Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
J Exp Med ; 219(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34792530

ABSTRACT

During the immune response, CD4+ T cells differentiate into distinct effector subtypes, including follicular helper T (Tfh) cells that help B cells, and into memory cells. Tfh and memory cells are required for long-term immunity; both depend on the transcription factor Bcl6, raising the question whether they differentiate through similar mechanisms. Here, using single-cell RNA and ATAC sequencing, we show that virus-responding CD4+ T cells lacking both Bcl6 and Blimp1 can differentiate into cells with transcriptomic, chromatin accessibility, and functional attributes of memory cells but not of Tfh cells. Thus, Bcl6 promotes memory cell differentiation primarily through its repression of Blimp1. These findings demonstrate that distinct mechanisms underpin the differentiation of memory and Tfh CD4+ cells and define the Bcl6-Blimp1 axis as a potential target for promoting long-term memory T cell differentiation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Memory T Cells/immunology , Positive Regulatory Domain I-Binding Factor 1/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , T Follicular Helper Cells/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cells, Cultured , Chromatin Immunoprecipitation Sequencing/methods , Gene Expression Profiling/methods , Memory T Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , RNA-Seq/methods , Single-Cell Analysis/methods , T Follicular Helper Cells/metabolism
3.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34772811

ABSTRACT

Chronic viral infections subvert protective B cell immunity. An early type I interferon (IFN-I)-driven bias to short-lived plasmablast differentiation leads to clonal deletion, so-called "decimation," of antiviral memory B cells. Therefore, prophylactic countermeasures against decimation remain an unmet need. We show that vaccination-induced CD4 T cells prevented the decimation of naïve and memory B cells in chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. Although these B cell responses were largely T independent when IFN-I was blocked, preexisting T help assured their sustainability under conditions of IFN-I-driven inflammation by instructing a germinal center B cell transcriptional program. Prevention of decimation depended on T cell-intrinsic Bcl6 and Tfh progeny formation. Antigen presentation by B cells, interactions with antigen-specific T helper cells, and costimulation by CD40 and ICOS were also required. Importantly, B cell-mediated virus control averted Th1-driven immunopathology in LCMV-challenged animals with preexisting CD4 T cell immunity. Our findings show that vaccination-induced Tfh cells represent a cornerstone of effective B cell immunity to chronic virus challenge, pointing the way toward more effective B cell-based vaccination against persistent viral diseases.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Persistent Infection/immunology , Vaccines/immunology , Virus Diseases/immunology , Animals , Antibodies, Viral/immunology , Antigen Presentation/immunology , Antiviral Agents/immunology , Cells, Cultured , Germinal Center/immunology , Inflammation/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Memory B Cells/immunology , Mice , Proto-Oncogene Proteins c-bcl-6/immunology , T-Lymphocytes, Helper-Inducer/immunology , Th1 Cells/immunology , Vaccination/methods
4.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34665220

ABSTRACT

T follicular helper cell (TFH)-dependent antibody responses are critical for long-term immunity. Antibody responses are diminished in early life, limiting long-term protective immunity and allowing prolonged or recurrent infection, which may be important for viral lung infections that are highly prevalent in infancy. In a murine model using respiratory syncytial virus (RSV), we show that TFH and the high-affinity antibody production they promote are vital for preventing disease on RSV reinfection. Following a secondary RSV infection, TFH-deficient mice had significantly exacerbated disease characterized by delayed viral clearance, increased weight loss, and immunopathology. TFH generation in early life was compromised by heightened IL-2 and STAT5 signaling in differentiating naive T cells. Neutralization of IL-2 during early-life RSV infection resulted in a TFH-dependent increase in antibody-mediated immunity and was sufficient to limit disease severity upon reinfection. These data demonstrate the importance of TFH in protection against recurrent RSV infection and highlight a mechanism by which this is suppressed in early life.


