Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Expert Opin Drug Metab Toxicol ; 18(10): 695-706, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36239195

ABSTRACT

INTRODUCTION: The proton-coupled folate transporter (PCFT; SLC46A1) was discovered in 2006 as the principal mechanism by which folates are absorbed in the intestine and the causal basis for hereditary folate malabsorption (HFM). In 2011, it was found that PCFT is highly expressed in many tumors. This stimulated interest in using PCFT for cytotoxic drug targeting, taking advantage of the substantial levels of PCFT transport and acidic pH conditions commonly associated with tumors. AREAS COVERED: We summarize the literature from 2006 to 2022 that explores the role of PCFT in the intestinal absorption of dietary folates and its role in HFM and as a transporter of folates and antifolates such as pemetrexed (Alimta) in relation to cancer. We provide the rationale for the discovery of a new generation of targeted pyrrolo[2,3-d]pyrimidine antifolates with selective PCFT transport and inhibitory activity toward de novo purine biosynthesis in solid tumors. We summarize the benefits of this approach to cancer therapy and exciting new developments in the structural biology of PCFT and its potential to foster refinement of active structures of PCFT-targeted anti-cancer drugs. EXPERT OPINION: We summarize the promising future and potential challenges of implementing PCFT-targeted therapeutics for HFM and a variety of cancers.


Subject(s)
Antineoplastic Agents , Folic Acid Antagonists , Neoplasms , Humans , Proton-Coupled Folate Transporter/chemistry , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/therapeutic use , Pemetrexed/pharmacology , Pemetrexed/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Folic Acid/therapeutic use , Neoplasms/drug therapy , Biology
2.
Methods Mol Biol ; 2507: 425-444, 2022.
Article in English | MEDLINE | ID: mdl-35773596

ABSTRACT

Proton coupled folate transporter (PCFT) is an integral membrane protein with 12 transmembrane segments localized to the plasma membrane. PCFT is the main route by which folate, vitamin B9, from dietary sources enters mammalian cells in the small intestine. Loss-of-function mutations in this membrane transport protein cause hereditary folate malabsorption, and upregulation of PCFT has been reported in cancer cells. Currently, a complete translocation mechanism of folate via PCFT is still missing. To reveal this mechanism via studies of structural architecture and structure-function relationships, soluble and stable PCFT in a phospholipid bilayer environment is needed. We therefore develop an approach to screen lipid environments in which PCFT is most soluble. Traditional in vitro expression and reconstitution into lipid bilayers of integral membrane proteins requires separate steps, which are costly and time-consuming. In this chapter, we describe a protocol for in vitro translation of PCFT into preformed lipid nanodiscs using a cell-free expression system, which helps to accelerate and reduce the cost of the sample preparation.


Subject(s)
Folic Acid Deficiency , Proton-Coupled Folate Transporter , Animals , Folic Acid/metabolism , Folic Acid Deficiency/metabolism , Lipids , Mammals/metabolism , Mutation , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/genetics , Proton-Coupled Folate Transporter/metabolism
3.
Curr Opin Struct Biol ; 74: 102353, 2022 06.
Article in English | MEDLINE | ID: mdl-35303537

ABSTRACT

Structural studies on mammalian vitamin transport lag behind other metabolites. Folates, also known as B9 vitamins, are essential cofactors in one-carbon transfer reactions in biology. Three different systems control folate uptake in the human body; folate receptors function to capture and internalise extracellular folates via endocytosis, whereas two major facilitator superfamily transporters, the reduced folate carrier (RFC; SLC19A1) and proton-coupled folate transporter (PCFT; SLC46A1) control the transport of folates across cellular membranes. Targeting specific folate transporters is being pursued as a route to developing new antifolates with improved pharmacology. Recent structures of the proton-coupled folate transporter, PCFT, revealed key insights into antifolate recognition and the mechanism of proton-coupled transport. Combined with previously determined structures of folate receptors and new predictions for the structure of the RFC, we are now able to develop a structure-based understanding of folate and antifolate recognition to accelerate efforts in antifolate drug development.


Subject(s)
Folic Acid Antagonists , Proton-Coupled Folate Transporter , Animals , Biological Transport , Cell Membrane/metabolism , Folic Acid/metabolism , Folic Acid Antagonists/pharmacology , Humans , Mammals/metabolism , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/metabolism
4.
Nature ; 595(7865): 130-134, 2021 07.
Article in English | MEDLINE | ID: mdl-34040256

ABSTRACT

Folates (also known as vitamin B9) have a critical role in cellular metabolism as the starting point in the synthesis of nucleic acids, amino acids and the universal methylating agent S-adenylsmethionine1,2. Folate deficiency is associated with a number of developmental, immune and neurological disorders3-5. Mammals cannot synthesize folates de novo; several systems have therefore evolved to take up folates from the diet and distribute them within the body3,6. The proton-coupled folate transporter (PCFT) (also known as SLC46A1) mediates folate uptake across the intestinal brush border membrane and the choroid plexus4,7, and is an important route for the delivery of antifolate drugs in cancer chemotherapy8-10. How PCFT recognizes folates or antifolate agents is currently unclear. Here we present cryo-electron microscopy structures of PCFT in a substrate-free state and in complex with a new-generation antifolate drug (pemetrexed). Our results provide a structural basis for understanding antifolate recognition and provide insights into the pH-regulated mechanism of folate transport mediated by PCFT.


