Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.910
Filter
1.
Biomolecules ; 14(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38785951

ABSTRACT

This study aimed to identify potential BCL-2 small molecule inhibitors using deep neural networks (DNN) and random forest (RF), algorithms as well as molecular docking and molecular dynamics (MD) simulations to screen a library of small molecules. The RF model classified 61% (2355/3867) of molecules as 'Active'. Further analysis through molecular docking with Vina identified CHEMBL3940231, CHEMBL3938023, and CHEMBL3947358 as top-scored small molecules with docking scores of -11, -10.9, and 10.8 kcal/mol, respectively. MD simulations validated these compounds' stability and binding affinity to the BCL2 protein.


Subject(s)
Machine Learning , Molecular Docking Simulation , Molecular Dynamics Simulation , Proto-Oncogene Proteins c-bcl-2 , Small Molecule Libraries , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Humans , Protein Binding
2.
Clin Transl Sci ; 17(5): e13807, 2024 May.
Article in English | MEDLINE | ID: mdl-38778732

ABSTRACT

Venetoclax, a highly potent BCL-2 inhibitor, is indicated for treatment of some hematologic malignancies as monotherapy, and/or in combination with other agents. Venetoclax pharmacokinetics has been extensively characterized in patients and healthy participants. After oral dosing, the median time to reach maximum plasma concentration ranged from 5 to 8 h and harmonic mean half-life ranged from 14 to 18 h. Food increases venetoclax bioavailability by 3-5-fold and venetoclax should be administered with food to ensure adequate and consistent bioavailability. Venetoclax is eliminated via cytochrome P450 (CYP)3A metabolism, and a negligible amount of unchanged drug is excreted in urine. Strong CYP3A/P-glycoprotein inhibitors increased venetoclax exposures (AUC) by 1.44- to 6.90-fold while a significant decrease (71%) has been observed when dosed with strong CYP3 inducers. Venetoclax does not inhibit or induce CYP enzymes or transporters. Venetoclax pharmacokinetics is not appreciably altered by age, weight, sex, but the exposure is up to twofold higher in participants from Asian countries. Mild-to-severe renal impairment or end-stage renal disease do not alter venetoclax exposures, and venetoclax is not cleared by dialysis. Although mild-to-moderate hepatic impairment does not affect venetoclax exposures, twofold higher exposure was observed in subjects with severe hepatic impairment. Venetoclax exposure is comparable across patients with different hematologic malignancies and healthy participants. Overall, venetoclax exposure is only affected by food and CYP3A modulators and is only higher in Asian subjects and subjects with severe hepatic impairment. Venetoclax exposure-response relationships are malignancy-dependent and can be different between monotherapy and combination therapy.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Humans , Sulfonamides/pharmacokinetics , Sulfonamides/administration & dosage , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Hematologic Neoplasms/drug therapy , Food-Drug Interactions , Drug Interactions , Biological Availability
4.
J Med Chem ; 67(10): 7836-7858, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38695063

ABSTRACT

The approval of venetoclax, a B-cell lymphoma-2 (Bcl-2) selective inhibitor, for the treatment of chronic lymphocytic leukemia demonstrated that the antiapoptotic protein Bcl-2 is a druggable target for B-cell malignancies. However, venetoclax's limited potency cannot produce a strong, durable clinical benefit in other Bcl-2-mediated malignancies (e.g., diffuse large B-cell lymphomas) and multiple recurrent Bcl-2 mutations (e.g., G101V) have been reported to mediate resistance to venetoclax after long-term treatment. Herein, we described novel Bcl-2 inhibitors with increased potency for both wild-type (WT) and mutant Bcl-2. Comprehensive structure optimization led to the clinical candidate BGB-11417 (compound 12e, sonrotoclax), which exhibits strong in vitro and in vivo inhibitory activity against both WT Bcl-2 and the G101V mutant, as well as excellent selectivity over Bcl-xL without obvious cytochrome P450 inhibition. Currently, BGB-11417 is undergoing phase II/III clinical assessments as monotherapy and combination treatment.