Subject(s)
Interleukin-2/immunology , Respiratory Syncytial Virus Infections/immunology , T Follicular Helper Cells/immunology , T Follicular Helper Cells/virology , Age Factors , Animals , Antibodies, Viral , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/virology , Female , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/virology , Immunity, Humoral , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-2/physiology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Mutant Strains , Pregnancy , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/immunology , Reinfection/immunology , Reinfection/virology , Respiratory Syncytial Virus Infections/metabolism , STAT5 Transcription Factor/metabolism
5.
Immunity ; 54(10): 2245-2255.e4, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34464595

ABSTRACT

BCL6 is required for development of follicular T helper (Tfh) cells to support germinal center (GC) formation. However, it is not clear what unique functions programmed by BCL6 can explain its absolute essentiality in T cells for GC formation. We found that ablation of one Bcl6 allele did not appreciably alter early T cell activation and follicular localization but inhibited GC formation and Tfh cell maintenance. BCL6 impinged on Tfh calcium signaling and also controlled Tfh entanglement with and CD40L delivery to B cells. Amounts of BCL6 protein and nominal frequencies of Tfh cells markedly changed within hours after strengths of T-B cell interactions were altered in vivo, while CD40L overexpression rectified both defective GC formation and Tfh cell maintenance because of the BCL6 haploinsufficiency. Our results reveal BCL6 functions in Tfh cells that are essential for GC formation and suggest that BCL6 helps maintain Tfh cell phenotypes in a T cell non-autonomous manner.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Lymphocyte Activation/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , T Follicular Helper Cells/immunology , Animals , Mice
6.
Int Immunol ; 33(8): 409-422, 2021 07 23.
Article in English | MEDLINE | ID: mdl-33914894

ABSTRACT

Upon activation, specific CD4+ T cells up-regulate the expression of CD11a and CD49d, surrogate markers of pathogen-specific CD4+ T cells. However, using T-cell receptor transgenic mice specific for a Plasmodium antigen, termed PbT-II, we found that activated CD4+ T cells develop not only to CD11ahiCD49dhi cells, but also to CD11ahiCD49dlo cells during acute Plasmodium infection. CD49dhi PbT-II cells, localized in the red pulp of spleens, expressed transcription factor T-bet and produced IFN-γ, indicating that they were type 1 helper T (Th1)-type cells. In contrast, CD49dlo PbT-II cells resided in the white pulp/marginal zones and were a heterogeneous population, with approximately half of them expressing CXCR5 and a third expressing Bcl-6, a master regulator of follicular helper T (Tfh) cells. In adoptive transfer experiments, both CD49dhi and CD49dlo PbT-II cells differentiated into CD49dhi Th1-type cells after stimulation with antigen-pulsed dendritic cells, while CD49dhi and CD49dlo phenotypes were generally maintained in mice infected with Plasmodium chabaudi. These results suggest that CD49d is expressed on Th1-type Plasmodium-specific CD4+ T cells, which are localized in the red pulp of the spleen, and can be used as a marker of antigen-specific Th1 CD4+ T cells, rather than that of all pathogen-specific CD4+ T cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Integrin alpha4/immunology , Malaria/immunology , Plasmodium chabaudi/immunology , T Follicular Helper Cells/immunology , Th1 Cells/immunology , Adoptive Transfer/methods , Animals , Cells, Cultured , Dendritic Cells/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-bcl-6/immunology , Spleen/immunology , T-Lymphocytes, Helper-Inducer/immunology
7.
J Immunol ; 206(9): 2233-2245, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33879579

ABSTRACT

Induction of lung mucosal immune responses is highly desirable for vaccines against respiratory infections. We recently showed that monocyte-derived dendritic cells (moDCs) are responsible for lung IgA induction. However, the dendritic cell subset inducing lung memory TH cells is unknown. In this study, using conditional knockout mice and adoptive cell transfer, we found that moDCs are essential for lung mucosal responses but are dispensable for systemic vaccine responses. Next, we showed that mucosal adjuvant cyclic di-GMP differentiated lung moDCs into Bcl6+ mature moDCs promoting lung memory TH cells, but they are dispensable for lung IgA production. Mechanistically, soluble TNF mediates the induction of lung Bcl6+ moDCs. Our study reveals the functional heterogeneity of lung moDCs during vaccination and paves the way for an moDC-targeting vaccine strategy to enhance immune responses on lung mucosa.


