


Subject(s)
Calcium Signaling/physiology , Class I Phosphatidylinositol 3-Kinases/physiology , Class Ib Phosphatidylinositol 3-Kinase/physiology , Extracellular Traps/parasitology , Leishmania mexicana/immunology , MAP Kinase Signaling System , Neutrophils/immunology , Protein Kinase C/physiology , Chromatin/ultrastructure , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Humans , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/physiology , Reactive Oxygen Species/metabolism
15.
Biochim Biophys Acta ; 1860(1 Pt A): 129-39, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26518349

ABSTRACT

BACKGROUND: We have previously shown that some synthetic hydroxylated stigmastanes derived from plant sterols inhibit in vitro HSV-1 replication in ocular cell lines and decrease cytokine production in stimulated macrophages, suggesting that these steroids might combine antiviral and immunomodulating properties. In this paper we report the synthesis of some analogs fluorinated at C-6 in order to study the effect of this modification on bioactivity. METHODS: The following methods were used: organic synthesis of fluorinated analogs, cytotoxicity determination with MTT assays, cytokine production quantification with ELISAs, glucocorticoid activity determination by displacement assays, immunofluorescence and transcriptional activity assays, studies of the activation of signaling pathways by Western blot, antiviral activity evaluation through virus yield reduction assays. RESULTS: We report the chemical synthesis of new fluorinated stigmastanes and show that this family of steroidal compounds exerts its immunomodulating activity by inhibiting ERK and Akt signaling pathways, but do not act as glucocorticoids. We also demonstrate that fluorination enhances the antiviral activity. CONCLUSIONS: Fluorination on C-6 did not enhance the anti-inflammatory effect, however, an increase in the in vitro antiviral activity was observed. Thus, our results suggest that it is possible to introduce chemical modifications on the parent steroids in order to selectively modulate one of the effects. GENERAL SIGNIFICANCE: This family of steroids could allow the development of an alternative treatment for ocular immunopathologies triggered by HSV-1, without the undesirable side effects of the currently used drugs.


Subject(s)
Antiviral Agents/pharmacology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Herpesvirus 1, Human/drug effects , Immunologic Factors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Receptors, Glucocorticoid/metabolism , Signal Transduction/drug effects , Sitosterols/pharmacology , Stigmasterol/pharmacology , Animals , Chlorocebus aethiops , Cytokines/biosynthesis , HEK293 Cells , Humans , Macrophages/drug effects , Macrophages/immunology , Proto-Oncogene Proteins c-akt/physiology , Vero Cells
16.
Arch Virol ; 160(2): 469-75, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25488290

ABSTRACT

In previous work, we demonstrated that the arenavirus Junín virus (JUNV) is able to activate Akt by means of the phosphatidylinositol-3-kinase (PI3K) survival pathway during virus entry. This work extends our study, emphasizing the relevance of this pathway in the establishment and maintenance of persistent infection in vitro. During the course of infection, JUNV-infected Vero cells showed a typical cytopathic effect that may be ascribed to apoptotic cell death. Treatment of infected cultures with Ly294002, an inhibitor of the PI3K/Akt pathway, produced an apoptotic response similar to that observed for uninfected cells treated with the drug. This result suggests that virus-induced activation of the PI3K/Akt pathway does not deliver a strong enough anti-apoptotic signal to explain the low proportion of apoptotic cells observed during infection. Also, inhibition of the PI3K/Akt pathway during the acute stage of infection did not prevent the establishment of persistence. Furthermore, treatment of persistently JUNV-infected cells with Ly294002 did not alter viral protein expression. These findings indicate that despite the positive modulation of the PI3/Akt pathway during Junín virus entry, this would not play a critical role in the establishment and maintenance of JUNV persistence in Vero cells.


Subject(s)
Chromones/pharmacology , Enzyme Inhibitors/pharmacology , Hemorrhagic Fever, American/virology , Junin virus/drug effects , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/pharmacology , Proto-Oncogene Proteins c-akt/physiology , Virus Internalization/drug effects , Virus Replication/drug effects , Animals , Apoptosis , Cell Line , Chlorocebus aethiops , Hemorrhagic Fever, American/drug therapy , Junin virus/growth & development , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Vero Cells , Viral Proteins/biosynthesis
17.
J Mol Cell Cardiol ; 76: 186-95, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25240639

