Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.132
Filter
1.
Transl Psychiatry ; 14(1): 216, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806495

ABSTRACT

Genetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.


Subject(s)
Bipolar Disorder , Body Temperature , Cadherins , Disease Models, Animal , Locomotion , Mice, Knockout , Animals , Bipolar Disorder/genetics , Bipolar Disorder/physiopathology , Mice , Cadherins/genetics , Locomotion/genetics , Protocadherins , Male , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Behavior, Animal , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice, Inbred C57BL , Prepulse Inhibition/genetics
2.
Zhen Ci Yan Jiu ; 49(5): 480-486, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764119

ABSTRACT

OBJECTIVES: To observe the activation state and neuronal types of somatosensory cortex and the primary motor cortex induced by electroacupuncture (EA) stimulation of "Sibai" (ST2) and "Quanliao" (SI18) acupoints in mice. METHODS: Male C57BL/6J mice were randomly divided into blank control and EA groups, with 6 mice in each group. Rats of the EA group received EA stimulation (2 Hz, 0.6 mA) at ST2 and SI18 for 30 minutes. Samples were collected after EA intervention, and immunofluorescence staining was performed to quantify the expression of the c-Fos gene (proportion of c-Fos positive cells) in the somatosensory cortex and primary motor cortex. The co-labelled cells of calcium/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) and gamma-aminobutyric acid (GABA) in the somatosensory cortex and primary motor cortex were observed and counted by using microscope after immunofluorescence staining. Another 10 mice were used to detect the calcium activity of excitatory neurons in the somatosensory cortex and primary motor cortex by fiber photometry. RESULTS: In comparison with the blank control group, the number of c-Fos positive cells, and the proportion of c-Fos and CaMKⅡ co-labelled cells in both the somatosensory cortex and primary motor cortex were significantly increased after EA stimulation (P<0.05). No significant changes were found in the proportion of c-Fos and GABA co-labeled cells in both the somatosensory cortex and primary motor cortex after EA. Results of fiber optic calcium imaging technology showed that the spontaneous calcium activity of excitatory neurons in both somatosensory cortex and primary motor cortex were obviously increased during EA compared with that before EA (P<0.01), and strikingly reduced after cessation of EA compared with that during EA (P<0.05). CONCLUSIONS: Under physiological conditions, EA of ST2 and SI18 can effectively activate excitatory neurons in the somatosensory cortex and primary motor cortex.


Subject(s)
Acupuncture Points , Electroacupuncture , Mice, Inbred C57BL , Neurons , Animals , Male , Mice , Neurons/metabolism , Sensorimotor Cortex/metabolism , Humans , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Motor Cortex/metabolism , Somatosensory Cortex/metabolism
3.
Cell Mol Biol Lett ; 29(1): 75, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755530

ABSTRACT

BACKGROUND: Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS: Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS: The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS: Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.


Subject(s)
ADAM Proteins , Membrane Proteins , Microglia , Neuroinflammatory Diseases , Proto-Oncogene Proteins c-fos , Spinal Cord Injuries , Animals , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/drug therapy , Mice , Microglia/metabolism , Microglia/drug effects , ADAM Proteins/metabolism , ADAM Proteins/antagonists & inhibitors , ADAM Proteins/genetics , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , MAP Kinase Signaling System/drug effects , Inflammation/pathology , Inflammation/drug therapy , Cell Movement/drug effects , Humans , Antigens, CD
4.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791400

ABSTRACT

This review specifically examines the important function of the oncoprotein FOSL1 in the dimeric AP-1 transcription factor, which consists of FOS-related components. FOSL1 is identified as a crucial controller of invasion and metastatic dissemination, making it a potential target for therapeutic treatment in cancer patients. The review offers a thorough examination of the regulatory systems that govern the influence exerted on FOSL1. These include a range of changes that occur throughout the process of transcription and after the translation of proteins. We have discovered that several non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a significant role in regulating FOSL1 expression by directly interacting with its mRNA transcripts. Moreover, an investigation into the functional aspects of FOSL1 reveals its involvement in apoptosis, proliferation, and migration. This work involves a comprehensive analysis of the complex signaling pathways that support these diverse activities. Furthermore, particular importance is given to the function of FOSL1 in coordinating the activation of several cytokines, such as TGF-beta, and the commencement of IL-6 and VEGF production in tumor-associated macrophages (TAMs) that migrate into the tumor microenvironment. There is a specific emphasis on evaluating the predictive consequences linked to FOSL1. Insights are now emerging on the developing roles of FOSL1 in relation to the processes that drive resistance and reliance on specific treatment methods. Targeting FOSL1 has a strong inhibitory effect on the formation and spread of specific types of cancers. Despite extensive endeavors, no drugs targeting AP-1 or FOSL1 for cancer treatment have been approved for clinical use. Hence, it is imperative to implement innovative approaches and conduct additional verifications.


Subject(s)
Glioma , Neoplastic Stem Cells , Proto-Oncogene Proteins c-fos , Humans , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Animals , Gene Expression Regulation, Neoplastic , Carcinogenesis/genetics , Tumor Microenvironment/genetics , Signal Transduction , Oncogenes , MicroRNAs/genetics , MicroRNAs/metabolism
5.
Science ; 384(6693): eadk6742, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38669575

ABSTRACT

Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.


Subject(s)
Homeostasis , Nucleus Accumbens , Reward , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Animals , Mice , Neurons/metabolism , Illicit Drugs/adverse effects , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Male , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Signal Transduction , Substance-Related Disorders , Single-Cell Analysis , Cocaine/pharmacology , Calcium/metabolism
6.
J Cell Mol Med ; 28(9): e18357, 2024 May.
Article in English | MEDLINE | ID: mdl-38683127

ABSTRACT

In our previous study, intranuclear cardiac troponin I (cTnI) may function as a co-factor of Yin Yang 1(YY1). Here, we aimed to explore the role of intranuclear cTnI in ageing hearts. Nuclear translocation of cTnI was demonstrated using Western blot and immunofluorescence. The potential nuclear localization sequences (NLSs) of cTnI were predicted by a web server and then verified in 293T cells by putative NLS-eGFP-GST and NLS-mutant transfection. The ratio of Nuclear cTnI/ Total cTnI (Nu/T) decreased significantly in ageing hearts, accompanied with ATG5-decline-related impaired cardiac autophagy. RNA sequencing was performed in cTnI knockout hearts. The differential expressed genes (DEGs) were analysed by overlapping with YY1 ChIP-sequencing data. cTnI gain and loss experiments in vitro determined those filtered DEGs' expression levels. A strong correlation was found between expression patterns cTnI and FOS. Using ChIP-q-PCR, we demonstrated that specific binding DNA sequences of cTnI were enriched in the FOS promoter -299 to -157 region. It was further verified that pcDNA3.1 (-)-cTnI could increase the promoter activity of FOS by using luciferase report assay. At last, we found that FOS can regulate the ATG5 (autophagy-related gene 5) gene by using a luciferase report assay. Taken together, our results indicate that decreased intranuclear cTnI in ageing hearts may cause impaired cardiac autophagy through the FOS/ATG5 pathway.


Subject(s)
Aging , Autophagy-Related Protein 5 , Autophagy , Cell Nucleus , Myocardium , Troponin I , Troponin I/metabolism , Troponin I/genetics , Autophagy/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Aging/metabolism , Aging/genetics , Animals , Myocardium/metabolism , Humans , Cell Nucleus/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice , HEK293 Cells , Male , Promoter Regions, Genetic , Gene Expression Regulation , Myocytes, Cardiac/metabolism , Mice, Knockout
7.
Life Sci ; 348: 122673, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38679193

ABSTRACT

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Subject(s)
Ethanol , Gene Knock-In Techniques , Receptors, Glycine , Animals , Ethanol/pharmacology , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Mice , Male , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice, Inbred C57BL , Neurons/metabolism , Neurons/drug effects , Mice, Transgenic , Receptors, GABA-A
8.
Fish Shellfish Immunol ; 149: 109529, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561069

ABSTRACT

This study was designed to investigate the potential neuronal damage mechanism of the okadaic acid (OA) in the brain tissues of zebrafish embryos by evaluating in terms of immunofluorescence of Nf KB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG signaling pathways. We also evaluated body malformations. For this purpose, zebrafish embryos were exposed to 0.5 µg/ml, 1 µg/ml and 2.5 µg/ml of OA for 5 days. After application, FITC/GFP labeled protein-specific antibodies were used in immunofluorescence assay for NfKB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG respectively. The results indicated that OA caused immunofluorescence positivity of NfKB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG in a dose-dependent manner in the brain tissues of zebrafish embryos. Pericardial edema (PE), nutrient sac edema (YSE) and body malformations, tail malformation, short tail and head malformation (BM) were detected in zebrafish embryos. These results suggest that OA induces neuronal damage by affecting the modulation of DNA damage, apoptotic, and inflammatory activities in the brain tissues of zebrafish embryos. The increase in signaling pathways shows that OA can cause damage in the structure and function of brain nerve cells. Our results provide a new basis for the comprehensive assessment of the neural damage of OA and will offer enable us to better understand molecular the mechanisms underlying the pathophysiology of OA toxicity.


Subject(s)
Brain , NF-kappa B , Okadaic Acid , Signal Transduction , Toll-Like Receptor 4 , Zebrafish , Animals , Zebrafish/immunology , Brain/drug effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Signal Transduction/drug effects , Okadaic Acid/toxicity , NF-kappa B/metabolism , NF-kappa B/immunology , 8-Hydroxy-2'-Deoxyguanosine , Caspase 3/metabolism , Caspase 3/genetics , Larva/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism
9.
Proc Natl Acad Sci U S A ; 121(18): e2404188121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657045

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.


Subject(s)
Carcinoma, Hepatocellular , Fos-Related Antigen-2 , Liver Neoplasms , Proto-Oncogene Proteins c-fos , Proto-Oncogene Proteins c-jun , Proto-Oncogene Proteins c-myc , Transcription Factor AP-1 , Animals , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Mice , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-jun/metabolism , Fos-Related Antigen-2/metabolism , Fos-Related Antigen-2/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Hepatocytes/metabolism , Protein Multimerization , Gene Expression Regulation, Neoplastic , Mice, Transgenic
10.
JCI Insight ; 9(5)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456508

ABSTRACT

IL-33 is a cytokine central to type 2 immune pathology in chronic airway disease. This cytokine is abundantly expressed in the respiratory epithelium and increased in disease, but how expression is regulated is undefined. Here we show that increased IL33 expression occurs from multiple noncanonical promoters in human chronic obstructive pulmonary disease (COPD), and it facilitates production of alternatively spliced isoforms in airway cells. We found that phorbol 12-myristate 13-acetate (PMA) can activate IL33 promoters through protein kinase C in primary airway cells and lines. Transcription factor (TF) binding arrays combined with RNA interference identified activator protein (AP) TFs as regulators of baseline and induced IL33 promoter activity. ATAC-Seq and ChIP-PCR identified chromatin accessibility and differential TF binding as additional control points for transcription from noncanonical promoters. In support of a role for these TFs in COPD pathogenesis, we found that AP-2 (TFAP2A, TFAP2C) and AP-1 (FOS and JUN) family members are upregulated in human COPD specimens. This study implicates integrative and pioneer TFs in regulating IL33 promoters and alternative splicing in human airway basal cells. Our work reveals a potentially novel approach for targeting IL-33 in development of therapeutics for COPD.


Subject(s)
Interleukin-33 , Pulmonary Disease, Chronic Obstructive , Humans , Interleukin-33/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-jun/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
11.
J Pharmacol Sci ; 154(4): 312-315, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485349

ABSTRACT

We previously identified a spinal astrocyte population that expresses hairy and enhancer of split 5 (Hes5) and is selectively present in superficial laminae in mice. However, it was unclear whether such astrocyte heterogeneity is commonly observed across species. Using adeno-associated viral (AAV) vectors incorporating a rat Hes5 promotor (AAV-Hes5P), we found that AAV-Hes5P-captured astrocytes were selectively located in the superficial laminae in rats. Furthermore, activation of AAV-Hes5P+ astrocytes elicited allodynia-like behavior and increased c-FOS+ cells in the superficial laminae. Thus, laminar-selective Hes5+ astrocytes are conserved beyond species and have the capability to convert tactile information to nociceptive.


Subject(s)
Astrocytes , Spinal Cord , Rats , Mice , Animals , Nociception , Proto-Oncogene Proteins c-fos/genetics , Hyperalgesia
12.
Science ; 383(6687): eadi8081, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38452069

ABSTRACT

Phonation critically depends on precise controls of laryngeal muscles in coordination with ongoing respiration. However, the neural mechanisms governing these processes remain unclear. We identified excitatory vocalization-specific laryngeal premotor neurons located in the retroambiguus nucleus (RAmVOC) in adult mice as being both necessary and sufficient for driving vocal cord closure and eliciting mouse ultrasonic vocalizations (USVs). The duration of RAmVOC activation can determine the lengths of both USV syllables and concurrent expiration periods, with the impact of RAmVOC activation depending on respiration phases. RAmVOC neurons receive inhibition from the preBötzinger complex, and inspiration needs override RAmVOC-mediated vocal cord closure. Ablating inhibitory synapses in RAmVOC neurons compromised this inspiration gating of laryngeal adduction, resulting in discoordination of vocalization with respiration. Our study reveals the circuits for vocal production and vocal-respiratory coordination.


Subject(s)
Brain Stem , Phonation , Respiration , Vocal Cords , Animals , Male , Mice , Brain Stem/physiology , Medulla Oblongata/physiology , Neurons/physiology , Phonation/physiology , Vocal Cords/innervation , Vocal Cords/physiology , Mice, Inbred C57BL , Female , Proto-Oncogene Proteins c-fos/genetics
13.
Arterioscler Thromb Vasc Biol ; 44(5): e145-e167, 2024 May.
Article in English | MEDLINE | ID: mdl-38482696

ABSTRACT

BACKGROUND: New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS: Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS: Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS: Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.


Subject(s)
Gene Expression Profiling , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Proto-Oncogene Proteins c-fos , Transcriptome , rho GTP-Binding Proteins , Animals , Humans , Mice , Cells, Cultured , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Endothelial Cells/metabolism , Gene Expression Profiling/methods , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic/genetics , Phenotype , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/genetics , Signal Transduction , Single-Cell Analysis , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics
14.
J Cell Physiol ; 239(5): e31216, 2024 May.
Article in English | MEDLINE | ID: mdl-38327128

ABSTRACT

c-Fos, a member of the immediate early gene, serves as a widely used marker of neuronal activation induced by various types of brain damage. In addition, c-Fos is believed to play a regulatory role in DNA damage repair. This paper reviews the literature on c-Fos' involvement in the regulation of DNA damage repair and indicates that genes of the Fos family can be induced by various forms of DNA damage. In addition, cells lacking c-Fos have difficulties in DNA repair. c-Fos is involved in tumorigenesis and progression as a proto-oncogene that maintains cancer cell survival, which may also be related to DNA repair. c-Fos may impact the repair of DNA damage by regulating the expression of downstream proteins, including ATR, ERCC1, XPF, and others. Nonetheless, the underlying mechanisms necessitate further exploration.


Subject(s)
DNA Damage , DNA Repair , Proto-Oncogene Mas , Proto-Oncogene Proteins c-fos , Humans , DNA Repair/genetics , DNA Damage/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Animals , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism
15.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119689, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367916

ABSTRACT

Psoriasis is a common and immune-mediated skin disease related to keratinocytes hyperproliferation and inflammation. Fos-like antigen-1 (FOSL1) is an important transcription factor involved in various diseases. FOSL1 has been reported to be differentially expressed in psoriasis. However, the roles and mechanism of FOSL1 in psoriasis progression remain largely unknown. FOSL1 is an upregulated transcription factor in psoriasis and increased in M5-treated HaCaT cells. FOSL1 had a diagnostic value in psoriasis, and positively associated with PASI score, TNF-α and IL-6 levels in psoriasis patients. FOSL1 silencing attenuated M5-induced HaCaT cell hyperproliferation through decreasing cell viability and proliferative ability and increasing cell apoptosis. FOSL1 knockdown mitigated M5-induced NLRP3 inflammasome activation and it-mediated inflammatory cytokine (IL-6, IL-8 and CCL17) expression. TRAF3 expression was increased in psoriasis patients and M5-treated HaCaT cells. FOSL1 transcriptionally activating TRAF3 in HaCaT cells. TRAF3 overexpression reversed the suppressive effects of FOSL1 silencing on M5-induced hyperproliferation and NLRP3-mediated inflammation. FOSL1 knockdown attenuated M5-induced NF-κB signaling activation by reducing TRAF3. Activation of NF-κB signaling reversed the effects of FOSL1 knockdown on hyperproliferation and inflammation in M5-treated cells. FOSL1 silencing prevented M5-induced hyperproliferation and NLRP3-mediated inflammation of keratinocytes by inhibiting TRAF3-mediated NF-κB activity, indicating FOSL1 might act as a therapeutic target of psoriasis.


Subject(s)
Keratinocytes , NF-kappa B , Proto-Oncogene Proteins c-fos , Psoriasis , Humans , Cell Line , Inflammation/genetics , Inflammation/metabolism , Interleukin-6/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Psoriasis/genetics , Psoriasis/metabolism , Psoriasis/pathology , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism
16.
Cell Death Dis ; 15(1): 61, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233377

ABSTRACT

Acquired drug resistance is one of the most common limitations for the clinical response of colon cancer to 5-Fluorouracil (5-FU)-based chemotherapy. The relevant molecular mechanisms might be diversity, but still not be elucidated clearly. In this study, we aimed to investigate the potential mechanisms of c-Fos, a subfamily of activator protein-1, in 5-FU chemoresistance. We determined that phosphorylated c-Fos promoted colon cancer cells resistance to 5-FU by facilitating the cancer stemness. Mechanically, 5-FU treatment induced autolysosome-dependent degradation of TMPO, which subsequently triggered ERK-mediated phosphorylation of c-Fos. Additionally, c-Fos was found to bind to the promoter of NANOG and phosphorylation of c-Fos at Ser 374 was required for its regulation of NANOG expression. NANOG ablation impaired c-Fos/p-c-Fos induced 5-FU resistance and stemness. Taken together, these findings revealed that TMPO-mediated phosphorylation of c-Fos conferred 5-FU resistance by regulating NANOG expression and promoting cell stemness in colon cancer cells. c-Fos could be as a therapeutic target for colon cancer.


Subject(s)
Colonic Neoplasms , Cyclic N-Oxides , Thymopoietins , Humans , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Gene Expression Regulation, Neoplastic , Nuclear Proteins/metabolism , Thymopoietins/therapeutic use , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism
17.
Int J Biol Macromol ; 254(Pt 2): 127824, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37924900

ABSTRACT

Osteoporosis (OP) is a common systemic bone disorder, and the programmed cell death of osteoblasts is closely linked to the development of osteoporosis. Previous studies have shown that c-fos can cause osteoblast apoptosis. Furthermore, it has been demonstrated that long non-coding RNA (lncRNA) plays a pervasive role in regulating the biology of osteoblasts. Nevertheless, the precise role and mechanism of long non-coding RNA (lncRNA) in relation to c-Fos at the transcriptional level in osteoblast cell death remain uncertain. Compared with normal osteoblasts, serum deprivation resulted in significant upregulation of the transcription factor c-Fos and apoptosis-related Fas proteins in osteoblasts. In addition, the expression of lncRNA GM15416 related to c-Fos was significantly increased. The results showed that overexpression of c-Fos leads to an increase in downstream Fas protein, which subsequently leads to osteoblast apoptosis and hinders osteogenesis. On the contrary, a decrease in lncRNA GM15416 expression leads to a decrease in c-Fos/Fas expression, which hinders osteoblast apoptosis and promotes osteogenesis. Our results suggest that lncRNA GM15416 exerts inhibitory effects on osteoblast apoptosis and acts as a preventive factor against osteoporosis. As a result, GM15416 emerges as an important lncRNA associated with osteoporosis and holds potential as a future therapeutic target.


Subject(s)
Osteoporosis , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , Proto-Oncogene Proteins c-fos/genetics , Osteoblasts , Osteoporosis/genetics , Osteoporosis/metabolism , Osteogenesis/genetics , Apoptosis/genetics
18.
Mol Biotechnol ; 66(5): 1019-1030, 2024 May.
Article in English | MEDLINE | ID: mdl-38147235

ABSTRACT

The miR-497-195 cluster facilitates the occurrence and development of cancer. This study aims to investigate whether the miR-195-497 cluster could regulate the progression of colorectal cancer by regulating the common target gene, FOS-related antigen 1 (FRA1). Overexpression of the miR-195/497 vector was used to evaluate the effect of overexpression of miR-195-497 clusters on the biological behavior of colon cancer cells. In animal experiments, tumor growth and metastasis were recorded by constructing a nude mouse model of a subcutaneously implanted tumor. miR-195 and miR-497 were expressed to varying degrees in Caco-2, LoVo, and HT-29 cells. Overexpression of miR-195/497 and inhibition of FRA1 decreased HT-29 cell proliferation, inhibited cell invasion and migration, and promoted Epithelial-mesenchymal transition (EMT). In vivo experiments showed that the overexpression of miR-195/497 or inhibition of FRA1 inhibited tumor growth, affected EMT in tumor cells, and inhibited the expression of FRA1. Additionally, the aforementioned conditions had the best effect when used together. The miR-195-497 cluster can regulate the proliferation, EMT, invasion, and migration of colorectal cancer cells by regulating the common target gene FRA1, thereby affecting the development of colorectal cancer.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Mice, Nude , MicroRNAs , Proto-Oncogene Proteins c-fos , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Animals , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Mice , HT29 Cells , Caco-2 Cells , Cell Line, Tumor , Mice, Inbred BALB C , Neoplasm Invasiveness/genetics
19.
Oncol Rep ; 51(1)2024 01.
Article in English | MEDLINE | ID: mdl-38063270

ABSTRACT

PVRL4 (or nectin­4) is a promising therapeutic target since its upregulated expression is found in a wide range of human cancer types. Enfortumab vedotin, an antibody­drug conjugate targeting PVRL4, is clinically used for the treatment of urothelial bladder cancer. In addition, rMV­SLAMblind, a genetically engineered oncolytic measles virus, can infect cancer cells and induce apoptosis through interaction with PVRL4. Although PVRL4 transcript levels are elevated in breast, lung and ovarian cancer, the mechanisms of its upregulation have not yet been uncovered. To clarify the regulatory mechanisms of elevated PVRL4 expression in breast cancer cells, Assay for Transposase­Accessible Chromatin­sequencing and chromatin immunoprecipitation­sequencing (ChIP­seq) data were used to search for its regulatory regions. Using breast cancer cells, an enhancer region was ultimately identified. Additional analyses, including ChIP and reporter assays, demonstrated that FOS interacted with the PVRL4 enhancer region, and that alterations of the FOS­binding motifs in the enhancer region decreased reporter activity. Consistent with these data, exogenous expression of FOS enhanced the reporter activity and PVRL4 expression in breast cancer cells. Furthermore, RNA­seq analysis using breast cancer cells treated with PVRL4 small interfering RNA revealed its possible involvement in the cytokine response and immune system. These data suggested that FOS was involved, at least partly, in the regulation of PVRL4 expression in breast cancer cells, and that elevated PVRL4 expression may regulate the response of cancer cells to cytokines and the immune system.


Subject(s)
Breast Neoplasms , Nectins , Oncolytic Viruses , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Measles virus/genetics , Measles virus/metabolism , Oncolytic Viruses/genetics , RNA, Small Interfering , Nectins/genetics , Nectins/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism
20.
Cell Death Differ ; 31(2): 136-149, 2024 02.
Article in English | MEDLINE | ID: mdl-38104183

ABSTRACT

Fos-related antigen-2 (Fra-2) is the most recently discovered member of the Fos family and, by dimerizing with Jun proteins, forms the activator protein 1 (AP-1) transcription factor. By inducing or repressing the transcription of several target genes, Fra-2 is critically involved in the modulation of cell response to a variety of extracellular stimuli, stressors and intracellular changes. In physiological conditions, Fra-2 has been found to be ubiquitously expressed in human cells, regulating differentiation and homeostasis of bone, muscle, nervous, lymphoid and other tissues. While other AP-1 members, like Jun and Fos, are well characterized, studies of Fra-2 functions in cancer are still at an early stage. Due to the lack of a trans-activating domain, which is present in other Fos proteins, it has been suggested that Fra-2 might inhibit cell transformation, eventually exerting an anti-tumor effect. In human malignancies, however, Fra-2 activity is enhanced (or induced) by dysregulation of microRNAs, oncogenes and extracellular signaling, suggesting a multifaceted role. Therefore, Fra-2 can promote or prevent transformation, proliferation, migration, epithelial-mesenchymal transition, drug resistance and metastasis formation in a tumor- and context-dependent manner. Intriguingly, recent data reports that Fra-2 is also expressed in cancer associated cells, contributing to the intricate crosstalk between neoplastic and non-neoplastic cells, that leads to the evolution and remodeling of the tumor microenvironment. In this review we summarize three decades of research on Fra-2, focusing on its oncogenic and anti-oncogenic effects in tumor progression and dissemination.


Subject(s)
Neoplasms , Transcription Factor AP-1 , Humans , Cell Transformation, Neoplastic/genetics , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , Gene Expression Regulation , Neoplasms/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-jun/metabolism , Transcription Factor AP-1/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...