Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.843
Filter
1.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 563-569, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825901

ABSTRACT

Objective: To analyze the clinicopathological features and differential diagnosis of large B-cell lymphoma with IRF4 rearrangement, aiming enhance its recognition and prevent misdiagnosis. Methods: The clinicopathological features, immunophenotype, and fluorescence in situ hybridization (FISH) results of six cases diagnosed with IRF4 rearrangement-positive B-cell lymphoma at the Affiliated Hospital of Xuzhou Medical University from 2015 to 2023 were retrospectively analyzed. Additionally, a comprehensive review of the literature was conducted. Results: Six patients with IRF4 rearrangement-positive large B-cell lymphoma were included. Patients 1 to 5 included three males and two females with a median age of 19 years ranging from 11 to 34 years. Four patients presented with head and neck lesions, while the other one had a breast nodule; all were in clinical Ann Arbor stages I to Ⅱ. Morphologically, entirely diffuse pattern was present in two cases, purely follicular pattern in one case, and diffuse and follicular patterns in other two cases. The tumor cells, predominantly centroblasts mixed with some irregular centrocytes, were of medium to large size, with a starry sky appearance observed in two cases. Immunophenotyping revealed all cases were positive for bcl-6 and MUM1, with a Ki-67 index ranging from 70% to 90%, and CD10 was positive in two cases. IRF4 rearrangement was confirmed in all cases by FISH analysis, with dual IRF4/bcl-6 rearrangements identified in two cases, leading to a diagnosis of LBCL-IRF4. Case 6, a 39-year-old female with a tonsillar mass and classified as clinical Ann Arbor stage Ⅳ, displayed predominantly diffuse large B-cell lymphoma (DLBCL) morphology with 20% high-grade follicular lymphoma characteristics. Immunohistochemistry showed negative CD10 and positive bcl-6/MUM1, with a Ki-67 index of approximately 80%. Triple rearrangements of IRF4/bcl-2/bcl-6 were identified by FISH, leading to a diagnosis of DLBCL with 20% follicular lymphoma (FL). All six patients achieved complete remission after treatment, with no progression or relapse during a follow-up period of 31-100 months. Conclusions: Large B-cell lymphoma with IRF4 rearrangement is a rare entity with pathological features that overlap with those of FL and DLBCL. While IRF4 rearrangement is necessary for diagnosing LBCL-IRF4, it is not specific and requires differentiation from other aggressive B-cell lymphomas with IRF4 rearrangement.


Subject(s)
Gene Rearrangement , In Situ Hybridization, Fluorescence , Interferon Regulatory Factors , Lymphoma, Large B-Cell, Diffuse , Proto-Oncogene Proteins c-bcl-6 , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Diagnosis, Differential , Female , Male , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/metabolism , Adult , Adolescent , Retrospective Studies , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Child , Young Adult , Immunophenotyping , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
2.
PLoS One ; 19(6): e0303134, 2024.
Article in English | MEDLINE | ID: mdl-38837975

ABSTRACT

In recent years, a cancer research trend has shifted towards identifying novel therapeutic compounds from natural assets for the management of cancer. In this study, we aimed to assess the cytotoxic activity of Kigelia Africana (KA) extracts on breast cancer (MDA-MB-231 and MCF-7) and noncancerous kidney cells (HEK-293T) to develop an efficient anticancer medication. We used gas chromatography mass spectrometry (GC-MS to analyze the constituents of EKA and HKA extracts meanwhile the crystal violet and the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays were used to examine the possible cytotoxic effects of plant extracts on our cancer cell lines along with non-cancerous control. The quantitative real-time PCR (RT-PCR) was run on cell samples to evaluate the differential expression of cell proliferative markers of cancer (BCL-2 and TP53). These phytochemicals have been reported to have binding affinity for some other growth factors and receptors as well which was evaluated by the in-silico molecular docking against Bcl2, EGFR, HER2, and TP53. Our Morphological observation showed a significant difference in the cell morphology and proliferation potential which was decreased under the effect of plant extracts treatment as compared to the control samples. The ethanol extract exhibited a marked antiproliferative activity towards MDA-MB-231 and MCF-7 cell lines with IC50 = 20 and 32 µg/mL, respectively. Quantitative RT-PCR gene expression investigation revealed that the IC50 concentration of ethanolic extract regulated the levels of mRNA expression of apoptotic genes. With the target and active binding site amino acids discovered in the molecular docking investigation, TP53/Propanoic acid, 3-(2, 3, 6-trimethyl-1, 4-dioxaspiro [4.4] non-7-yl)-, methyl ester (-7.1 kcal/mol) is the best-docked ligand. The use of this plant in folk remedies justifies its high in vitro anti-cancer capabilities. This work highlights the role of phytochemicals in the inhibition of cancer proliferation. Based on all these findings, it can be concluded that EKA extract has promising anti-proliferative effect on cancerous cells but more study is required in future to further narrow down the active ingredients of total crude extract with specific targets in cancer cells.