ABSTRACT

BACKGROUND: The involvement of NHE-1 hyperactivity, critical for pathological cardiac hypertrophy (CH), in physiological CH has not been elucidated yet. Stimulation of NHE-1 increases intracellular Na(+) and Ca(2+) favouring calcineurin activation. Since myocardial stretch, an activator of NHE-1, is common to both types of CH, we speculate that NHE-1 hyperactivity may also happen in physiological CH. However, calcineurin activation is characteristic only for pathological hypertrophy. We hypothesize that an inhibitory AKT-dependent mechanism prevents NHE-1 hyperactivity in the setup of physiological CH. METHODS: Physiological CH was induced in rats by swimming (90 min/day, 12 weeks) or in cultured isolated cardiomyocytes with IGF-1 (10 nmol/L). RESULTS: Training induced eccentric CH development (left ventricular weight/tibial length: 22.0±0.3 vs. 24.3±0.7 mg/mm; myocyte cross sectional area: 100±3.2 vs. 117±4.1 %; sedentary (Sed) and swim-trained (Swim) respectively; p<0.05] with decreased myocardial stiffness and collagen deposition [1.7±0.05 % (Sed) vs. 1.4±0.09 % (Swim); p<0.05]. Increased phosphorylation of AKT, ERK1/2, p90(RSK) and NHE-1 at the consensus site for ERK1/2-p90(RSK) were detected in the hypertrophied hearts (P-AKT: 134±10 vs. 100±5; P-ERK1/2: 164±17 vs. 100±18; P-p90(RSK): 160±18 vs. 100±9; P-NHE-1 134±10 vs. 100±10; % in Swim vs. Sed respectively; p<0.05). No significant changes were detected neither in calcineurin activation [calcineurin Aß 100±10 (Sed) vs. 96±12 (Swim)], nor NFAT nuclear translocation [100±3.11 (Sed) vs. 95±9.81 % (Swim)] nor NHE-1 expression [100±8.5 (Sed) vs. 95±6.7 % (Swim)]. Interestingly, the inhibitory phosphorylation of the NHE-1 consensus site for AKT was increased in the hypertrophied myocardium (151.6±19.4 (Swim) vs. 100±9.5 % (Sed); p<0.05). In isolated cardiomyocytes 24 hours IGF-1 increased cell area (114±1.3 %; p<0.05) and protein/DNA content (115±3.9 %, p<0.05), effects not abolished by NHE-1 inhibition with cariporide (114±3 and 117±4.4 %, respectively). IGF-1 significantly decreased NHE-1 activity during pHi recovery from sustained intracellular acidosis (JH+ at pHi 6.8: 4.08±0.74 and 9.09±1.21 mmol/L/min, IGF-1 vs. control; p<0.05), and abolished myocardial slow force response, the mechanical counterpart of stretch-induced NHE-1 activation. CONCLUSIONS: NHE-1 hyperactivity seems not to be involved in physiological CH development, contrary to what characterizes pathological CH. We propose that AKT, through an inhibitory phosphorylation of the NHE-1, prevents its stretch-induced activation. This posttranslational modification emerges as an adaptive mechanism that avoids NHE-1 hyperactivity preserving its housekeeping functioning.


Subject(s)
Heart/physiology , Proto-Oncogene Proteins c-akt/physiology , Sodium-Hydrogen Exchangers/metabolism , Animals , Cell Size , Cells, Cultured , Insulin-Like Growth Factor I/physiology , Male , Mechanotransduction, Cellular , Myocytes, Cardiac/metabolism , Rats, Wistar , Swimming
18.
Ann Hematol ; 93(6): 983-93, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24577510

ABSTRACT

Burkitt lymphoma (BL) is an aggressive B-cell lymphoma more common in children comprising one third of pediatric non-Hodgkin lymphoma cases. The recent discovery in BL pathogenesis highlighted the activation of PI3K pathway in cooperation with Myc in the development of BL. In this study, we demonstrated that PI3K/Akt pathway is a target to histone deacetylase inhibitor (HDACi) in BL cells. The combination of HDACi (sodium butyrate, NaB) and chemotherapy (VP-16) inhibited 51 % of the proliferation and enhanced the blockage of the cell cycle progression at G2/M with a concurrent decrease in the S phase. Microarray profiling showed a synergistic action of NaB/VP-16 combination through the differential regulation of 1,413 genes. Comparing VP-16 treatment with the NaB/VP-16 combination, 318 genes were deregulated: 250 genes were downregulated, and 68 were upregulated when compared with untreated cells. Among these genes, six (CDKN1A, CCND1, FAS, CHEK2, MDM4, and SESN2) belong to the p53-signaling pathway. The activation of this signaling pathway is usually induced by stress signals and ultimately leads to cell cycle arrest. Besides, the inhibition of the cell growth was related to reduced Akt phosphorylation, and decrease of c-Myc protein expression by about 60 % (p ≤ 0.005). Moreover, HDACi enhanced miR-101, miR-143, and miR-145 levels in BL cell line, which were inversely associated with the levels of miR-101, miR-143, and miR-145 found to be extremely downregulated in the sample of BL patients. We highlight the fact that effective combinations of HDACis with other target drugs could improve BL therapy in the future.