Subject(s)
Cyclic GMP/analogs & derivatives , Lung/immunology , Monocytes/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , Vaccines/immunology , Adjuvants, Immunologic , Animals , Cell Differentiation/immunology , Cyclic GMP/immunology , Dendritic Cells/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Th1 Cells/immunology
8.
Sci Rep ; 11(1): 1864, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479388

ABSTRACT

The ferret is a key animal model for investigating the pathogenicity and transmissibility of important human viruses, and for the pre-clinical assessment of vaccines. However, relatively little is known about the ferret immune system, due in part to a paucity of ferret-reactive reagents. In particular, T follicular helper (Tfh) cells are critical in the generation of effective humoral responses in humans, mice and other animal models but to date it has not been possible to identify Tfh in ferrets. Here, we describe the screening and development of ferret-reactive BCL6, CXCR5 and PD-1 monoclonal antibodies. We found two commercial anti-BCL6 antibodies (clone K112-91 and clone IG191E/A8) had cross-reactivity with lymph node cells from influenza-infected ferrets. We next developed two murine monoclonal antibodies against ferret CXCR5 (clone feX5-C05) and PD-1 (clone fePD-CL1) using a single B cell PCR-based method. We were able to clearly identify Tfh cells in lymph nodes from influenza infected ferrets using these antibodies. The development of ferret Tfh marker antibodies and the identification of ferret Tfh cells will assist the evaluation of vaccine-induced Tfh responses in the ferret model and the design of novel vaccines against the infection of influenza and other viruses, including SARS-CoV2.


Subject(s)
Antibodies, Monoclonal/immunology , Ferrets/immunology , High-Throughput Screening Assays/methods , T Follicular Helper Cells/immunology , Animals , Antibodies, Monoclonal/isolation & purification , COVID-19 Vaccines/immunology , Cross Reactions/immunology , Humans , Influenza Vaccines/immunology , Lymph Nodes/immunology , Mice , Programmed Cell Death 1 Receptor/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , Receptors, CXCR5/immunology , Viral Vaccines/immunology
9.
Mol Cell ; 80(5): 845-861.e10, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33232656

ABSTRACT

Locus control region (LCR) functions define cellular identity and have critical roles in diseases such as cancer, although the hierarchy of structural components and associated factors that drive functionality are incompletely understood. Here we show that OCA-B, a B cell-specific coactivator essential for germinal center (GC) formation, forms a ternary complex with the lymphoid-enriched OCT2 and GC-specific MEF2B transcription factors and that this complex occupies and activates an LCR that regulates the BCL6 proto-oncogene and is uniquely required by normal and malignant GC B cells. Mechanistically, through OCA-B-MED1 interactions, this complex is required for Mediator association with the BCL6 promoter. Densely tiled CRISPRi screening indicates that only LCR segments heavily bound by this ternary complex are essential for its function. Our results demonstrate how an intimately linked complex of lineage- and stage-specific factors converges on specific and highly essential enhancer elements to drive the function of a cell-type-defining LCR.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Locus Control Region/immunology , Animals , B-Lymphocytes/cytology , Cell Line, Tumor , Germinal Center/cytology , HEK293 Cells , Humans , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/immunology , Mice , Mice, Knockout , Organic Cation Transporter 2/genetics , Organic Cation Transporter 2/immunology , Proto-Oncogene Mas , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/immunology , Trans-Activators/genetics , Trans-Activators/immunology
10.
Immunity ; 53(3): 548-563.e8, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32857950

ABSTRACT

How antigen valency affects B cells in vivo during immune responses is not well understood. Here, using HIV immunogens with defined valencies ranging from 1 to 60, we investigated the role of antigen valency during different phases of B cell responses in vivo. Highly multimerized immunogens preferentially rapidly activated cognate B cells, with little affinity discrimination. This led to strong early induction of the transcription factors IRF4 (interferon regulatory factor 4) and Bcl6, driving both early extrafollicular plasma cell and germinal center responses, in a CD4+ T-cell-dependent manner, involving B cells with a broad range of affinities. Low-valency antigens induced smaller effector B cell responses, with preferential recruitment of high-affinity B cells. Thus, antigen valency has multifaceted effects on B cell responses and can dictate affinity thresholds and competitive landscapes for B cells in vivo, with implications for vaccine design.


Subject(s)
Antibody Affinity/immunology , Antigens/immunology , B-Lymphocytes/immunology , Binding Sites, Antibody/immunology , Germinal Center/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Proliferation/physiology , Interferon Regulatory Factors/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Plasma Cells/immunology , Protein Multimerization/immunology , Proto-Oncogene Proteins c-bcl-6/immunology
11.
J Immunol ; 205(4): 1050-1058, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32680956

ABSTRACT

CD11c+ T-bet+ B cells generated during ehrlichial infection require CD4+ T cell help and IL-21 signaling for their development, but the exact T cell subset required had not been known. In this study, we show in a mouse model of Ehrlichia muris that type 1 T follicular helper (TFH1) cells provide help to CD11c+ T-bet+ B cells via the dual secretion of IL-21 and IFN-γ in a CD40/CD40L-dependent manner. TFH1 cell help was delivered in two phases: IFN-γ signals were provided early in infection, whereas CD40/CD40L help was provided late in infection. In contrast to T-bet+ T cells, T-bet+ B cells did not develop in the absence of B cell-intrinsic Bcl-6 but were generated in the absence of T-bet. T-bet-deficient memory B cells were largely indistinguishable from their wild-type counterparts, although they no longer underwent switching to IgG2c. These data suggest that a primary function of T-bet in B cells during ehrlichial infection is to promote appropriate class switching, not lineage specification. Thus, CD11c+ memory B cells develop normally without T-bet but require Bcl-6 and specialized help from dual cytokine-producing TFH1 cells.


Subject(s)
CD11 Antigens/metabolism , Interferon-gamma/metabolism , Interleukins/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , T Follicular Helper Cells/metabolism , T-Box Domain Proteins/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD11 Antigens/immunology , CD40 Antigens/immunology , CD40 Antigens/metabolism , CD40 Ligand/immunology , CD40 Ligand/metabolism , Ehrlichia/immunology , Ehrlichia/metabolism , Female , Immunologic Memory/immunology , Interferon-gamma/immunology , Interleukins/immunology , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-bcl-6/immunology , Receptors, IgG/immunology , Receptors, IgG/metabolism , T Follicular Helper Cells/immunology , T-Box Domain Proteins/immunology
12.
Theranostics ; 10(9): 4250-4264, 2020.
Article in English | MEDLINE | ID: mdl-32226551

ABSTRACT

Diabetic retinopathy (DR) is a vision-threatening complication of diabetes mellitus characterized by chronic retinal microvascular inflammation. The involvement of CD4+ T cells in retinal vascular inflammation has been considered, but the specific subset and mechanism of T cell-mediated response during the process remains unclear. Here, we aim to investigate the potential role of follicular helper T (Tfh) cells, a newly identified subset of CD4+ T cells in retinal vascular inflammation in DR. Methods: Patients with DR were enrolled and the PD-1+CXCR5+CD4+ Tfh cells were detected in the peripheral blood by flow cytometry. The streptozotocin (STZ)-induced DR model and oxygen-induced retinopathy (OIR) model were established, and 79-6, an inhibitor of Bcl-6, was injected intraperitoneally to suppress Tfh cells. The Tfh cells-related genes were investigated in the spleen, lymph nodes, and retina of mice by flow cytometry, immunofluorescence, and qPCR. Results: The Tfh cells expanded in the circulation of patients with DR and also increased in circulation, lymph nodes and retinal tissues from the STZ-induced DR mice and OIR mice. Notably, inhibition of Bcl-6, a critical transcription factor for Tfh cells development, prevented upregulation of Tfh cells and its typical IL-21 cytokine, and ameliorated vascular leakage in DR mice or retinal angiogenesis in OIR mice, indicating that Bcl-6-directed Tfh cells could promote vascular inflammation and angiogenesis. Conclusions: Our results suggested that excessive Bcl-6-directed Tfh cells represent an unrecognized feature of DR and be responsible for the retinal vascular inflammation and angiogenesis, providing opportunities for new therapeutic approaches to DR.


Subject(s)
Diabetic Retinopathy/immunology , Interleukins/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , Retina , T Follicular Helper Cells/cytology , Animals , Female , Humans , Inflammation/immunology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Retina/immunology , Retina/pathology
13.
Exp Cell Res ; 390(2): 111986, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32240660

ABSTRACT

The lack of available, well characterized, established, domestic porcine cell lines hinders the advancement of porcine cellular immunology. A case of multicentric lymphoma was diagnosed in a market weight pig at the time of slaughter. Affected lymph nodes and spleen were collected and used for single cell isolation and analysis. Cell lines were established by 3 rounds of limiting dilution from splenic and subiliac lymph node lymphomas. Surface marker staining identified the cells as CD21+, CD79a+, CD20+, PAX5+, and CD3- and cells were grown and easily passaged in cell culture. Transcriptome analysis was carried out to further characterize these rapidly proliferating cells validating the initial cytometric findings, confirming their identity as B cell lymphomas, and suggesting that they arose from germinal center centroblasts with aberrant control of BCL6 expression. Functional analysis identified the cells as being involved in cancer, cell movement, cell survival, and apoptosis. These new porcine B cell lymphoma cell lines will be a valuable resource for more in-depth cellular investigations into the porcine immune system and cancer, as well as providing a potential tool for the growth of lymphotropic viruses of pigs and humans.