Subject(s)
Molecular Docking Simulation , Plant Extracts , Tumor Suppressor Protein p53 , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , MCF-7 Cells , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Female , HEK293 Cells , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
3.
Mol Biol Rep ; 51(1): 603, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698270

ABSTRACT

BACKGROUND: Drug combination studies help to improve new treatment approaches for colon cancer. Tumor spheroids (3D) are better models than traditional 2-dimensional cultures (2D) to evaluate cellular responses to chemotherapy drugs. The cultivation of cancer cells in 2D and 3D cultures affects the apoptotic process, which is a major factor influencing the response of cancer cells to chemotherapeutic drugs. In this study, the antiproliferative effects of 5-fluorouracil (5-FU) and doxorubicin (DOX) were investigated separately and in combination using 2D and 3D cell culture models on two different colon cancer cell lines, HT-29 (apoptosis-resistant cells) and Caco-2 2 (apoptosis-susceptible cells). METHODS: The effect of the drugs on the proliferation of both colon cancer cells was determined by performing an MTT assay in 2D culture. The apoptotic effect of 5-FU and DOX, both as single agents and in combination, was assessed in 2D and 3D cultures through quantitative real-time polymerase chain reaction analysis. The expression of apoptotic genes, such as caspases, p53, Bax, and Bcl-2, was quantified. RESULTS: It was found that the mRNA expression of proapoptotic genes was significantly upregulated, whereas the mRNA expression of the antiapoptotic Bcl-2 gene was significantly downregulated in both colon cancer models treated with 5-FU, DOX, and 5-FU + DOX. CONCLUSION: The results indicated that the 5-FU + DOX combination therapy induces apoptosis and renders 5-FU and DOX more effective at lower concentrations compared to their alone use. This study reveals promising results in reducing the potential side effects of treatment by enabling the use of lower drug doses.


Subject(s)
Apoptosis , Cell Proliferation , Colorectal Neoplasms , Doxorubicin , Fluorouracil , Spheroids, Cellular , Humans , Fluorouracil/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Doxorubicin/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , HT29 Cells , Cell Proliferation/drug effects , Caco-2 Cells , Gene Expression Regulation, Neoplastic/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics
4.
J Cell Mol Med ; 28(9): e18329, 2024 May.
Article in English | MEDLINE | ID: mdl-38693863

ABSTRACT

Therapy failure with the tyrosine kinase inhibitor (TKI) sunitinib remains a great challenge in metastatic renal cell carcinoma (mRCC). Growing evidence indicates that the tumour subpopulation can enter a transient, non-mutagenic drug-tolerant state to endure the treatment underlying the minimal residual disease and tumour relapse. Drug tolerance to sunitinib remains largely unexplored in RCC. Here, we show that sunitinib-tolerant 786-O/S and Caki-2/S cells are induced by prolonged drug treatment showing reduced drug sensitivity, enhanced clonogenicity, and DNA synthesis. Sunitinib-tolerance developed via dynamic processes, including (i) engagement of c-MET and AXL pathways, (ii) alteration of stress-induced p38 kinase and pro-survival BCL-2 signalling, (iii) extensive actin remodelling, which was correlated with activation of focal adhesion proteins. Remarkably, the acute drug response in both sensitive and sunitinib-tolerant cell lines led to dramatic fine-tuning of the actin-cytoskeleton and boosted cellular migration and invasion, indicating that the drug-response might depend on cell state transition rather than pre-existing mutations. The drug-tolerant state was transiently acquired, as the cells resumed initial drug sensitivity after >10 passages under drug withdrawal, reinforcing the concept of dynamic regulation and phenotypic heterogeneity. Our study described molecular events contributing to the reversible switch into sunitinib-tolerance, providing possible novel therapeutic opportunities in RCC.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Drug Resistance, Neoplasm , Kidney Neoplasms , Sunitinib , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Sunitinib/pharmacology , Sunitinib/therapeutic use , Cell Line, Tumor , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Cell Movement/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Axl Receptor Tyrosine Kinase , Pyrroles/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Cell Proliferation/drug effects , Indoles/pharmacology
6.
Cell Commun Signal ; 22(1): 277, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755629

ABSTRACT

INTRODUCTION: Bcl-2 and Bcl-xL are the most studied anti-apoptotic members of Bcl-2 family proteins. We previously characterized both of them, not only for their role in regulating apoptosis and resistance to therapy in cancer cells, but also for their non-canonical functions, mainly including promotion of cancer progression, metastatization, angiogenesis, and involvement in the crosstalk among cancer cells and components of the tumor microenvironment. Our goal was to identify transcriptional signature and novel cellular pathways specifically modulated by Bcl-2. METHODS: We performed RNAseq analysis of siRNA-mediated transient knockdown of Bcl-2 or Bcl-xL in human melanoma cells and gene ontology analysis to identify a specific Bcl-2 transcriptional signature. Expression of genes modulated by Bcl-2 and associated to Hippo pathway were validated in human melanoma, breast adenocarcinoma and non-small cell lung cancer cell lines by qRT-PCR. Western blotting analysis were performed to analyse protein expression of upstream regulators of YAP and in relation to different level of Bcl-2 protein. The effects of YAP silencing in Bcl-2 overexpressing cancer cells were evaluated in migration and cell viability assays in relation to different stiffness conditions. In vitro wound healing assays and co-cultures were used to evaluate cancer-specific Bcl-2 ability to activate fibroblasts. RESULTS: We demonstrated the Bcl-2-dependent modulation of Hippo Pathway in cancer cell lines from different tumor types by acting on upstream YAP regulators. YAP inhibition abolished the ability of Bcl-2 to increase tumor cell migration and proliferation on high stiffness condition of culture, to stimulate in vitro fibroblasts migration and to induce fibroblasts activation. CONCLUSIONS: We discovered that Bcl-2 regulates the Hippo pathway in different tumor types, promoting cell migration, adaptation to higher stiffness culture condition and fibroblast activation. Our data indicate that Bcl-2 inhibitors should be further investigated to counteract cancer-promoting mechanisms.


Subject(s)
Cell Movement , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-bcl-2 , Humans , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Movement/genetics , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , bcl-X Protein/metabolism , bcl-X Protein/genetics , Cell Proliferation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fibroblasts/metabolism
7.
Cell Death Dis ; 15(5): 323, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724507

ABSTRACT

Richter's syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into a high-grade B-cell malignancy. Molecular and functional studies have pointed out that CLL cells are close to the apoptotic threshold and dependent on BCL-2 for survival. However, it remains undefined how evasion from apoptosis evolves during disease transformation. Here, we employed functional and static approaches to compare the regulation of mitochondrial apoptosis in CLL and RS. BH3 profiling of 17 CLL and 9 RS samples demonstrated that RS cells had reduced apoptotic priming and lower BCL-2 dependence than CLL cells. While a subset of RS was dependent on alternative anti-apoptotic proteins and was sensitive to specific BH3 mimetics, other RS cases harbored no specific anti-apoptotic addiction. Transcriptomics of paired CLL/RS samples revealed downregulation of pro-apoptotic sensitizers during disease transformation. Albeit expressed, effector and activator members were less likely to colocalize with mitochondria in RS compared to CLL. Electron microscopy highlighted reduced cristae width in RS mitochondria, a condition further promoting apoptosis resistance. Collectively, our data suggest that RS cells evolve multiple mechanisms that lower the apoptotic priming and shift the anti-apoptotic dependencies away from BCL-2, making direct targeting of mitochondrial apoptosis more challenging after disease transformation.


Subject(s)
Apoptosis , Leukemia, Lymphocytic, Chronic, B-Cell , Mitochondria , Proto-Oncogene Proteins c-bcl-2 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Mitochondria/metabolism , Male , Female , Middle Aged
8.
BMC Cardiovasc Disord ; 24(1): 287, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816768

ABSTRACT

BACKGROUND: The activation of G protein-coupled receptors (GPCR) signaling by external stimuli has been implicated in inducing cardiac stress and stress responses. GPR22 is an orphan GPCR expressed in brains and hearts, while its expression level is associated with cardiovascular damage in diabetes. Previous studies have suggested a protective role of GPR22 in mechanical cardiac stress, as loss of its expression increases susceptibility to heart failure post-ventricular pressure overload. However, the involvement and underlying signaling of GPR22 in cardiac stress response to ischemic stress remains unexplored. METHODS: In this study, we used cultured cells and a transgenic mouse model with cardiomyocyte-specific GPR22 overexpression to investigate the impact of ischemic stress on GPR22 expression and to elucidate its role in myocardial ischemic injury. Acute myocardial infarction (AMI) was induced by left coronary artery ligation in eight-week-old male GPR22 transgenic mice, followed by histopathological and biochemical examination four weeks post-AMI induction. RESULTS: GPR22 expression in H9C2 and RL-14 cells, two cardiomyocyte cell lines, was decreased by cobalt chloride (CoCl2) treatment. Similarly, reduced expression of myocardial GPR22 was observed in mice with AMI. Histopathological examinations revealed a protective effect of GPR22 overexpression in attenuating myocardial infarction in mice with AMI. Furthermore, myocardial levels of Bcl-2 and activation of PI3K-Akt signaling were downregulated by ischemic stress and upregulated by GPR22 overexpression. Conversely, the expression levels of caspase-3 and phosphorylated ERK1/2 in the infarcted myocardium were downregulated with GPR22 overexpression. CONCLUSION: Myocardial ischemic stress downregulates cardiac expression of GPR22, whereas overexpression of GPR22 in cardiomyocytes upregulates Akt signaling, downregulates ERK activation, and mitigates ischemia-induced myocardial injury.


Subject(s)
Disease Models, Animal , Mice, Transgenic , Myocardial Infarction , Myocytes, Cardiac , Proto-Oncogene Proteins c-akt , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Male , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis , Cell Line , Mice, Inbred C57BL , Rats , Up-Regulation , Phosphorylation , Mice , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Caspase 3/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 1
9.
Fish Shellfish Immunol ; 149: 109574, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692379

ABSTRACT

B-cell lymphoma/leukemia-2 (BCL2), an anti-apoptotic factor in the mitochondrial regulatory pathway of apoptosis, is critically important in immune defenses. In this study, a novel BCL2 gene was characterized from Pteria penguin (P. penguin). The PpBCL2 was 1482 bp long, containing an open reading frame (ORF) of 588 bp encoding 195 amino acids. Four highly conserved BCL-2 homology (BH) domains were found in PpBCL2. Amino acid alignment and phylogenetic tree showed that PpBCL2 had the highest similarity with BCL2 of Crassostrea gigas at 65.24 %. Tissue expression analysis showed that PpBCL2 had high constitutive expression in gill, digestive diverticulum and mantle, and was significantly increased 72 h of Vibrio parahaemolyticus (V. parahaemolyticus) challenge in these immune tissues. Furthermore, PpBCL2 silencing significantly inhibited antimicrobial activity of hemolymph supernatant by 1.4-fold, and significantly reduced the survival rate by 51.7 % at 72 h post infection in P. penguin. These data indicated that PpBCL2 played an important role in immune response of P. penguin against V. parahaemolyticus infection.


Subject(s)
Amino Acid Sequence , Immunity, Innate , Phylogeny , Proto-Oncogene Proteins c-bcl-2 , Sequence Alignment , Spheniscidae , Vibrio parahaemolyticus , Animals , Vibrio parahaemolyticus/physiology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/immunology , Spheniscidae/immunology , Spheniscidae/genetics , Sequence Alignment/veterinary , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Vibrio Infections/immunology , Vibrio Infections/veterinary , Base Sequence
10.
J Med Chem ; 67(10): 7836-7858, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38695063

ABSTRACT

The approval of venetoclax, a B-cell lymphoma-2 (Bcl-2) selective inhibitor, for the treatment of chronic lymphocytic leukemia demonstrated that the antiapoptotic protein Bcl-2 is a druggable target for B-cell malignancies. However, venetoclax's limited potency cannot produce a strong, durable clinical benefit in other Bcl-2-mediated malignancies (e.g., diffuse large B-cell lymphomas) and multiple recurrent Bcl-2 mutations (e.g., G101V) have been reported to mediate resistance to venetoclax after long-term treatment. Herein, we described novel Bcl-2 inhibitors with increased potency for both wild-type (WT) and mutant Bcl-2. Comprehensive structure optimization led to the clinical candidate BGB-11417 (compound 12e, sonrotoclax), which exhibits strong in vitro and in vivo inhibitory activity against both WT Bcl-2 and the G101V mutant, as well as excellent selectivity over Bcl-xL without obvious cytochrome P450 inhibition. Currently, BGB-11417 is undergoing phase II/III clinical assessments as monotherapy and combination treatment.


Subject(s)
Antineoplastic Agents , Mutation , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Mice , Cell Line, Tumor , Sulfonamides/pharmacology , Sulfonamides/chemistry , Rats , Drug Discovery
11.
Med Oncol ; 41(6): 148, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733486

ABSTRACT

Numerous herbal products have been the subject of research regarding their potential role in cancer prevention or adjuvant therapy. Pistacia atlantica and its main phytochemicals have garnered significant attention for their potential anti-cancer effects. The study aimed to assess the growth inhibitory effects of P. atlantica essential oil (PAEO) on MKN-45 and AGS cells. This study quantified the volatile compounds in PAEO using Gas Chromatography-Mass Spectrometry (GC-MS). Subsequently, MKN-45 and AGS cells were treated with varying concentrations of PAEO (5%, 2.5%, 1.25%, 0.625%, 0.3125%, 0.156%, 0.0781%, 0.0391%, 0.0195%) for 24 h. Cell viability was evaluated through the MTT assay. The impact of PAEO on gene expression was investigated by quantifying the mRNA levels of Bax and Bcl2 in the various experimental groups using quantitative Real-Time PCR (qRT-PCR) analysis. Additionally, flow cytometry was utilized to evaluate apoptosis in the treated cells. The analysis of PAEO revealed that α-pinene was the predominant monoterpene, constituting 87.9% of the oil composition. The cytotoxic effects of PAEO were evaluated, and it was found that the oil significantly reduced the viability of MKN-45 and AGS cells. The IC50 for MKN-45 cells was determined to be 1.94 × 10-3% after 24 h of treatment, while for AGS cells the IC50 was 2.8 × 10-3% after 24 h. Additionally, the research revealed that PAEO triggered a notable rise in apoptotic cells in both AGS and MKN-45 cell lines. Moreover, at the molecular level, the findings indicated an increase in Bax expression and a decrease in Bcl2 mRNA expression, providing further evidence of the induction of apoptosis in both MKN-45 and AGS cell lines following PAEO treatment. The findings of this study offer evidence supporting the cytotoxic effects of PAEO on gastric cancer cell lines by promoting apoptosis. The findings suggest that PAEO may offer potential as a therapeutic candidate in managing and treating gastric cancer.


Subject(s)
Apoptosis , Cell Survival , Oils, Volatile , Pistacia , Stomach Neoplasms , Humans , Oils, Volatile/pharmacology , Pistacia/chemistry , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Gas Chromatography-Mass Spectrometry
12.
Parasite Immunol ; 46(5): e13035, 2024 May.
Article in English | MEDLINE | ID: mdl-38712475

ABSTRACT

Trichinella spiralis (T. spiralis) is an immunomodulating parasite that can adversely affect tumor growth and extend host lifespan. The aim of this study was to elucidate the mechanisms by which T. spiralis larval antigens achieve this effect using Ehrlich solid carcinoma (ESC) murine model. Assessment was done by histopathological and immunohistochemical analysis of caspase-3, TNF-α, Ki-67 and CD31. Additionally, Bcl2 and Bcl2-associated protein X (Bax) relative gene expression was assessed by molecular analysis for studying the effect of T. spiralis crude larval extract (CLE) antigen on tumor necrosis, apoptosis, cell proliferation and angiogenesis. We found that both T. spiralis infection and CLE caused a decrease in the areas of necrosis in ESC. Moreover, they led to increased apoptosis through activation of caspase-3, up-regulation of pro-apoptotic gene, Bax and down-regulation of anti-apoptotic gene, Bcl2. Also, T. spiralis infection and CLE diminished ESC proliferation, as evidenced by decreasing Ki-67. T. spiralis infection and CLE were able to suppress the development of ESC by inhibiting tumor proliferation, inducing apoptosis and decreasing tumor necrosis, with subsequent decrease in tumor metastasis. T. spiralis CLE antigen may be considered as a promising complementary immunotherapeutic agent in the treatment of cancer.


Subject(s)
Carcinoma, Ehrlich Tumor , Larva , Trichinella spiralis , Animals , Trichinella spiralis/drug effects , Mice , Larva/drug effects , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Carcinoma, Ehrlich Tumor/immunology , Apoptosis/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Antigens, Helminth/immunology , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Ki-67 Antigen/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Tumor Necrosis Factor-alpha/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Immunohistochemistry
13.
Mol Biol Rep ; 51(1): 676, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796661

ABSTRACT

BACKGROUND: The current understanding emphasizes the intricate interplay between the Leukemic cell and its environment. Platelet-derived microparticles play a crucial role in facilitating intercellular communication and contribute to the complex landscape of cancer pathology. This study aimed to investigate the influence of platelet-derived microparticles on cell proliferation, apoptosis, and the expression of key genes, including P53, P21, Cyclin D1, Bax, and Bcl-2, within the context of a chronic myeloid leukemia cell line (K562). METHODS AND RESULTS: Platelet-derived microparticles were obtained through centrifugation at various speeds, and their concentration was quantified using the BCA assay. To determine the size and immunophenotypic characteristics of the PMPs, both the DLS technique and flow cytometry were employed. Cell proliferation was assessed using the MTT assay and hemocytometer, and cell cycle analysis was conducted through DNA content evaluation. Real-time PCR was utilized for gene expression analysis of Bax, Bcl-2, Cyclin D1, P53, and P21. Flow cytometry was employed to examine cell apoptosis. The findings revealed that platelet-derived microparticles have the ability to decrease proliferation of the K562 cell line, while not exerting an impact on apoptosis and cell cycle progression. Analysis through real-time PCR indicated an upregulation in the gene expression of P53, P21, and Bcl-2, accompanied by a downregulation in Bax and Cyclin D1. CONCLUSION: This investigation sheds light on the intricate relationship between chronic myeloid leukemia and its microenvironment, particularly the involvement of platelet-derived microparticles. The study underscores the potential of platelet-derived microparticles to influence cell behavior and gene expression, providing a deeper understanding of their role in CML and its therapeutic implications.


Subject(s)
Apoptosis , Blood Platelets , Cell Proliferation , Cell-Derived Microparticles , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Cell-Derived Microparticles/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Blood Platelets/metabolism , K562 Cells , Cell Proliferation/genetics , Apoptosis/genetics , Cell Cycle/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Cyclin D1/metabolism , Cyclin D1/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Gene Expression Regulation, Leukemic
14.
Int J Pharm ; 658: 124199, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38703928

ABSTRACT

Dendrimers have emerged as an important group of nanoparticles to transport drugs, DNA, or RNA into target cells in cancer and other diseases. Various functional modifications can be imposed on dendrimers to increase the efficacy and specificity in delivering their cargo to the target cells and decrease their toxicity. In the present work, we evaluated the potential of carbosilane polyphenolic dendrimers modified with caffeic acid (CA) and polyethylene glycol (PEG) to deliver proapoptotic Mcl-1 and Bcl-2 siRNAs to A549 cancer cells. Dendrimers formed stable complexes with siRNAs as assessed by transmission electron microscopy and gel electrophoresis. Modification of dendrimers with PEG reduced the size and the zeta potential of dendrimer/siRNA complexes. The presence of PEG caused a red shift of the CD spectrum, and this effect was the more pronounced, the higher the dendrimer/siRNA ratio was. The nanocomplexes were internalized by A549. All studied dendrimer/siRNA formulations inhibited tumor cell migration and adhesion and caused an increase in the population of early apoptotic cells. Among four tested dendrimers, the polyphenolic compound containing two caffeic acid moieties complexed with siRNA demonstrated the lowest polydispersity index and showed an excellent transfection profile. In conclusion, this dendrimer are a promising candidate for the delivery of siRNA into cancer cells in further in vivo studies.


Subject(s)
Apoptosis , Dendrimers , Polyethylene Glycols , Polyphenols , RNA, Small Interfering , Humans , Dendrimers/chemistry , Dendrimers/administration & dosage , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , A549 Cells , Apoptosis/drug effects , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/administration & dosage , Polyethylene Glycols/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Caffeic Acids/administration & dosage , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Cell Movement/drug effects , Drug Carriers/chemistry , Silanes/chemistry , Transfection/methods , Cell Line, Tumor
15.
Zhongguo Zhong Yao Za Zhi ; 49(3): 744-753, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621878

ABSTRACT

This study observed the protective effect of resveratrol(Res) on ovarian function in poor ovarian response(POR) mice by regulating the Hippo signaling pathway and explored the potential mechanism of Res in inhibiting ovarian cell apoptosis. Female mice with regular estrous cycles were randomly divided into a blank group, a model group, and low-and high-dose Res groups(20 and 40 mg·kg~(-1)), with 20 mice in each group. The blank group received an equal volume of 0.9% saline solution by gavage, while the model group and Res groups received suspension of glycosides of Triptergium wilfordii(GTW) at 50 mg·kg~(-1) by gavage for two weeks to induce the model. After modeling, the low-and high-dose Res groups were continuously treated with drugs by gavage for two weeks, while the blank group and the model group received an equal volume of 0.9% saline solution by gavage. Ovulation was induced in all groups on the day following the end of treatment. Finally, 12 female mice were randomly selected from each group, and the remaining eight female mice were co-housed with male mice at a ratio of 1∶1. Changes in the estrous cycle of mice were observed using vaginal cytology smears. The number of ovulated eggs, ovarian wet weight, ovarian index, and pregnancy rate of mice were measured. The le-vels of anti-Mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in serum were determined using enzyme-linked immunosorbent assay(ELISA). Ovarian tissue morphology and ovarian cell apoptosis were observed using hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining, respectively. The protein expression levels of yes-associated protein(YAP) 1 and transcriptional coactivator with PDZ-binding motif(TAZ) were detected by immunohistochemistry(IHC), while the changes in protein expression levels of mammalian sterile 20-like kinase(MST) 1/2, large tumor suppressor(LATS) 1/2, YAP1, TAZ, B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) were determined by Western blot. The results showed that compared with the blank group, the model group had an increased rate of estrous cycle disruption in mice, a decreased number of normally developing ovarian follicles, an increased number of blocked ovarian follicles, increased ovarian granulosa cell apoptosis, decreased ovulation, reduced ovarian wet weight and ovarian index, increased serum FSH and LH levels, decreased AMH and E_2 levels, decreased protein expression levels of YAP1 and TAZ in ovarian tissues, increased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and decreased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Additionally, the number of embryos per litter significantly decreased after co-housing. Compared with the model group, the low-and high-dose Res groups exhibited reduced estrous cycle disruption rates in mice, varying degrees of improvement in the number and morphology of ovarian follicles, reduced numbers of blocked ovarian follicles, improved ovarian granulosa cell apoptosis, increased ovulation, elevated ovarian wet weight and ovarian index, decreased serum FSH and LH levels, increased AMH and E_2 levels, elevated protein expression levels of YAP1 and TAZ in ovarian tissues, decreased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and increased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Furthermore, the number of embryos per litter increased to varying degrees after co-housing. In conclusion, Res effectively inhibits ovarian cell apoptosis in mice and improves ovarian responsiveness. Its mechanism may be related to the regulation of key molecules in the Hippo pathway.


Subject(s)
Hippo Signaling Pathway , Ovary , Pregnancy , Mice , Female , Male , Animals , bcl-2-Associated X Protein/metabolism , Resveratrol/pharmacology , Saline Solution/metabolism , Saline Solution/pharmacology , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Mammals/metabolism
16.
Mol Biol Rep ; 51(1): 513, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622345