Subject(s)
Burkitt Lymphoma/pathology , Butyric Acid/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase Inhibitors/pharmacology , MicroRNAs/biosynthesis , Neoplasm Proteins/physiology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , RNA, Neoplasm/biosynthesis , Signal Transduction/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Drug Synergism , Etoposide/pharmacology , Gene Expression Profiling , Genes, myc , Humans , MicroRNAs/genetics , Oligonucleotide Array Sequence Analysis , RNA, Neoplasm/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/physiology , Up-Regulation/drug effects
19.
Braz J Med Biol Res ; 46(10): 861-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24068165

ABSTRACT

Quercetin (Que), a plant-derived flavonoid, has multiple benefical actions on the cardiovascular system. The current study investigated whether Que postconditioning has any protective effects on myocardial ischemia/reperfusion (I/R) injury in vivo and its potential cardioprotective mechanisms. Male Sprague-Dawley rats were randomly allocated to 5 groups (20 animals/group): sham, I/R, Que postconditioning, Que+LY294002 [a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway inhibitor], and LY294002+I/R. I/R was produced by 30-min coronary occlusion followed by 2-h reperfusion. At the end of reperfusion, myocardial infarct size and biochemical changes were compared. Apoptosis was evaluated by both TUNEL staining and measurement of activated caspase-3 immunoreactivity. The phosphorylation of Akt and protein expression of Bcl-2 and Bax were determined by Western blotting. Que postconditioning significantly reduced infarct size and serum levels of creatine kinase and lactate dehydrogenase compared with the I/R group (all P<0.05). Apoptotic cardiomyocytes and caspase-3 immunoreactivity were also suppressed in the Que postconditioning group compared with the I/R group (both P<0.05). Akt phosphorylation and Bcl-2 expression increased after Que postconditioning, but Bax expression decreased. These effects were inhibited by LY294002. The data indicate that Que postconditioning can induce cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.


Subject(s)
Myocardial Reperfusion Injury/prevention & control , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Quercetin/pharmacology , Signal Transduction/physiology , Animals , Apoptosis/drug effects , In Situ Nick-End Labeling , Male , Random Allocation , Rats, Sprague-Dawley
20.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;46(10): 861-867, 24/set. 2013. graf
Article in English | LILACS | ID: lil-688556

ABSTRACT

Quercetin (Que), a plant-derived flavonoid, has multiple benefical actions on the cardiovascular system. The current study investigated whether Que postconditioning has any protective effects on myocardial ischemia/reperfusion (I/R) injury in vivo and its potential cardioprotective mechanisms. Male Sprague-Dawley rats were randomly allocated to 5 groups (20 animals/group): sham, I/R, Que postconditioning, Que+LY294002 [a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway inhibitor], and LY294002+I/R. I/R was produced by 30-min coronary occlusion followed by 2-h reperfusion. At the end of reperfusion, myocardial infarct size and biochemical changes were compared. Apoptosis was evaluated by both TUNEL staining and measurement of activated caspase-3 immunoreactivity. The phosphorylation of Akt and protein expression of Bcl-2 and Bax were determined by Western blotting. Que postconditioning significantly reduced infarct size and serum levels of creatine kinase and lactate dehydrogenase compared with the I/R group (all P<0.05). Apoptotic cardiomyocytes and caspase-3 immunoreactivity were also suppressed in the Que postconditioning group compared with the I/R group (both P<0.05). Akt phosphorylation and Bcl-2 expression increased after Que postconditioning, but Bax expression decreased. These effects were inhibited by LY294002. The data indicate that Que postconditioning can induce cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.


Subject(s)
Animals , Male , Myocardial Reperfusion Injury/prevention & control , /physiology , Proto-Oncogene Proteins c-akt/physiology , Quercetin/pharmacology , Signal Transduction/physiology , Apoptosis/drug effects , In Situ Nick-End Labeling , Random Allocation , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL