Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 554(7692): 373-377, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29414937

ABSTRACT

Both microbial and host genetic factors contribute to the pathogenesis of autoimmune diseases. There is accumulating evidence that microbial species that potentiate chronic inflammation, as in inflammatory bowel disease, often also colonize healthy individuals. These microorganisms, including the Helicobacter species, can induce pathogenic T cells and are collectively referred to as pathobionts. However, how such T cells are constrained in healthy individuals is not yet understood. Here we report that host tolerance to a potentially pathogenic bacterium, Helicobacter hepaticus, is mediated by the induction of RORγt+FOXP3+ regulatory T (iTreg) cells that selectively restrain pro-inflammatory T helper 17 (TH17) cells and whose function is dependent on the transcription factor c-MAF. Whereas colonization of wild-type mice by H. hepaticus promoted differentiation of RORγt-expressing microorganism-specific iTreg cells in the large intestine, in disease-susceptible IL-10-deficient mice, there was instead expansion of colitogenic TH17 cells. Inactivation of c-MAF in the Treg cell compartment impaired differentiation and function, including IL-10 production, of bacteria-specific iTreg cells, and resulted in the accumulation of H. hepaticus-specific inflammatory TH17 cells and spontaneous colitis. By contrast, RORγt inactivation in Treg cells had only a minor effect on the bacteria-specific Treg and TH17 cell balance, and did not result in inflammation. Our results suggest that pathobiont-dependent inflammatory bowel disease is driven by microbiota-reactive T cells that have escaped this c-MAF-dependent mechanism of iTreg-TH17 homeostasis.


Subject(s)
Colitis/immunology , Colitis/microbiology , Helicobacter hepaticus/immunology , Immune Tolerance , Intestines/immunology , Intestines/microbiology , Proto-Oncogene Proteins c-maf/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Bioengineering , Colitis/pathology , Female , Forkhead Transcription Factors/metabolism , Helicobacter hepaticus/genetics , Helicobacter hepaticus/pathogenicity , Homeostasis , Host-Pathogen Interactions , Interleukin-10/biosynthesis , Interleukin-10/deficiency , Interleukin-10/immunology , Male , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Proto-Oncogene Proteins c-maf/deficiency , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/cytology , Th17 Cells/immunology
2.
Science ; 326(5954): 867-71, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19892988

ABSTRACT

In metazoan organisms, terminal differentiation is generally tightly linked to cell cycle exit, whereas the undifferentiated state of pluripotent stem cells is associated with unlimited self-renewal. Here, we report that combined deficiency for the transcription factors MafB and c-Maf enables extended expansion of mature monocytes and macrophages in culture without loss of differentiated phenotype and function. Upon transplantation, the expanded cells are nontumorigenic and contribute to functional macrophage populations in vivo. Small hairpin RNA inactivation shows that continuous proliferation of MafB/c-Maf deficient macrophages requires concomitant up-regulation of two pluripotent stem cell-inducing factors, KLF4 and c-Myc. Our results indicate that MafB/c-MafB deficiency renders self-renewal compatible with terminal differentiation. It thus appears possible to amplify functional differentiated cells without malignant transformation or stem cell intermediates.


Subject(s)
Cell Proliferation , Macrophages/physiology , MafB Transcription Factor/deficiency , Proto-Oncogene Proteins c-maf/deficiency , Animals , Cell Differentiation , Cell Transformation, Neoplastic , Cells, Cultured , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/physiology , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/cytology , Macrophages/transplantation , MafB Transcription Factor/genetics , MafB Transcription Factor/physiology , Mice , Mice, Knockout , Monocytes/cytology , Monocytes/physiology , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/physiology , Phagocytosis , Proto-Oncogene Proteins c-maf/genetics , Proto-Oncogene Proteins c-maf/physiology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/physiology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...