Subject(s)
Cryoelectron Microscopy , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/metabolism , Pemetrexed/chemistry , Pemetrexed/metabolism , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/metabolism , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Biological Transport , Humans , Models, Molecular , Proton-Coupled Folate Transporter/ultrastructure , Protons
5.
J Biol Chem ; 295(46): 15650-15661, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32893190

ABSTRACT

The proton-coupled folate transporter (PCFT, SLC46A1) is required for folate intestinal absorption and transport across the choroid plexus. Recent work has identified a F392V mutation causing hereditary folate malabsorption. However, the residue properties responsible for this loss of function remains unknown. Using site-directed mutagenesis, we observed complete loss of function with charged (Lys, Asp, and Glu) and polar (Thr, Ser, and Gln) Phe-392 substitutions and minimal function with some neutral substitutions; however, F392M retained full function. Using the substituted-cysteine accessibility method (with N-biotinyl aminoethyl methanethiosulfonate labeling), Phe-392 mutations causing loss of function, although preserving membrane expression and trafficking, also resulted in loss of accessibility of the substituted cysteine in P314C-PCFT located within the aqueous translocation pathway. F392V function and accessibility of the P314C cysteine were restored by insertion of a G305L (suppressor) mutation. A S196L mutation localized in proximity to Gly-305 by homology modeling was inactive. However, when inserted into the inactive F392V scaffold, function was restored (mutually compensatory mutations), as was accessibility of the P314C cysteine residue. Reduced function, documented with F392H PCFT, was due to a 15-fold decrease in methotrexate influx Vmax, accompanied by a decreased influx Kt (4.5-fold) and Ki (3-fold). The data indicate that Phe-392 is required for rapid oscillation of the carrier among its conformational states and suggest that this is achieved by dampening affinity of the protein for its folate substrates. F392V and other inactivating Phe-392 PCFT mutations lock the protein in its inward-open conformation. Reach (length) and hydrophobicity of Phe-392 appear to be features required for full activity.


Subject(s)
Proton-Coupled Folate Transporter/metabolism , Amino Acid Sequence , Animals , Biological Transport , Cysteine/chemistry , Cysteine/metabolism , Folic Acid Deficiency/pathology , HeLa Cells , Humans , Kinetics , Malabsorption Syndromes/pathology , Methotrexate/metabolism , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/genetics
6.
J Biol Chem ; 294(18): 7245-7258, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30858177

ABSTRACT

The proton-coupled folate transporter (PCFT) mediates intestinal absorption of folates and their transport from blood to cerebrospinal fluid across the choroid plexus. Substitutions at Asp-109 in the first intracellular loop between the first and second transmembrane domains (TMDs) abolish PCFT function, but protein expression and trafficking to the cell membrane are retained. Here, we used site-directed mutagenesis, the substituted-cysteine accessibility method, functional analyses, and homology modeling to determine whether the D109A substitution locks PCFT in one of its conformational states. Cys-substituted residues lining the PCFT aqueous translocation pathway and accessible in WT PCFT to the membrane-impermeable cysteine-biotinylation reagent, MTSEA-biotin, lost accessibility when introduced into the D109A scaffold. Substitutions at Gly-305 located exofacially within the eighth TMD, particularly with bulky residues, when introduced into the D109A scaffold largely restored function and MTSEA-biotin accessibility to Cys-substituted residues within the pathway. Likewise, Ser-196 substitution in the fifth TMD, predicted by homology modeling to be in proximity to Gly-305, also partially restored function found in solute transporters, is critical to oscillation of the carrier among its conformational states. Substitutions at Asp-109 and Gly-112 lock PCFT in an inward-open conformation, resulting in the loss of function. However, the integrity of the locked protein is preserved, indicated by the restoration of function after insertion of a second "unlocking" mutation. and accessibility. Similarly, the inactivating G112K substitution within the first intracellular loop was partially reactivated by introducing the G305L substitution. These data indicate that the first intracellular loop, with a sequence identical to "motif A" (GXXXDXXGR(R/K)).


Subject(s)
Proton-Coupled Folate Transporter/metabolism , Cysteine/chemistry , Glycine/metabolism , HeLa Cells , Humans , Kinetics , Mutation , Protein Conformation , Proton-Coupled Folate Transporter/chemistry
7.
J Mol Graph Model ; 81: 125-133, 2018 05.
Article in English | MEDLINE | ID: mdl-29550744

ABSTRACT

All clinically used antifolates lack transport selectivity for tumors over normal cells resulting in dose-limiting toxicities. There is growing interest in developing novel tumor-targeted cytotoxic antifolates with selective transport into tumors over normal cells via the proton-coupled folate transporter (PCFT) over the ubiquitously expressed reduced folate carrier (RFC). A lack of X-ray crystal structures or predictive models for PCFT or RFC has hindered structure-aided drug design for PCFT-selective therapeutics. Four-point validated models (pharmacophores) were generated for PCFT/Activity (HBA, NI, RA, RA) and RFC/Activity (HBD, NI, HBA, HBA) based on inhibition (IC50) of proliferation of isogenic Chinese hamster ovary (CHO) cells engineered to express only human PCFT or only RFC. Our results revealed substantial differences in structural features required for transport of novel molecules by these transporters which can be utilized for developing transporter-selective antifolates.


Subject(s)
Drug Development , Folic Acid Antagonists/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Proton-Coupled Folate Transporter/chemistry , Reduced Folate Carrier Protein/chemistry , Animals , CHO Cells , Cricetulus , Folic Acid Antagonists/pharmacology , Humans , Inhibitory Concentration 50 , Molecular Structure , Quantitative Structure-Activity Relationship , Reproducibility of Results
8.
Biochem Biophys Res Commun ; 495(2): 1738-1743, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29208467

ABSTRACT

The human proton coupled folic acid transporter PCFT is the major import route for dietary folates. Mutations in the gene encoding PCFT cause hereditary folic acid malabsorption, which manifests itself by compromised folate absorption from the intestine and also in impaired folate transport into the central nervous system. Since its recent discovery, PCFT has been the subject of numerous biochemical studies aiming at understanding its structure and mechanism. One major focus has been its oligomeric state, with some reports supporting oligomers and others a monomer. Here, we report the overexpression and purification of recombinant PCFT. Following detergent screening, n-Dodecyl ß-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating a functionally active protein. Size exclusion chromatography showed that PCFT in DDM was polydisperse; the LMNG preparation was clearly monodisperse but with shorter retention time than the major DDM peak. To assess the oligomeric state negative stain electron microscopy was performed which showed a particle with the size of a PCFT dimer.


Subject(s)
Proton-Coupled Folate Transporter/chemistry , Animals , Detergents , Folic Acid/metabolism , Glucosides , Glycols , Humans , Ligands , Microscopy, Electron , Models, Molecular , Protein Multimerization , Protein Structure, Quaternary , Proton-Coupled Folate Transporter/metabolism , Proton-Coupled Folate Transporter/ultrastructure , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Sf9 Cells , Solubility , Spodoptera
9.
Am J Physiol Cell Physiol ; 314(3): C289-C296, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29167151

ABSTRACT

The proton-coupled folate transporter (PCFT-SLC46A1) is required for folate transport across the apical membrane of the small intestine and across the choroid plexus. This study focuses on the structure/function of the 7th transmembrane domain (TMD), and its relationship to the 8th TMD as assessed by the substituted cysteine accessibility method (SCAM) and dicysteine cross-linking. Nine exofacial residues (I278C; H281C-L288C) of 23 residues in the 7th TMD were accessible to 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin). Pemetrexed, a high-affinity substrate for PCFT, decreased or abolished biotinylation of seven of these residues consistent with their location in or near the folate binding pocket. Homology models of PCFT based on Glut5 fructose transporter structures in both inward- and outward- open conformations were constructed and predicted that two pairs of residues (T289-I304C and Q285-Q311C) from the 7th and 8th TMDs should be in sufficiently close proximity to form a disulfide bond when substituted with cysteines. The single Cys-substituted mutants were accessible to MTSEA-biotin and functional with and without pretreatment with dithiotreitol. However, the double mutants were either not accessible at all, or accessibility was markedly reduced and function markedly impaired. This occurred spontaneously without inclusion of an oxidizing agent. Dithiotreitol restored accessibility and function consistent with disulfide bond disruption. The data establish the proximity of exofacial regions of the 7th and 8th TMDs and their role in defining the aqueous translocation pathway and suggest that these helices may be a component of an exofacial cleft through which substrates enter the protein binding pocket in its outward-open conformation.


Subject(s)
Folic Acid/metabolism , Proton-Coupled Folate Transporter/metabolism , Biological Transport , Cysteine , Disulfides/metabolism , HeLa Cells , Humans , Kinetics , Models, Molecular , Mutation , Oxidation-Reduction , Pemetrexed/metabolism , Protein Conformation, alpha-Helical , Protein Domains , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/genetics , Structure-Activity Relationship
10.
Biochim Biophys Acta Biomembr ; 1859(11): 2193-2202, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28802835

ABSTRACT

The proton-coupled folate transporter (PCFT-SLC46A1) is required for intestinal folate absorption and folate transport across the choroid plexus. This report addresses the structure/function of the 8th transmembrane helix. Based upon biotinylation of cysteine-substituted residues by MTSEA-biotin, 14 contiguous exofacial residues to Leu316 were accessible to the extracellular compartment of the 23 residues in this helix (Leu303-Leu325). Pemetrexed blocked biotinylation of six Cys-substituted residues deep within the helix implicating an important role for this region in folate binding. Accessibility decreased at 4°C vs RT. The influx Kt, Ki and Vmax were markedly increased for the P314C mutant, similar to what was observed for Y315A and Y315P mutants. However, the Kt, alone, was increased for the P314Y mutant. To correlate these observations with PCFT structural changes during the transport cycle, homology models were built for PCFT based upon the recently reported structures of bovine and rodent GLUT5 fructose transporters in the inward-open and outward- open conformations, respectively. The models predict substantial structural alterations in the exofacial region of the eighth transmembrane helix as it cycles between its conformational states that can account for the extended and contiguous aqueous accessibility of this region of the helix. Further, a helix break in one of the two conformations can account for the critical roles Pro314 and Tyr315, located in this region, play in PCFT function. The data indicates that the 8th transmembrane helix of PCFT plays an important role in defining the aqueous channel and the folate binding pocket.


Subject(s)
Cell Membrane/chemistry , Folic Acid/metabolism , Protein Interaction Domains and Motifs , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/metabolism , Amino Acid Substitution , Binding Sites/genetics , Cell Membrane/metabolism , HeLa Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Mutant Proteins/chemistry , Protein Binding/genetics , Protein Domains/genetics , Protein Interaction Domains and Motifs/genetics , Protein Transport/genetics , Proton-Coupled Folate Transporter/genetics , Water/chemistry
11.
Mol Aspects Med ; 53: 57-72, 2017 02.
Article in English | MEDLINE | ID: mdl-27664775

ABSTRACT

The proton-coupled folate transporter (PCFT-SLC46A1) is the mechanism by which folates are absorbed across the brush-border membrane of the small intestine. The transporter is also expressed in the choroid plexus and is required for transport of folates into the cerebrospinal fluid. Loss of PCFT function, as occurs in the autosomal recessive disorder "hereditary folate malabsorption" (HFM), results in a syndrome characterized by severe systemic and cerebral folate deficiency. Folate-receptor alpha (FRα) is expressed in the choroid plexus, and loss of function of this protein, as also occurs in an autosomal recessive disorder, results solely in "cerebral folate deficiency" (CFD), the designation for this disorder. This paper reviews the current understanding of the functional and structural properties and regulation of PCFT, an electrogenic proton symporter, and contrasts PCFT properties with those of the reduced folate carrier (RFC), an organic anion antiporter, that is the major route of folate transport to systemic tissues. The clinical characteristics of HFM and its treatment, based upon the thirty-seven known cases with the clinical syndrome, of which thirty have been verified by genotype, are presented. The ways in which PCFT and FRα might interact at the level of the choroid plexus such that each is required for folate transport from blood to cerebrospinal fluid are considered along with the different clinical presentations of HFM and CFD.


Subject(s)
Folic Acid Deficiency/metabolism , Malabsorption Syndromes/metabolism , Proton-Coupled Folate Transporter/metabolism , Animals , Biological Transport , Folic Acid Deficiency/cerebrospinal fluid , Humans , Intestinal Absorption , Malabsorption Syndromes/cerebrospinal fluid , Models, Molecular , Proton-Coupled Folate Transporter/chemistry
12.
Biochem J ; 473(20): 3545-3562, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27514717

ABSTRACT

The proton-coupled folate transporter (PCFT; SLC46A1) is a folate-proton symporter expressed in solid tumors and is used for tumor-targeted delivery of cytotoxic antifolates. Topology modeling suggests that the PCFT secondary structure includes 12 transmembrane domains (TMDs) with TMDs 6 and 7 linked by an intracellular loop (positions 236-265) including His247, implicated as functionally important. Single-cysteine (Cys) mutants were inserted from positions 241 to 251 in Cys-less PCFT and mutant proteins were expressed in PCFT-null (R1-11) HeLa cells; none were reactive with 2-aminoethyl methanethiosulfonate biotin, suggesting that the TMD6-7 loop is intracellular. Twenty-nine single alanine mutants spanning the entire TMD6-7 loop were expressed in R1-11 cells; activity was generally preserved, with the exception of the 247, 250, and 251 mutants, partly due to decreased surface expression. Coexpression of PCFT TMD1-6 and TMD7-12 half-molecules in R1-11 cells partially restored transport activity, although removal of residues 252-265 from TMD7-12 abolished transport. Chimeric proteins, including a nonhomologous sequence from a thiamine transporter (ThTr1) inserted into the PCFT TMD6-7 loop (positions 236-250 or 251-265), were active, although replacement of the entire loop with the ThTr1 sequence resulted in substantial loss of activity. Amino acid replacements (Ala, Arg, His, Gln, and Glu) or deletions at position 247 in wild-type and PCFT-ThTr1 chimeras resulted in differential effects on transport. Collectively, our findings suggest that the PCFT TMD6-7 connecting loop confers protein stability and may serve a unique functional role that depends on secondary structure rather than particular sequence elements.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/metabolism , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/metabolism , Amino Acid Sequence , Biological Transport/genetics , Biological Transport/physiology , Biotin/chemistry , Biotin/metabolism , Biotinylation , Blotting, Western , Folic Acid/metabolism , HeLa Cells , Humans , Membrane Proteins/genetics , Microscopy, Confocal , Mutagenesis/genetics , Mutagenesis/physiology , Protein Structure, Secondary , Proton-Coupled Folate Transporter/genetics
13.
Am J Physiol Cell Physiol ; 311(1): C150-7, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27251438

ABSTRACT

The proton-coupled folate transporter (PCFT) mediates folate absorption across the brush-border membrane of the proximal small intestine and is required for folate transport across the choroid plexus into the cerebrospinal fluid. In this study, the functional role and accessibility of the seven PCFT Trp residues were assessed by the substituted-cysteine accessibility method. Six Trp residues at a lipid-aqueous interface tolerated Cys substitution in terms of protein stability and function. W85C, W202C, and W213C were accessible to N-biotinyl aminoethylmethanethiosulfonate; W48C and W299C were accessible only after treatment with dithiotreitol (DTT), consistent with modification of these residues by an endogenous thiol-reacting molecule and their extracellular location. Neither W107C nor W333C was accessible (even after DTT) consistent with their cytoplasmic orientation. Biotinylation was blocked by pemetrexed only for the W48C (after DTT), W85C, W202C residues. Function was impaired only for the W299C PCFT mutant located in the 4th external loop between the 7th and 8th transmembrane helices. Despite its aqueous location, function could only be fully preserved with Phe and, to a lesser extent, Ala substitutions. There was a 6.5-fold decrease in the pemetrexed influx Vmax and a 3.5- and 6-fold decrease in the influx Kt and Ki, respectively, for the W299S PCFT. The data indicate that the hydrophobicity of the W299 residue is important for function suggesting that during the transport cycle this residue interacts with the lipid membrane thereby impacting on the oscillation of the carrier and, indirectly, on the folate binding pocket.


Subject(s)
Cell Membrane/metabolism , Folic Acid/metabolism , Proton-Coupled Folate Transporter/metabolism , Binding Sites , Biotinylation , Cell Membrane/drug effects , Cysteine , Folic Acid Antagonists/pharmacology , Genotype , HeLa Cells , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Kinetics , Mutagenesis, Site-Directed , Mutation , Pemetrexed/pharmacology , Phenotype , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains , Protein Stability , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/drug effects , Proton-Coupled Folate Transporter/genetics , Structure-Activity Relationship , Transfection , Tryptophan
14.
J Biol Chem ; 291(15): 8162-72, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26884338

ABSTRACT

The proton-coupled folate transporter (PCFT, SLC46A1) is required for intestinal folate absorption and folate homeostasis in humans. A homology model of PCFT, based upon theEscherichia coliglycerol 3-phosphate transporter structure, predicted that PCFT transmembrane domains (TMDs) 1, 2, 7, and 11 form an extracellular gate in the inward-open conformation. To assess this model, five residues (Gln(45)-TMD1, Asn(90)-TMD2, Leu(290)-TMD7, Ser(407)-TMD11 and Asn(411)-TMD11) in the predicted gate were substituted with Cys to generate single and nine double mutants. Transport function of the mutants was assayed in transient transfectants by measurement of [(3)H]substrate influx as was accessibility of the Cys residues to biotinylation. Pairs of Cys residues were assessed for spontaneous formation of a disulfide bond, induction of a disulfide bond by oxidization with dichloro(1,10-phenanthroline)copper (II) (CuPh), or the formation of a Cd(2+)complex. The data were consistent with the formation of a spontaneous disulfide bond between the N90C/S407C pair and a CuPh- and Cd(2+)-induced disulfide bond and complex, respectively, for the Q45C/L290C and L290C/N411C pairs. The decrease in activity induced by cross-linkage of the Cys residue pairs was due to a decrease in the influxVmaxconsistent with restriction in the mobility of the transporter. The presence of folate substrate decreased the CuPh-induced inhibition of transport. Hence, the data support the glycerol 3-phosphate transporter-based homology model of PCFT and the presence of an extracellular gate formed by TMDs 1, 2, 7, and 11.


Subject(s)
Cysteine/chemistry , Disulfides/chemistry , Folic Acid/metabolism , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/metabolism , Amino Acid Substitution , Cysteine/genetics , Cysteine/metabolism , Disulfides/metabolism , HeLa Cells , Humans , Models, Molecular , Mutation , Oxidation-Reduction , Protein Conformation , Protein Processing, Post-Translational , Protein Structure, Tertiary , Proton-Coupled Folate Transporter/genetics
15.
J Med Chem ; 58(17): 6938-59, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26317331

ABSTRACT

2-Amino-4-oxo-6-substituted-pyrrolo[2,3-d]pyrimidine antifolate thiophene regioisomers of AGF94 (4) with a thienoyl side chain and three-carbon bridge lengths [AGF150 (5) and AGF154 (7)] were synthesized as potential antitumor agents. These analogues inhibited proliferation of Chinese hamster ovary (CHO) sublines expressing folate receptors (FRs) α or ß (IC50s < 1 nM) or the proton-coupled folate transporter (PCFT) (IC50 < 7 nM). Compounds 5 and 7 inhibited KB, IGROV1, and SKOV3 human tumor cells at subnanomolar concentrations, reflecting both FRα and PCFT uptake. AGF152 (6) and AGF163 (8), 2,4-diamino-5-substituted-furo[2,3-d]pyrimidine thiophene regioisomers, also inhibited growth of FR-expressing CHO and KB cells. All four analogues inhibited glycinamide ribonucleotide formyltransferase (GARFTase). Crystal structures of human GARFTase complexed with 5 and 7 were reported. In severe combined immunodeficient mice bearing SKOV3 tumors, 7 was efficacious. The selectivity of these compounds for PCFT and for FRα and ß over the ubiquitously expressed reduced folate carrier is a paradigm for selective tumor targeting.


Subject(s)
Antineoplastic Agents/chemistry , Folate Receptor 1/antagonists & inhibitors , Folic Acid Antagonists/chemistry , Proton-Coupled Folate Transporter/antagonists & inhibitors , Pyrimidines/chemistry , Pyrroles/chemistry , Thiophenes/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Biological Transport , CHO Cells , Cell Line, Tumor , Cricetulus , Crystallography, X-Ray , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Female , Folate Receptor 1/chemistry , Folic Acid Antagonists/chemical synthesis , Folic Acid Antagonists/pharmacology , Heterografts , Humans , Mice, SCID , Models, Molecular , Neoplasm Transplantation , Pemetrexed/pharmacology , Phosphoribosylglycinamide Formyltransferase/antagonists & inhibitors , Phosphoribosylglycinamide Formyltransferase/chemistry , Proton-Coupled Folate Transporter/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Stereoisomerism , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/pharmacology
16.
Biochem J ; 469(1): 33-44, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25877470

ABSTRACT

The human proton-coupled folate transporter (hPCFT) is expressed in solid tumours and is active at pHs characterizing the tumour microenvironment. Recent attention focused on exploiting hPCFT for targeting solid tumours with novel cytotoxic anti-folates. hPCFT has 12 transmembrane domains (TMDs) and forms homo-oligomers with functional significance. The hPCFT primary sequence includes GXXXG motifs in TMD2 (G(93)XXXG(97)) and TMD4 (G(155)XXXG(159)). To investigate roles of these motifs in hPCFT function, stability and surface expression, we mutated glycine to leucine to generate single or multiple substitution mutants. Only the G93L and G159L mutants preserved substantial [(3)H]methotrexate (Mtx) transport when expressed in hPCFT-null (R1-11) HeLa cells. Transport activity of the glycine-to-leucine mutants correlated with surface hPCFT by surface biotinylation and confocal microscopy with ECFP*-tagged hPCFTs, suggesting a role for GXXXG in hPCFT stability and intracellular trafficking. When co-expressed in R1-11 cells, haemagglutinin-tagged glycine-to-leucine mutants and His10-tagged wild-type (WT) hPCFT co-associated on nickel affinity columns, suggesting that the GXXXG motifs are not directly involved in hPCFT oligomerization. This was substantiated by in situ FRET experiments with co-expressed ECFP*- and YFP-tagged hPCFT. Molecular modelling of dimeric hPCFT structures showed juxtaposed TMDs 2, 3, 4 and 6 as potential structural interfaces between monomers. hPCFT cysteine insertion mutants in TMD3 (Q136C and L137C) and TMD6 (W213C, L214C, L224C, A227C, F228C, F230C and G231C) were expressed in R1-11 cells and cross-linked with 1,6-hexanediyl bismethanethiosulfonate, confirming TMD juxtapositions. Altogether, our results imply that TMDs 3 and 6 provide critical interfaces for formation of hPCFT oligomers, which might be facilitated by the GXXXG motifs in TMD2 and TMD4.


Subject(s)
Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Multimerization/physiology , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/metabolism , Amino Acid Motifs , Amino Acid Substitution , HeLa Cells , Humans , Multiprotein Complexes/genetics , Mutation, Missense , Protein Structure, Quaternary , Protein Structure, Tertiary , Proton-Coupled Folate Transporter/genetics
17.
J Biol Chem ; 289(36): 25287-95, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25053408

ABSTRACT

The proton-coupled folate transporter (PCFT) is a folate-proton symporter highly expressed in solid tumors that can selectively target cytotoxic antifolates to tumors under acidic microenvironment conditions. Predicted topology models for PCFT suggest that the loop domain between transmembrane domains (TMDs) 2 and 3 resides in the cytosol. Mutations involving Asp-109 or Arg-113 in the TMD2-3 loop result in loss of activity. By structural homology to other solute carriers, TMD2 may form part of the PCFT substrate binding domain. In this study we mutated the seven cysteine (Cys) residues of human PCFT to serine, creating Cys-less PCFT. Thirty-three single-Cys mutants spanning TMD2 and the TMD2-3 loop in a Cys-less PCFT background were transfected into PCFT-null HeLa cells. All 33 mutants were detected by Western blotting, and 28 were active for [(3)H]methotrexate uptake at pH 5.5. For the active residues, we performed pulldown assays with membrane-impermeable 2-aminoethyl methanethiosulfonate-biotin and streptavidin beads to determine their aqueous-accessibilities. Multiple residues in TMD2 and the TMD2-3 loop domain reacted with 2-aminoethyl methanethiosulfonate-biotin, establishing aqueous accessibilities. Pemetrexed pretreatment inhibited biotinylation of TMD2 mutants G93C and F94C, and biotinylation of these residues inhibited methotrexate transport activity. Our results suggest that the TMD 2-3 loop domain is aqueous-accessible and forms a novel reentrant loop structure. Residues in TMD2 form an aqueous transmembrane pathway for folate substrates, and Gly-93 and Phe-94 may contribute to a substrate binding domain. Characterization of PCFT structure is essential to understanding the transport mechanism including the critical determinants of substrate binding.


Subject(s)
Amino Acid Substitution , Cysteine/genetics , Mutation , Proton-Coupled Folate Transporter/genetics , Amino Acid Sequence , Binding Sites/genetics , Biological Transport/drug effects , Biological Transport/genetics , Biotinylation , Blotting, Western , Cell Membrane/metabolism , Cysteine/chemistry , Cysteine/metabolism , Folic Acid/metabolism , Folic Acid Antagonists/pharmacology , Glutamates/pharmacology , Guanine/analogs & derivatives , Guanine/pharmacology , HeLa Cells , Humans , Kinetics , Methotrexate/metabolism , Molecular Sequence Data , Pemetrexed , Protein Structure, Secondary , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/metabolism , Tritium
18.
Curr Top Membr ; 73: 175-204, 2014.
Article in English | MEDLINE | ID: mdl-24745983

ABSTRACT

This chapter focuses on the biology of the major facilitative membrane folate transporters, the reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT). Folates are essential vitamins, and folate deficiency contributes to a variety of heath disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates intestinal absorption of dietary folates. Clinically relevant antifolates such as methotrexate (MTX) are transported by RFC, and the loss of RFC transport is an important mechanism of MTX resistance. PCFT is abundantly expressed in human tumors and is active under pH conditions associated with the tumor microenvironment. Pemetrexed (PMX) is an excellent substrate for PCFT as well as for RFC. Novel tumor-targeted antifolates related to PMX with selective membrane transport by PCFT over RFC are being developed. The molecular picture of RFC and PCFT continues to evolve relating to membrane topology, N-glycosylation, energetics, and identification of structurally and functionally important domains and amino acids. The molecular bases for MTX resistance associated with loss of RFC function, and for the rare autosomal recessive condition, hereditary folate malabsorption (HFM), attributable to mutant PCFT, have been established. From structural homologies to the bacterial transporters GlpT and LacY, homology models were developed for RFC and PCFT, enabling new mechanistic insights and experimentally testable hypotheses. RFC and PCFT exist as homo-oligomers, and evidence suggests that homo-oligomerization of RFC and PCFT monomeric proteins may be important for intracellular trafficking and/or transport function. Better understanding of the structure and function of RFC and PCFT should facilitate the rational development of new therapeutic strategies for cancer as well as for HFM.