ABSTRACT

BACKGROUND: In recent years, anti-angiogenic peptides have received considerable attention as candidates for cancer treatment. Arresten is an angiogenesis inhibitor that cleaves from the α1 chain of type IV collagen and stimulates apoptosis in endothelial cells. We have recently indicated that a peptide corresponding to the amino acid 78 to 86 of arresten, so-called Ars, prevented the migration and tube formation of HUVECs and the colon carcinoma growth in mice significantly. The current study aimed to determine whether induction of apoptotic cell death in endothelial cells is one of the biochemical mechanisms of this anti-angiogenic peptide. METHODS AND RESULTS: This hypothesis was assessed using the MTT assay, cell cycle analysis, Annexin V-FITC/PI staining, BCL2, CASP8, CASP9, p53, and CDKN2A gene expression studies as well as evaluating apoptosis in tumor tissues by TUNEL assay. Results demonstrated that 40 µM of Ars significantly stimulated 46.2% of early and late apoptosis in HUVECs compared to 13.6% in the untreated cells and did not significantly alter the cell cycle distribution. Moreover, BCL2 and CASP8 were down-regulated, while CASP9 and p53 were up-regulated in endothelial cells. CDKN2A gene expression, the regulator of G1 cell cycle arrest, was not significantly altered. CONCLUSIONS: It might be suggested that Ars induced apoptosis in endothelial cells through the mitochondrial pathway and had no effect on the cell cycle. Besides, Ars induced apoptosis significantly in vivo. However, further studies are required to confirm the detailed molecular mechanism of Ars, this peptide has the potential to be optimized for clinical translations.


Subject(s)
Endothelial Cells , Tumor Suppressor Protein p53 , Mice , Animals , Endothelial Cells/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Apoptosis , Peptides/pharmacology , Peptides/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Proliferation , Cell Line, Tumor
17.
Bratisl Lek Listy ; 125(5): 311-317, 2024.
Article in English | MEDLINE | ID: mdl-38624056

ABSTRACT

OBJECTIVES: In this study, we analyzed pTa bladder cancer (BC) for molecular markers BCL2, TP53, FOXA1, and GATA3 in relation to cancer recurrence. METHODS: We analyzed samples of 79 patients with the pTa stage of BC using a real-time polymerase chain reaction (real-time PCR) between September 2018 and September 2020. The expression levels of BCL2, TP53, FOXA1, and GATA3 were compared with homologous non-tumor bladder tissue. RESULTS: Expression of FOXA1, GATA3, and TP53 was significantly higher (p<0.01) in NMIBC samples compared to homologous non-tumor tissue. The expression of TP53 and FOXA1 in pTa was significantly lower (p<0.01) in the high-grade (HG) tumor when compared to the low-grade (LG) tumor. In contrast, the relative quantification (RQ) of GATA3 was significantly higher (p<0.01) in HG pTa. Patients with recurrence (pTa=33) had significantly higher expression of TP53, and GATA3 (p<0.01), and the gene of FOXA1 (p<0.01) had a significantly lower expression when compared to pTa tumors without recurrence. The expression of Bcl-2 was not statistically significant. CONCLUSION: Our results, indicate, that comparing expression levels of these genes in cancer and cancer-free tissue could provide valuable data, as patients with pTa BC recurrence within up to 54 months of follow-up had a significantly higher RQ of TP53, GATA3, and FOXA1 when compared to pTa BC patients without recurrence (Tab. 2, Fig. 8, Ref. 54). Text in PDF www.elis.sk Keywords: bladder cancer, gene expression, recurrence, GATA3, FOXA1, TP53, BCL2.


Subject(s)
Urinary Bladder Neoplasms , Urinary Bladder , Humans , Urinary Bladder/chemistry , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Biomarkers, Tumor/analysis , Tumor Suppressor Protein p53/genetics , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism
18.
Sci Rep ; 14(1): 9636, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671055

ABSTRACT

In consideration of the chromones' therapeutic potential and anticancer activity, a new series of chromanone derivatives have been synthesized through a straightforward reaction between 6-formyl-7-hydroxy-5-methoxy-2-methylchromone (2) and various organic active compounds. The cytotoxic activity of the newly synthesized congeners was investigated against MCF-7 (human breast cancer), HCT-116 (colon cancer), HepG2 (liver cancer), and normal skin fibroblast cells (BJ1). The obtained data indicated that compounds 14b, 17, and 19 induce cytotoxic activity in the breast MCF7, while compounds 6a, 6b, 11 and 14c showed highly potent activity in the colon cancer cell lines. Overall, the results demonstrate that the potential cytotoxic effects of the studied compounds may be based on their ability to induce DNA fragmentation in cancer cell lines, down-regulate the expression level of CDK4 as well as the anti-apoptotic gene Bcl-2 and up-regulate the expression of the pro-apoptotic genes P53 and Bax. Furthermore, compounds 14b and 14c showed a dual mechanism of action by inducing apoptosis and cell cycle arrest. The docking studies showed that the binding affinity of the most active cytotoxic compounds within the active pocket of the CDK4 enzyme is stronger due to hydrophobic and H-bonding interactions. These results were found to be consistent with the experimental results.