Subject(s)
B-Lymphocytes/immunology , Biomarkers, Tumor/genetics , Founder Effect , Lymphoma, B-Cell/genetics , Transcriptome , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Apoptosis , B-Lymphocytes/pathology , Biomarkers, Tumor/immunology , Cell Line, Tumor , Cell Lineage/genetics , Cell Lineage/immunology , Cell Movement , Cell Proliferation , Cell Separation/methods , Gene Expression Profiling , Humans , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , PAX5 Transcription Factor/genetics , PAX5 Transcription Factor/immunology , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/immunology , Spleen/immunology , Spleen/pathology , Swine
14.
J Clin Invest ; 130(7): 3717-3733, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32191636

ABSTRACT

T follicular helper (Tfh) cells are indispensable for the formation of germinal center (GC) reactions, whereas T follicular regulatory (Tfr) cells inhibit Tfh-mediated GC responses. Aberrant activation of Tfh cells contributes substantially to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE). Nonetheless, the molecular mechanisms mitigating excessive Tfh cell differentiation are not fully understood. Herein we demonstrate that the adenovirus E4 promoter-binding protein (E4BP4) mediates a feedback loop and acts as a transcriptional brake to inhibit Tfh cell differentiation. Furthermore, we show that such an immunological mechanism is compromised in patients with SLE. Establishing mice with either conditional knockout (cKO) or knockin (cKI) of the E4bp4 gene in T cells reveals that E4BP4 strongly inhibits Tfh cell differentiation. Mechanistically, E4BP4 regulates Bcl6 transcription by recruiting the repressive epigenetic modifiers HDAC1 and EZH2. E4BP4 phosphorylation site mutants have limited capability with regard to inhibiting Tfh cell differentiation. In SLE, we detected impaired phosphorylation of E4BP4, finding that this compromised transcription factor is positively correlated with disease activity. These findings unveiled molecular mechanisms by which E4BP4 restrains Tfh cell differentiation, whose compromised function is associated with uncontrolled autoimmune reactions in SLE.


Subject(s)
Basic-Leucine Zipper Transcription Factors/immunology , Cell Differentiation/immunology , Lupus Erythematosus, Systemic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Cell Differentiation/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/immunology , Female , Histone Deacetylase 1/genetics , Histone Deacetylase 1/immunology , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Male , Mice , Mice, Knockout , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/immunology , T-Lymphocytes, Helper-Inducer/pathology
15.
Sci Immunol ; 5(43)2020 01 24.
Article in English | MEDLINE | ID: mdl-31980486

ABSTRACT

T follicular helper cells (TFH) participate in germinal center (GC) development and are necessary for B cell production of high-affinity, isotype-switched antibodies. In a forward genetic screen, we identified a missense mutation in Prkd2, encoding the serine/threonine kinase protein kinase D2, which caused elevated titers of immunoglobulin E (IgE) in the serum. Subsequent analysis of serum antibodies in mice with a targeted null mutation of Prkd2 demonstrated polyclonal hypergammaglobulinemia of IgE, IgG1, and IgA isotypes, which was exacerbated by the T cell-dependent humoral response to immunization. GC formation and GC B cells were increased in Prkd2-/- spleens. These effects were the result of excessive cell-autonomous TFH development caused by unrestricted Bcl6 nuclear translocation in Prkd2-/- CD4+ T cells. Prkd2 directly binds to Bcl6, and Prkd2-dependent phosphorylation of Bcl6 is necessary to constrain Bcl6 to the cytoplasm, thereby limiting TFH development. In response to immunization, Bcl6 repressed Prkd2 expression in CD4+ T cells, thereby committing them to TFH development. Thus, Prkd2 and Bcl6 form a mutually inhibitory positive feedback loop that controls the stable transition from naïve CD4+ T cells to TFH during the adaptive immune response.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Protein Kinases/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , Animals , B-Lymphocytes/immunology , Bone Marrow Transplantation , Cell Differentiation , Female , Germinal Center/immunology , HEK293 Cells , Humans , Immunoglobulins/blood , Immunotherapy, Adoptive , Male , Mice, Transgenic , Mutation , Protein Kinase D2 , Protein Kinases/genetics
16.
Sci Rep ; 9(1): 19767, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31875006