Subject(s)
Antineoplastic Agents , Mutation , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Mice , Cell Line, Tumor , Sulfonamides/pharmacology , Sulfonamides/chemistry , Rats , Drug Discovery
6.
Anticancer Res ; 44(5): 2109-2115, 2024 May.
Article in English | MEDLINE | ID: mdl-38677726

ABSTRACT

BACKGROUND/AIM: The treatment for chronic lymphocytic leukemia (CLL) has changed dramatically over the last two decades. The current study aimed to investigate the impact on overall survival (OS) and time to next treatment (TTT) among CLL patients from 1998 to 2022. PATIENTS AND METHODS: The cohort was based on data obtained from electronic medical records of Maccabi, the second largest healthcare organization in Israel. All included patients were diagnosed with CLL based on the IWCLL criteria and complete clinical, laboratory, and treatment data were available. The study encompassed 3,964 patients diagnosed with CLL during the specified study period. RESULTS: Patients with CLL who required therapy were divided into three eras based on the dominant treatment approach: chemotherapy alone before 2010, therapy with chemotherapy and anti-CD20 between 2010 and 2017, and therapy with targeted agents between 2017 and 2022. Median OS was 4.1 years, 7.5 years, and not reached, respectively. The six-year OS rates were 40%, 55%, and 69%, respectively, (p=0.0001). The median time to the next treatment improved from 5.5 years before 2010, to 8.3 between 2010-2017, to not reached after 2017 (p=0.0021). CONCLUSION: Marked improvements in survival subsequent to fundamental changes in first-line therapy were found in patients with CLL from before 2010 to after 2017.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-bcl-2 , Female , Humans , Male , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Israel/epidemiology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Molecular Targeted Therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Retrospective Studies
7.
Blood ; 143(18): 1825-1836, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38211332

ABSTRACT

ABSTRACT: Venetoclax, the first-generation inhibitor of the apoptosis regulator B-cell lymphoma 2 (BCL2), disrupts the interaction between BCL2 and proapoptotic proteins, promoting the apoptosis in malignant cells. Venetoclax is the mainstay of therapy for relapsed chronic lymphocytic leukemia and is under investigation in multiple clinical trials for the treatment of various cancers. Although venetoclax treatment can result in high rates of durable remission, relapse has been widely observed, indicating the emergence of drug resistance. The G101V mutation in BCL2 is frequently observed in patients who relapsed treated with venetoclax and sufficient to confer resistance to venetoclax by interfering with compound binding. Therefore, the development of next-generation BCL2 inhibitors to overcome drug resistance is urgently needed. In this study, we discovered that sonrotoclax, a potent and selective BCL2 inhibitor, demonstrates stronger cytotoxic activity in various hematologic cancer cells and more profound tumor growth inhibition in multiple hematologic tumor models than venetoclax. Notably, sonrotoclax effectively inhibits venetoclax-resistant BCL2 variants, such as G101V. The crystal structures of wild-type BCL2/BCL2 G101V in complex with sonrotoclax revealed that sonrotoclax adopts a novel binding mode within the P2 pocket of BCL2 and could explain why sonrotoclax maintains stronger potency than venetoclax against the G101V mutant. In summary, sonrotoclax emerges as a potential second-generation BCL2 inhibitor for the treatment of hematologic malignancies with the potential to overcome BCL2 mutation-induced venetoclax resistance. Sonrotoclax is currently under investigation in multiple clinical trials.


Subject(s)
Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Drug Resistance, Neoplasm , Hematologic Neoplasms , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Animals , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Xenograft Model Antitumor Assays , Cell Line, Tumor , Mutation , Apoptosis/drug effects
8.
Cell Mol Immunol ; 21(1): 60-79, 2024 01.
Article in English | MEDLINE | ID: mdl-38062129

ABSTRACT

The main challenges in the use of immune checkpoint inhibitors (ICIs) are ascribed to the immunosuppressive tumor microenvironment and the lack of sufficient infiltration of activated CD8+ T cells. Transforming the tumor microenvironment (TME) from "cold" to "hot" and thus more likely to potentiate the effects of ICIs is a promising strategy for cancer treatment. We found that the selective BCL-2 inhibitor APG-2575 can enhance the antitumor efficacy of anti-PD-1 therapy in syngeneic and humanized CD34+ mouse models. Using single-cell RNA sequencing, we found that APG-2575 polarized M2-like immunosuppressive macrophages toward the M1-like immunostimulatory phenotype with increased CCL5 and CXCL10 secretion, restoring T-cell function and promoting a favorable immunotherapy response. Mechanistically, we demonstrated that APG-2575 directly binds to NF-κB p65 to activate NLRP3 signaling, thereby mediating macrophage repolarization and the activation of proinflammatory caspases and subsequently increasing CCL5 and CXCL10 chemokine production. As a result, APG-2575-induced macrophage repolarization could remodel the tumor immune microenvironment, thus improving tumor immunosuppression and further enhancing antitumor T-cell immunity. Multiplex immunohistochemistry confirmed that patients with better immunotherapeutic efficacy had higher CD86, p-NF-κB p65 and NLRP3 levels, accompanied by lower CD206 expression on macrophages. Collectively, these data provide evidence that further study on APG-2575 in combination with immunotherapy for tumor treatment is required.


Subject(s)
Dioxanes , Immune Checkpoint Inhibitors , Immunosuppression Therapy , Lung Neoplasms , NLR Family, Pyrin Domain-Containing 3 Protein , Nitrobenzenes , Proto-Oncogene Proteins c-bcl-2 , Pyrroles , Tumor-Associated Macrophages , Animals , Mice , Dioxanes/pharmacology , Dioxanes/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Nitrobenzenes/pharmacology , Nitrobenzenes/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/agonists , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrroles/pharmacology , Pyrroles/therapeutic use , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Transcription Factor RelA/metabolism , Tumor Microenvironment/drug effects , Cell Polarity/drug effects , Lung Neoplasms/drug therapy , Humans , Cell Line, Tumor , Xenograft Model Antitumor Assays , Mice, Inbred C57BL , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Immunosuppression Therapy/methods
9.
Anticancer Drugs ; 35(3): 219-226, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37948336

ABSTRACT

After an initial positive response to chemotherapy, cancer patients often become resistant and experience relapse. Our previous research identified eukaryotic translation initiation factor 4E (eIF4E) as a crucial target to overcome chemoresistance. In this study, we delved further into the role and therapeutic potential of myeloid cell leukemia 1 (Mcl-1), an eIF4E-mediated target, in chemoresistance. We showed that the levels of phosphor and total eIF4E, as well as Mcl-1, were elevated in chemoresistant cervical but not colon cancer cells. Mcl-1 inhibitor S64315 decreased Mcl-1 levels in chemoresistant cancer cells, regardless of Mcl-1 upregulation, decreased viability in chemoresistant cancer cells and acted synergistically with chemotherapy drugs. The combined inhibition of Mcl-1 and B-cell lymphoma 2 (Bcl-2), employing both genetic and pharmacological approaches, led to a markedly more substantial decrease in viability compared with the inhibition of either target individually. The combination of S64315 and Bcl-2 inhibitors reduced tumor growth in chemoresistant cervical and colon cancer models without causing general toxicity in mice. This combination also prolonged overall survival compared with using S64315 or venetoclax alone. Our research highlights the therapeutic potential of inhibiting Mcl-1 and Bcl-2 simultaneously in chemoresistant cancers and provides a rationale for initiating clinical trials to investigate the combination of S64315 and venetoclax for the treatment of advanced colon and cervical cancer.


Subject(s)
Colonic Neoplasms , Drug Resistance, Neoplasm , Sulfonamides , Animals , Humans , Mice , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Eukaryotic Initiation Factor-4E , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
10.
Biomed Pharmacother ; 168: 115738, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864894

ABSTRACT

Tuberculosis (TB) accounts for 1.6 million deaths annually and over 25% of deaths due to antimicrobial resistance. Mycobacterium tuberculosis (M.tb) drives MCL-1 expression (family member of anti-apoptotic BCL-2 proteins) to limit apoptosis and grow intracellularly in human macrophages. The feasibility of re-purposing specific MCL-1 and BCL-2 inhibitors to limit M.tb growth, using inhibitors that are in clinical trials and FDA-approved for cancer treatment has not be tested previously. We show that specifically inhibiting MCL-1 and BCL-2 induces apoptosis of M.tb-infected macrophages, and markedly reduces M.tb growth in human and murine macrophages, and in a pre-clinical model of human granulomas. MCL-1 and BCL-2 inhibitors limit growth of drug resistant and susceptible M.tb in macrophages and act in additive fashion with the antibiotics isoniazid and rifampicin. This exciting work uncovers targeting the intrinsic apoptosis pathway as a promising approach for TB host-directed therapy. Since safety and activity studies are underway in cancer clinics for MCL-1 and BCL-2 inhibitors, we expect that re-purposing them for TB treatment should translate more readily and rapidly to the clinic. Thus, the work supports further development of this host-directed therapy approach to augment current TB treatment.


Subject(s)
Antineoplastic Agents , Antitubercular Agents , Drug Repositioning , Mycobacterium tuberculosis , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2 , Tuberculosis , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Antitubercular Agents/metabolism , Macrophages/drug effects , Mycobacterium tuberculosis/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Tuberculosis/drug therapy , Tuberculosis/microbiology
12.
JAMA ; 329(11): 918-932, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36943212

ABSTRACT

Importance: Chronic lymphocytic leukemia (CLL), defined by a minimum of 5 × 109/L monoclonal B cells in the blood, affects more than 200 000 people and is associated with approximately 4410 deaths in the US annually. CLL is associated with an immunocompromised state and an increased rate of complications from infections. Observations: At the time of diagnosis, the median age of patients with CLL is 70 years, and an estimated 95% of patients have at least 1 medical comorbidity. Approximately 70% to 80% of patients with CLL are asymptomatic at the time of diagnosis, and one-third will never require treatment for CLL. Prognostic models have been developed to estimate the time to first treatment and the overall survival, but for patients who are asymptomatic, irrespective of disease risk category, clinical observation is the standard of care. Patients with symptomatic disease who have bulky or progressive lymphadenopathy or hepatosplenomegaly and those with a low neutrophil count, anemia, or thrombocytopenia and/or symptoms of fever, drenching night sweats, and weight loss (B symptoms) should be offered treatment. For these patients, first-line treatment consists of a regimen containing either a covalent Bruton tyrosine kinase (BTK) inhibitor (acalabrutinib, zanubrutinib, or ibrutinib) or a B-cell leukemia/lymphoma 2 (BCL2) inhibitor (venetoclax). There is no evidence that starting either class before the other improves outcomes. The covalent BTK inhibitors are typically used indefinitely. Survival rates are approximately 88% at 4 years for acalabrutinib, 94% at 2 years for zanubrutinib, and 78% at 7 years for ibrutinib. Venetoclax is prescribed in combination with obinutuzumab, a monoclonal anti-CD20 antibody, in first-line treatment for 1 year (overall survival, 82% at 5-year follow-up). A noncovalent BTK inhibitor, pitobrutinib, has shown an overall response rate of more than 70% after failure of covalent BTK inhibitors and venetoclax. Phosphoinositide 3'-kinase (PI3K) inhibitors (idelalisib and duvelisib) can be prescribed for disease that progresses with BTK inhibitors and venetoclax, but patients require close monitoring for adverse events such as autoimmune conditions and infections. In patients with multiple relapses, chimeric antigen receptor T-cell (CAR-T) therapy with lisocabtagene maraleucel was associated with a 45% complete response rate. The only potential cure for CLL is allogeneic hematopoietic cell transplant, which remains an option after use of targeted agents. Conclusions and Relevance: More than 200 000 people in the US are living with a CLL diagnosis, and CLL causes approximately 4410 deaths each year in the US. Approximately two-thirds of patients eventually need treatment. Highly effective novel targeted agents include BTK inhibitors such as acalabrutinib, zanubrutinib, ibrutinib, and pirtobrutinib or BCL2 inhibitors such as venetoclax.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Aged , Humans , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Immunotherapy, Adoptive , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Receptors, Chimeric Antigen , /therapeutic use , United States/epidemiology
13.
J Biol Chem ; 299(2): 102875, 2023 02.
Article in English | MEDLINE | ID: mdl-36621626

ABSTRACT

Aurora kinases (AURKs) are mitotic kinases important for regulating cell cycle progression. Small-molecule inhibitors of AURK have shown promising antitumor effects in multiple cancers; however, the utility of these inhibitors as inducers of cancer cell death has thus far been limited. Here, we examined the role of the Bcl-2 family proteins in AURK inhibition-induced apoptosis in colon cancer cells. We found that alisertib and danusertib, two small-molecule inhibitors of AURK, are inefficient inducers of apoptosis in HCT116 and DLD-1 colon cancer cells, the survival of which requires at least one of the two antiapoptotic Bcl-2 family proteins, Bcl-xL and Mcl-1. We further identified Bcl-xL as a major suppressor of alisertib- or danusertib-induced apoptosis in HCT116 cells. We demonstrate that combination of a Bcl-2 homology (BH)3-mimetic inhibitor (ABT-737), a selective inhibitor of Bcl-xL, Bcl-2, and Bcl-w, with alisertib or danusertib potently induces apoptosis through the Bcl-2 family effector protein Bax. In addition, we identified Bid, Puma, and Noxa, three BH3-only proteins of the Bcl-2 family, as mediators of alisertib-ABT-737-induced apoptosis. We show while Noxa promotes apoptosis by constitutively sequestering Mcl-1, Puma becomes associated with Mcl-1 upon alisertib treatment. On the other hand, we found that alisertib treatment causes activation of caspase-2, which promotes apoptosis by cleaving Bid into truncated Bid, a suppressor of both Bcl-xL and Mcl-1. Together, these results define the Bcl-2 protein network critically involved in AURK inhibitor-induced apoptosis and suggest that BH3-mimetics targeting Bcl-xL may help overcome resistance to AURK inhibitors in cancer cells.


Subject(s)
Antineoplastic Agents , Apoptosis , Aurora Kinases , bcl-X Protein , Humans , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/metabolism , Aurora Kinases/antagonists & inhibitors , bcl-2-Associated X Protein/metabolism , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/physiopathology , Enzyme Activation/drug effects , HCT116 Cells , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism
14.
Clin Cancer Res ; 28(24): 5455-5468, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36048524

ABSTRACT

PURPOSE: Development of B-cell lymphoma 2 (BCL-2)-specific inhibitors poses unique challenges in drug design because of BCL-2 homology domain 3 (BH3) shared homology between BCL-2 family members and the shallow surface of their protein-protein interactions. We report herein discovery and extensive preclinical investigation of lisaftoclax (APG-2575). EXPERIMENTAL DESIGN: Computational modeling was used to design "lead" compounds. Biochemical binding, mitochondrial BH3 profiling, and cell-based viability or apoptosis assays were used to determine the selectivity and potency of BCL-2 inhibitor lisaftoclax. The antitumor effects of lisaftoclax were also evaluated in several xenograft models. RESULTS: Lisaftoclax selectively binds BCL-2 (Ki < 0.1 nmol/L), disrupts BCL-2:BIM complexes, and compromises mitochondrial outer membrane potential, culminating in BAX/BAK-dependent, caspase-mediated apoptosis. Lisaftoclax exerted strong antitumor activity in hematologic cancer cell lines and tumor cells from patients with chronic lymphocytic leukemia, multiple myeloma, or Waldenström macroglobulinemia. After lisaftoclax treatment, prodeath proteins BCL-2‒like protein 11 (BIM) and Noxa increased, and BIM translocated from cytosol to mitochondria. Consistent with these apoptotic activities, lisaftoclax entered malignant cells rapidly, reached plateau in 2 hours, and significantly downregulated mitochondrial respiratory function and ATP production. Furthermore, lisaftoclax inhibited tumor growth in xenograft models, correlating with caspase activation, poly (ADP-ribose) polymerase 1 cleavage, and pharmacokinetics of the compound. Lisaftoclax combined with rituximab or bendamustine/rituximab enhanced antitumor activity in vivo. CONCLUSIONS: These findings demonstrate that lisaftoclax is a novel, orally bioavailable BH3 mimetic BCL-2-selective inhibitor with considerable potential for the treatment of certain hematologic malignancies.


Subject(s)
Antineoplastic Agents , Hematologic Neoplasms , Proto-Oncogene Proteins c-bcl-2 , Humans , Antineoplastic Agents/pharmacology , Apoptosis , Bcl-2-Like Protein 11 , Caspases , Cell Line, Tumor , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Rituximab/pharmacology
15.
Aging (Albany NY) ; 14(16): 6381-6414, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35951353

ABSTRACT

Accumulation of senescent cells in tissues with advancing age participates in the pathogenesis of several human age-associated diseases. Specific senescent secretome, the resistance of senescent cells to apoptotic stimuli, and lack of immune system response contribute to the accumulation of senescent cells and their adverse effects in tissues. Inhibition of antiapoptotic machinery, augmented in senescent cells, by BCL-2 protein family inhibitors represents a promising approach to eliminate senescent cells from tissues. This study aimed to explore synergistic and selective senolytic effects of anti-apoptotic BCL-2 family targeting compounds, particularly BH3 mimetics. Using human non-transformed cells RPE-1, BJ, and MRC-5 brought to ionizing radiation-, oncogene-, drug-induced and replicative senescence, we found synergy in combining MCL-1 selective inhibitors with other BH3 mimetics. In an attempt to uncover the mechanism of such synergy, we revealed that the surviving subpopulation of cells resistant to individually applied ABT-737/ABT-263, MIK665, ABT-199, and S63845 BCL-2 family inhibitors showed elevated MCL-1 compared to untreated control cells indicating the presence of a subset of cells expressing high MCL-1 levels and, therefore, resistant to BCL-2 inhibitors within the original population of senescent cells. Overall, we found that combining BCL-2 inhibitors can be beneficial for eliminating senescent cells, thereby enabling use of lower, potentially less toxic, doses of drugs compared to monotherapy, thereby overcoming the resistance of the subpopulation of senescent cells to monotherapy.


Subject(s)
Cellular Senescence , Proto-Oncogene Proteins c-bcl-2 , Apoptosis , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
16.
Blood Cancer J ; 12(8): 123, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35999205

ABSTRACT

Targeted therapies against phosphatidylinositol 3-kinase (PI3K), Bruton's tyrosine kinase (BTK), and B-cell lymphoma-2 (BCL-2) are approved for chronic lymphocytic leukemia (CLL). Since approval of the first-in-class drugs, next-generation agents have become available and are continuously under development. While these therapies act on well-characterized molecular targets, this knowledge is only to some extent taken into consideration when determining their dose in phase I trials. For example, BTK occupancy has been assessed in dose-finding studies of various BTK inhibitors, but the minimum doses that result in full BTK occupancy were not determined. Although targeted agents have a different dose-response relationship than cytotoxic agents, which are more effective near the maximum tolerated dose, the traditional 3 + 3 toxicity-driven trial design remains heavily used in the era of targeted therapies. If pharmacodynamic biomarkers were more stringently used to guide dose selection, the recommended phase II dose would likely be lower as compared to the toxicity-driven selection. Reduced drug doses may lower toxicity, which in some cases is severe for these agents, and are supported by retrospective studies demonstrating non-inferior outcomes for patients with clinically indicated dose reductions. Here, we review strategies that were used for dose selection in phase I studies of currently approved and select investigational targeted therapies in CLL, and discuss how our initial clinical experience with targeted therapies have pointed to dose reductions, intermittent dosing, and drug combinations as strategies to overcome treatment intolerance and resistance.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antineoplastic Agents/toxicity , Clinical Trials as Topic , Dose-Response Relationship, Drug , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Phosphoinositide-3 Kinase Inhibitors/toxicity , Protein Kinase Inhibitors/toxicity , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Retrospective Studies
17.
J Transl Med ; 20(1): 299, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794605

ABSTRACT

BACKGROUND: Despite advances in targeted agent development, effective treatment of acute myeloid leukemia (AML) remains a major clinical challenge. The B-cell lymphoma-2 (BCL-2) inhibitor exhibited promising clinical activity in AML, acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL) treatment. APG-2575 is a novel BCL-2 selective inhibitor, which has demonstrated anti-tumor activity in hematologic malignancies. Homoharringtonine (HHT), an alkaloid, exhibited anti-AML activity. METHODS: The synergistic effects of APG-2575 and HHT were studied in AML cell lines and primary samples. MTS was used to measure the cell viability. Annexin V/propidium iodide staining was used to measure the apoptosis rate by flow cytometry. AML cell xenografted mouse models were established to evaluate the anti-leukemic effect of BCL-2 inhibitor, HHT and their combination in vivo. Western blot was used to determine the expression of related proteins. RESULTS: APG-2575 showed comparable anti-leukemic effect to the FDA-approved BCL-2 inhibitor ABT-199 in vitro and in vivo. Combined treatment of HHT with APG-2575 synergistically inhibited AML cell growth and engraftment. Mechanistically, HHT promoted degradation of myeloid cell leukemia-1 (MCL-1), which was reported to induce BCL-2 inhibitor resistant, through the PI3K/AKT/GSK3ß signaling pathway. CONCLUSION: Our results provide an effective AML treatment strategy through combination of APG-2575 and HHT, which is worthy of further clinical research.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Homoharringtonine , Leukemia, Myeloid, Acute , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Drug Synergism , Homoharringtonine/administration & dosage , Homoharringtonine/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism
19.
Med Chem ; 18(8): 903-914, 2022.
Article in English | MEDLINE | ID: mdl-35264093

ABSTRACT

BACKGROUND: Breast cancer is currently the leading cause of worldwide cancer incidence exceeding lung cancer. In addition, breast cancer accounts for 1 in 4 cancer cases and 1 in 6 cancer deaths among women. Cytotoxic chemotherapy is still the main therapeutic approach for patients with metastatic breast cancer. OBJECTIVE: The aim of the study was to synthesize a series of novel celecoxib analogues to evaluate their anticancer activity against the MCF-7 cell line. METHODS: Our design of target compounds was based on preserving the pyrazole moiety of celecoxib attached to two phenyl rings, one of them having a polar hydrogen bonding group (sulfonamide or methoxy group). The methyl group of the second phenyl ring was replaced with chlorine or bromine atom. Finally, the trifluoromethyl group was replaced with arylidene hydrazine-1-carbonyl moiety, which is substituted either with fluoro or methoxy group, offering various electronic and lipophilic environments. These modifications were carried out to investigate their effects on the antiproliferative activity of the newly synthesized celecoxib analogues and to provide a valuable structure- activity relationship. RESULTS: Four compounds, namely 4e-h, exhibited significant antitumor activity. Compounds 4e, 4f and 4h showed 1.2-2 folds more potent anticancer activity than celecoxib. Celecoxib analogue 4f showed the most potent anti-proliferative activity. Its anti-proliferative activity seems to associate well with its ability to inhibit BCL-2. Moreover, activation of the damage response pathway of the DNA leads to cell cycle arrest at the G2/M phase and accumulation of cells in the pre-G1 phase, indicating that cell death proceeds through an apoptotic mechanism. Compound 4f exhibited a potent pro-apoptotic effect via induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was proved by a significant increase in the expression of the tumor suppressor gene p53, elevation in Bax/BCL-2 ratio, and a significant increase in the level of active caspase-7. Furthermore, compound 4f showed moderate COX-2 inhibitory activity. CONCLUSION: Celecoxib analogue 4f is a promising multi-targeted lead for the design and synthesis of potent anticancer agents.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Celecoxib , Antineoplastic Agents/pharmacology , Apoptosis , Breast Neoplasms/drug therapy , Celecoxib/analogs & derivatives , Celecoxib/pharmacology , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Structure-Activity Relationship
20.
Signal Transduct Target Ther ; 7(1): 51, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35185150

ABSTRACT

Despite high initial response rates, acute myeloid leukemia (AML) treated with the BCL-2-selective inhibitor venetoclax (VEN) alone or in combinations commonly acquires resistance. We performed gene/protein expression, metabolomic and methylation analyses of isogenic AML cell lines sensitive or resistant to VEN, and identified the activation of RAS/MAPK pathway, leading to increased stability and higher levels of MCL-1 protein, as a major acquired mechanism of VEN resistance. MCL-1 sustained survival and maintained mitochondrial respiration in VEN-RE cells, which had impaired electron transport chain (ETC) complex II activity, and MCL-1 silencing or pharmacologic inhibition restored VEN sensitivity. In support of the importance of RAS/MAPK activation, we found by single-cell DNA sequencing rapid clonal selection of RAS-mutated clones in AML patients treated with VEN-containing regimens. In summary, these findings establish RAS/MAPK/MCL-1 and mitochondrial fitness as key survival mechanisms of VEN-RE AML and provide the rationale for combinatorial strategies effectively targeting these pathways.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , MAP Kinase Signaling System , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , ras Proteins , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , MAP Kinase Signaling System/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...