Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Molecules ; 26(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34299402

ABSTRACT

Prunus persica L. is one of the most important fruit crops in European production, after grapes, apples, oranges and watermelons. Most varieties are rich in secondary metabolites, showing antioxidant properties for human health. The purpose of this study was to develop a chemical analysis methodology, which involves the use of different analytical-instrumental techniques to deepen the knowledge related to the profile of metabolites present in selected cultivars of peaches and nectarines cultivated in the Mediterranean area (Southern Italy). The comparative study was conducted by choosing yellow-fleshed peaches (RomeStar, ZeeLady) and yellow-fleshed nectarines (Nectaross, Venus) from two geographical areas (Piana di Sibari and Piana di Metaponto), and by determining the chemical parameters for the flesh and skin that allow for identification of any distinctive varietal and/or geographical characteristics. A combined analytical and chemometric approach was used, trough rheological, thermogravimetric (TGA), chromatographic (HPLC-ESI-MS), spectroscopic (UV-Vis, ATR-FTIR, NMR) and spectrometric (ToF-SIMS) analysis. This approach allowed us to identify the characterizing parameters for the analysis of a plant matrix so that the developed methodology could define an easily exportable and extendable model for the characterization of other types of vegetable matrices.


Subject(s)
Antioxidants/analysis , Fruit/classification , Fruit/metabolism , Gas Chromatography-Mass Spectrometry/instrumentation , Models, Statistical , Prunus persica/classification , Prunus persica/metabolism , Antioxidants/metabolism , Geography
2.
Nat Commun ; 12(1): 3604, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34127667

ABSTRACT

A narrow genetic basis in modern cultivars and strong linkage disequilibrium in peach (Prunus persica) has restricted resolution power for association studies in this model fruit species, thereby limiting our understanding of economically important quality traits including fruit flavor. Here, we present a high-quality genome assembly for a Chinese landrace, Longhua Shui Mi (LHSM), a representative of the Chinese Cling peaches that have been central in global peach genetic improvement. We also map the resequencing data for 564 peach accessions to this LHSM assembly at an average depth of 26.34× per accession. Population genomic analyses reveal a fascinating history of convergent selection for sweetness yet divergent selection for acidity in eastern vs. western modern cultivars. Molecular-genetics and biochemical analyses establish that PpALMT1 (aluminum-activated malate transporter 1) contributes to their difference of malate content and that increases fructose content accounts for the increased sweetness of modern peach fruits, as regulated by PpERDL16 (early response to dehydration 6-like 16). Our study illustrates the strong utility of the genomics resources for both basic and applied efforts to understand and exploit the genetic basis of fruit quality in peach.


Subject(s)
Fruit/genetics , Genome, Plant , Metagenomics , Prunus persica/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genetic Loci , Genetic Variation , Genome Size , Genomics , Linkage Disequilibrium , Phylogeny , Plant Breeding , Polymorphism, Single Nucleotide , Prunus persica/classification , Prunus persica/metabolism , Sequence Analysis, DNA , Sugars
3.
Int J Food Microbiol ; 334: 108801, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-32795712

ABSTRACT

In the summer of 2014, a multistate outbreak of listeriosis associated with contaminated stone fruit (peach and nectarine) was reported. A serotype 4b variant Listeria monocytogenes (Lm) strain of singleton Sequence Type (ST) 382 was isolated from clinical samples and stone fruit associated with the outbreak. A serotype 1/2b Lm strain of ST5, Clonal Complex 5 was isolated only from outbreak-associated stone fruit, not from clinical samples. Here we investigated the fate of the serotype 4b and 1/2b strains, at two inoculation levels (high level at 3.7 logCFU/fruit and low level at 2.7 logCFU/fruit), on the surfaces of white peach, yellow peach and yellow nectarine stored at 4 °C for 26 days. After rinsing the fruits, we determined the Lm levels in the rinsates and on the peels. We enumerated Lm using a direct plating method and compared two chromogenic agars. The Lm populations rapidly declined in the first 3 days and then declined more slowly until Day 19/21. The maximum decline was 1.6 logCFU/fruit on yellow peach inoculated with serotype 4b at high level. For fruits inoculated with high-level Lm, the lowest level of Lm (1.7 logCFU/fruit) was observed on for white peach inoculated with serotype 1/2b, and the highest level of Lm (2.6 logCFU/fruit) on Day 19/21 was observed on yellow peach inoculated with the serotype 1/2b strain. For fruits inoculated with low-level Lm, the lowest level of Lm (1.3 logCFU/fruit) was observed on yellow nectarine inoculated with either the serotype 4b or 1/2b strain, and the highest level of Lm (1.7 logCFU/fruit) on Day 19/21 was observed on yellow peach inoculated with ST382. The D-values ranged from 15 days to 28 days. Lm remained viable until the end of storage (Day 26), but the levels were not significantly different from those on Day 19/21. The types of stone fruit and Lm strain did not significantly affect the survival of Lm. These results demonstrate that contaminated stone fruit can carry a potential risk for causing listeriosis in susceptible populations. Comparison of direct plating results using two chromogenic agars showed that RAPID' L. mono and Agar Listeria Ottavani & Agosti performed equivalently for enumerating Lm on stone fruit. The fruit rinsing recovered 80% to 84% of Lm from fruit surfaces.