ABSTRACT

Autoimmune hemolytic anemia (AIHA) is an acquired autoimmune disease mediated by antibodies against the patient's red blood cells. However, the underlying mechanisms for antibody production are not fully understood. Previous studies of etiology and pathogenesis of AIHA mainly focus on autoreactive B cells that have escaped tolerance mechanisms. Few studies have reported the function of TFH and TFR cells in the process of AIHA. The present study aimed to explore the potential mechanism of TFH and TFR cells in the pathogenesis of AIHA. With the model of murine AIHA, increased ratios of TFH:TFR, elevated serum IL-21 and IL-6 levels, and upregulated Bcl-6 and c-Maf expression were reported. Also, adoptive transfer of purified CD4+CXCR5+CD25- T cells from immunized mice promoted the induction of autoantibody in the AIHA mouse model. Altogether, our data demonstrate the important role of TFH cells for control and induction of AIHA. In the light of the key contributions of TFH cells to the immune response in AIHA, strategies aimed at inhibiting the TFH development or function should be emphasized.


Subject(s)
Anemia, Hemolytic, Autoimmune/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , T-Lymphocytes, Regulatory/immunology , Anemia, Hemolytic, Autoimmune/pathology , Animals , Autoantibodies/immunology , Disease Models, Animal , Germinal Center/pathology , Interleukin-6/immunology , Interleukins/immunology , Mice , Proto-Oncogene Proteins c-bcl-6/immunology , Proto-Oncogene Proteins c-maf/immunology , T-Lymphocytes, Regulatory/pathology
17.
Immunity ; 51(3): 465-478.e6, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31422869

ABSTRACT

The generation of high-affinity neutralizing antibodies, the objective of most vaccine strategies, occurs in B cells within germinal centers (GCs) and requires rate-limiting "help" from follicular helper CD4+ T (Tfh) cells. Although Tfh differentiation is an attribute of MHC II-restricted CD4+ T cells, the transcription factors driving Tfh differentiation, notably Bcl6, are not restricted to CD4+ T cells. Here, we identified a requirement for the CD4+-specific transcription factor Thpok during Tfh cell differentiation, GC formation, and antibody maturation. Thpok promoted Bcl6 expression and bound to a Thpok-responsive region in the first intron of Bcl6. Thpok also promoted the expression of Bcl6-independent genes, including the transcription factor Maf, which cooperated with Bcl6 to mediate the effect of Thpok on Tfh cell differentiation. Our findings identify a transcriptional program that links the CD4+ lineage with Tfh differentiation, a limiting factor for efficient B cell responses, and suggest avenues to optimize vaccine generation.


Subject(s)
Cell Differentiation/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , Proto-Oncogene Proteins c-maf/immunology , T-Lymphocytes, Helper-Inducer/immunology , Transcription Factors/immunology , Transcription, Genetic/immunology , Animals , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Gene Expression Regulation/immunology , Germinal Center/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL
18.
Proc Natl Acad Sci U S A ; 116(30): 15178-15183, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31285322

ABSTRACT

We derived a mouse model in which a mutant form of Nbn/Nbs1mid8 (hereafter Nbnmid8) exhibits severely impaired binding to the Mre11-Rad50 core of the Mre11 complex. The Nbnmid8 allele was expressed exclusively in hematopoietic lineages (in Nbn-/mid8vav mice). Unlike Nbnflox/floxvav mice with Nbn deficiency in the bone marrow, Nbn-/mid8vav mice were viable. Nbn-/mid8vav mice hematopoiesis was profoundly defective, exhibiting reduced cellularity of thymus and bone marrow, and stage-specific blockage of B cell development. Within 6 mo, Nbn-/mid8 mice developed highly penetrant T cell leukemias. Nbn-/mid8vav leukemias recapitulated mutational features of human T cell acute lymphoblastic leukemia (T-ALL), containing mutations in NOTCH1, TP53, BCL6, BCOR, and IKZF1, suggesting that Nbnmid8 mice may provide a venue to examine the relationship between the Mre11 complex and oncogene activation in the hematopoietic compartment. Genomic analysis of Nbn-/mid8vav malignancies showed focal amplification of 9qA2, causing overexpression of MRE11 and CHK1 We propose that overexpression of MRE11 compensates for the metastable Mre11-Nbnmid8 interaction, and that selective pressure for overexpression reflects the essential role of Nbn in promoting assembly and activity of the Mre11 complex.