Subject(s)
Antineoplastic Agents , Apoptosis , Chromones , Molecular Docking Simulation , Humans , Chromones/chemistry , Chromones/pharmacology , Chromones/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , MCF-7 Cells , Cell Line, Tumor , HCT116 Cells , Hep G2 Cells , Cyclin-Dependent Kinase 4/metabolism , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Drug Screening Assays, Antitumor
19.
Cells ; 13(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38667315

ABSTRACT

Cervical cancer is a major cause of death in women despite the advancement of current treatment modalities. The conventional therapeutic agent, cisplatin (CCDP), is the standard treatment for CC; however, resistance often develops due to the cancer's heterogeneity. Therefore, a detailed elucidation of the specific molecular mechanisms driving CC is crucial for the development of targeted therapeutic strategies. Retinoblastoma binding protein 6 (RBBP6) is a potential biomarker associated with cell proliferation and is upregulated in cervical cancer sites, exhibiting apoptosis and dysregulated p53 expression. Furthermore, RBBP6 has been demonstrated to sensitize cancer cells to radiation and certain chemotherapeutic agents by regulating the Bcl-2 gene, thus suggesting a crosstalk among RBBP6/p53/BCL-2 oncogenic signatures. The present study, therefore, investigated the relationship between cisplatin and RBBP6 expression in CC cells. Herein, we first explored bioinformatics simulations and identified that the RBBP6/p53/BCL-2 signaling pathway is overexpressed and correlated with CC. For further analysis, we explored the Genomics of Drug Sensitivity in Cancer (GDSC) and found that most of the CC cell lines are sensitive to CCDP. To validate these findings, RBBP6 was silenced in HeLa and Vero cells using RNAi technology, followed by measurement of wild-type p53 and Bcl-2 at the mRNA level using qPCR. Cells co-treated with cisplatin and siRBBP6 were subsequently analyzed for apoptosis induction and real-time growth monitoring using flow cytometry and the xCELLigence system, respectively. Cancer cells in the co-treatment group showed a reduction in apoptosis compared to the cisplatin-treated group. Moreover, the real-time growth monitoring revealed a reduced growth rate in RBBP6 knockdown cells treated with cisplatin. Although wild-type p53 remained unchanged in the co-treatment group of cancer cells, Bcl-2 was completely repressed, suggesting that RBBP6 is necessary for sensitizing cervical cancer cells to cisplatin treatment by downregulating Bcl-2. The Vero cell population, which served as a non-cancerous control cell line in this study, remained viable following treatment with both siRBBP6 and cisplatin. Findings from this study suggest that RBBP6 expression promotes cisplatin sensitivity in HeLa cells through Bcl-2 downregulation. Knockdown of RBBP6 limits apoptosis induction and delays cell growth inhibition in response to cisplatin. The knowledge obtained here has the potential to help improve cisplatin efficacy through personalized administration based on the expression profile of RBBP6 among individual patients.


Subject(s)
Cisplatin , DNA-Binding Proteins , Ubiquitin-Protein Ligases , Uterine Cervical Neoplasms , Humans , Cisplatin/pharmacology , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/drug therapy , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Gene Expression Regulation, Neoplastic/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Apoptosis/drug effects , Apoptosis/genetics , Gene Knockdown Techniques , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , HeLa Cells
20.
Front Biosci (Landmark Ed) ; 29(4): 162, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38682177

ABSTRACT

BACKGROUND AND OBJECTIVE: There is a growing need to comprehend the potential outcomes of nanoparticles (NPs) on human well-being, including their potential for detecting and treating leukemia. This study examined the role of iron folate core-shell and iron oxide nanoparticles in inducing apoptosis and altering the expression of the B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and Caspase-3 genes in leukemia cells. METHODS: The obtained iron oxide and iron folate core-shell nanoparticles were analyzed using a variety of analytical techniques, including ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and transmission electron microscopy (TEM). Additionally, FTIR and UV-Vis were used to characterize doxorubicin. The MTT test was utilized to investigate the cytotoxicity of iron oxide and iron folate core-shell nanoparticles. The expression of the apoptotic signaling proteins Bcl-2, Bax, and Caspase-3 was evaluated using the real-time reverse transcription polymerase chain reaction (RT-qPCR) method. Additionally, flow cytometry was performed to gauge the degrees of necrosis and apoptosis. RESULTS: UV-Visible spectroscopy analysis showed that the generated iron oxide and iron folate core-shell NPs had a distinctive absorption curve in the 250-300 nm wavelength range. The XRD peaks were also discovered to index the spherical form with a size of less than 50 nm, which validated the crystal structure. The FTIR analysis determined the bonds and functional groups at wavenumbers between 400 and 4000 cm-1. A viable leukemia treatment approach is a nanocomposite consisting of iron and an iron folate core-shell necessary for inhibiting and activating cancer cell death. The nearly resistant apoptosis in the CCRF-CEM cells may have resulted from upregulating Bax and Casepase-3 while downregulating Bcl-2 expression. CONCLUSIONS: Our study documents the successful synthetization and characterization of iron oxide, which has excellent anticancer activities. A metal oxide conjugation with the nanoparticles' core-shell enhanced the effect against acute leukemia.


Subject(s)
Apoptosis , Folic Acid , Humans , Folic Acid/chemistry , Folic Acid/pharmacology , Apoptosis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Caspase 3/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Leukemia/drug therapy , Leukemia/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/chemistry , Ferric Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...