Subject(s)
Proton-Coupled Folate Transporter/metabolism , Reduced Folate Carrier Protein/metabolism , Animals , Folic Acid/metabolism , Folic Acid Antagonists/pharmacology , Humans , Proton-Coupled Folate Transporter/chemistry , Reduced Folate Carrier Protein/chemistry
19.
Am J Physiol Cell Physiol ; 304(12): C1159-67, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23552283

ABSTRACT

The proton-coupled folate transporter (PCFT, SLC46A1) mediates folate transport across the apical brush-border membrane of the proximal small intestine and the basolateral membrane of choroid plexus ependymal cells. Two loss-of-function mutations in PCFT, which are the basis for hereditary folate malabsorption, have been identified within the fourth transmembrane domain (TMD4) in subjects with this disorder. We have employed the substituted Cys accessibility method (SCAM) to study the accessibilities of all residues in TMD4 and their roles in folate substrate binding to the carrier. When residues 146-167 were replaced by Cys, all except R148C were expressed at the cell surface. Modification of five of these substituted Cys residues (positions 147, 152, 157, 158, and 161) by methanethiosulfonate (MTS) reagents led to reduction of PCFT function. All five residues could be labeled with N-biotinylaminoethyl-MTS, and this could be blocked by the high-affinity PCFT substrate pemetrexed. Pemetrexed also protected PCFT mutant function from inhibitory modification of the substituted Cys at positions 157, 158, and 161 by a MTS. The findings indicate that these five residues in TMD4 are accessible to the aqueous translocation pathway, play a role in folate substrate binding, and are likely located within or near the folate binding pocket. A homology model of PCFT places three of these residues, Phe¹57, Gly¹58, and Leu¹6¹, within a breakpoint in the midportion of TMD4, a region that likely participates in alterations in the PCFT conformational state during carrier cycling.


Subject(s)
Amino Acid Substitution/genetics , Cysteine/chemistry , Cysteine/genetics , Proton-Coupled Folate Transporter/chemistry , Proton-Coupled Folate Transporter/genetics , Amino Acid Sequence , Gene Deletion , HeLa Cells , Humans , Molecular Sequence Data , Protein Structure, Tertiary/genetics , Protein Transport/genetics
20.
FEBS J ; 280(12): 2900-15, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23601781

ABSTRACT

Folic acid is an essential vitamin required for de novo biosynthesis of nucleotides and amino acids. The proton-coupled folate transporter (PCFT; SLC46A1) has been identified as the major contributor for intestinal folate uptake. It is also involved in folate transport across the blood-brain barrier and into solid tumors. PCFT belongs to the major facilitator superfamily. Major facilitator superfamily members can exist in either monomeric or homo-oligomeric form. Here, we utilized blue native polyacrylamide gel electrophoresis (BN/PAGE) and crosslinking with bi-functional chemicals to investigate the quaternary structure of human PCFT after heterologous expression in Xenopus laevis oocytes and CHO cells. PCFT was expressed in the plasma membrane in both expression systems. The functionality of the utilized PCFT construct was confirmed in oocytes by folic acid induced currents at acidic pH. For both the oocyte and CHO expression system [(3)H]folic acid uptake studies indicated that PCFT was functional. To analyze the oligomeric state of PCFT in the plasma membrane, plasma membranes were isolated by polymerization with colloidal silica and polyacrylic acid and subsequent centrifugation. The digitonin-solubilized non-denatured PCFT migrated during BN/PAGE as a monomer, as judged by comparison with a membrane protein (5-HT(3A) receptor) of known pentameric assembly that was used to create a molecular sizing ladder. The chemical crosslinkers glutaraldehyde and dimethyl adipimidate were not able to covalently link potential higher order PCFT structures to form oligomers that were stable following SDS treatment. Together, our results demonstrate that plasma-membrane PCFT functions as a monomeric protein.


Subject(s)
Cell Membrane/metabolism , Proton-Coupled Folate Transporter/metabolism , Animals , Biological Transport , CHO Cells , Calibration , Cricetinae , Electrophoresis, Polyacrylamide Gel/standards , Female , Folic Acid/metabolism , Glycosylation , HeLa Cells , Humans , Hydrogen-Ion Concentration , Membrane Potentials , Molecular Weight , Oocytes/metabolism , Protein Processing, Post-Translational , Protein Structure, Quaternary , Proton-Coupled Folate Transporter/chemistry , Reference Standards , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...