Subject(s)
Acid Anhydride Hydrolases/genetics , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Leukemic , MRE11 Homologue Protein/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Lymphocytes/immunology , Acid Anhydride Hydrolases/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Bone Marrow/immunology , Bone Marrow/pathology , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/immunology , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/immunology , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/immunology , Disease Models, Animal , Genomic Instability/immunology , Hematopoiesis/genetics , Hematopoiesis/immunology , Humans , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/immunology , MRE11 Homologue Protein/immunology , Mice , Mice, Knockout , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/prevention & control , Protein Binding , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/immunology , Receptor, Notch1/genetics , Receptor, Notch1/immunology , Repressor Proteins/genetics , Repressor Proteins/immunology , Signal Transduction , T-Lymphocytes/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology
19.
J Immunol ; 203(2): 323-327, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31175159

ABSTRACT

The differentiation of memory CD8+ T cells is critical to the long-term cellular immunity. The transcription factor BCL6 has been reportedly important for the generation and maintenance of memory CD8+ T cells; however, using the newly established BCL6 conditional knockout mouse model, we demonstrate that BCL6 is dispensable for the maintenance of established memory CD8+ T cell pool, although BCL6 is still required for the generation of CD8+ memory precursors upon acute viral infection. In addition, BCL6 promotes the expression of TCF-1 via directly binding to the Tcf7 (gene symbol for TCF-1) allele in CD8+ memory precursors and forced expression of TCF-1 restores the generation of BCL6-deficient memory precursors. Thus, our findings clarify that BCL6 is dispensable for the maintenance of memory CD8+ T cells, but functions as an important upstream of TCF-1 to regulate the generation of memory precursors in acute viral infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Transcription Factors/genetics , Virus Diseases/genetics , Acute Disease , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/immunology , Immunologic Memory/immunology , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-bcl-6/immunology , Transcription Factors/immunology , Virus Diseases/immunology
20.
PLoS One ; 14(5): e0216470, 2019.
Article in English | MEDLINE | ID: mdl-31063496

ABSTRACT

BACKGROUND: Human B-cell lymphoma 6 (BCL6) gene, usually coding protein of 706 amino acids, is closely associated with large B cell lymphoma. Researches showed that protein mutation or change of expression levels usually happened in the mounting non-hodgkin lymphoma (NHL). Thus BCL6 is considered to be involved in germinal center (GC)-derived lymphoma. RESULTS: The BCL61-350 gene codons were optimized for prokaryotic system. After expression of BCL61-350 in E. coli, the BCL61-350 protein was purified with Ni column. Then the BCL61-350 protein, mixing with QuickAntibody-Mouse5W adjuvant, was injected into Balb/c mice. After immunization and cell fusion, a stable cell line named 1E6A4, which can secrete anti-BCL6 antibody, was obtained. The isotype of 1E6A4 mAb was determined as IgG2a, and the affinity constant reached 5.12×1010 L/mol. Furthermore, the specificity of the mAb was determined with ELISA, western blot and immunohistochemistry. Results indicated that the 1E6A4 mAb was able to detect BCL6 specifically and sensitively. CONCLUSIONS: BCL61-350 antigen has been successfully generated with an effective and feasible method, and a highly specific antibody named 1E6A4 against BCL6 has been screened and characterized in this study, which was valuable in clinical diagnosis.


Subject(s)
Antibodies, Monoclonal, Murine-Derived , Immunoglobulin G , Lymphoma, B-Cell/diagnosis , Lymphoma, B-Cell/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/immunology , Enzyme-Linked Immunosorbent Assay , Female , Germinal Center/immunology , Germinal Center/metabolism , Germinal Center/pathology , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunohistochemistry , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Mice , Mice, Inbred BALB C , Proto-Oncogene Proteins c-bcl-6/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...