Subject(s)
Disease Outbreaks , Fruit/microbiology , Listeria monocytogenes/physiology , Listeriosis/microbiology , Prunus persica/microbiology , Cold Temperature , Food Microbiology , Fruit/classification , Humans , Listeria monocytogenes/genetics , Listeria monocytogenes/growth & development , Listeria monocytogenes/isolation & purification , Listeriosis/epidemiology , Microbial Viability , Prunus persica/classification , Serogroup
4.
Int J Mol Sci ; 21(4)2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32102419

ABSTRACT

The chilling requirement (CR) is the main factor controlling the peach floral bud break and subsequent reproductive growth. To date, several peach CR quantitative trait loci (QTLs) have been identified. To improve the accessibility and convenience of this genetic information for peach breeders, the aim of this study was to establish an easy-to-use genotype screening system using peach CR molecular markers as a toolkit for marker-assisted selection. Here, we integrated 22 CR-associated markers from three published QTLs and positioned them on the Prunus persica physical map. Then, we built a PCR-based genotyping platform by using high-resolution melting (HRM) analysis with specific primers and trained this platform with 27 peach cultivars. Due to ambiguous variant calls from a commercial HRM software, we developed an R-based pipeline using principal component analysis (PCA) to accurately differentiate genotypes. Based on the PCA results, this toolkit was able to determine the genotypes at the CR-related single nucleotide polymorphisms (SNPs) in all tested peach cultivars. In this study, we showed that this HRM-PCA pipeline served as a low-cost, high-throughput, and non-gel genotyping solution. This system has great potential to accelerate CR-focused peach breeding.


Subject(s)
Cold Temperature , Genotyping Techniques/methods , Polymerase Chain Reaction/methods , Prunus persica/genetics , Quantitative Trait Loci/genetics , Transition Temperature , Flowers/genetics , Genotype , Plant Breeding/methods , Polymorphism, Single Nucleotide , Principal Component Analysis , Prunus persica/classification , Species Specificity
5.
BMC Genomics ; 20(1): 892, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31752682

ABSTRACT

BACKGROUND: Ubiquitin ligases (E3) are the enzymes in the ubiquitin/26S proteasome pathway responsible for targeting proteins to the degradation pathway and play major roles in multiple biological activities. However, the E3 family and their functions are yet to be identified in the fruit of peach. RESULTS: In this study, genome-wide identification, classification and characterization of the E3 ligase genes within the genome of peach (Prunus persica) was carried out. In total, 765 E3 (PpE3) ligase genes were identified in the peach genome. The PpE3 ligase genes were divided into eight subfamilies according to the presence of known functional domains. The RBX subfamily was not detected in peach. The PpE3 ligase genes were not randomly distributed among the 8 chromosomes, with a greater concentration on the longer chromosomes. The primary mode of gene duplication of the PpE3 ligase genes was dispersed gene duplication (DSD). Four subgroups of the BTB subfamily never characterized before were newly identified in peach, namely BTBAND, BTBBL, BTBP and BTBAN. The expression patterns of the identified E3 ligase genes in two peach varieties that display different types of fruit softening (melting flesh, MF, and stony hard, SH) were analyzed at 4 different stages of ripening using Illumina technology. Among the 765 PpE3 ligase genes, 515 (67.3%) were expressed (FPKM > 1) in the fruit of either MF or SH during fruit ripening. In same-stage comparisons, 231 differentially expressed genes (DEGs) were identified between the two peach cultivars. The number of DEGs in each subfamily varied. Most DEGs were members of the BTB, F-box, U-box and RING subfamilies. PpE3 ligase genes predicted to be involved in ethylene, auxin, or ABA synthesis or signaling and DNA methylation were differentially regulated. Eight PpE3 ligase genes with possible roles in peach flesh texture and fruit ripening were discussed. CONCLUSIONS: The results of this study provide useful information for further understanding the functional roles of the ubiquitin ligase genes in peach. The findings also provide the first clues that E3 ligase genes may function in the regulation of peach ripening.


Subject(s)
Fruit/enzymology , Fruit/genetics , Prunus persica/enzymology , Prunus persica/genetics , Ubiquitin-Protein Ligases/genetics , Abscisic Acid/metabolism , Chromosomes, Plant , Ethylenes/metabolism , Fruit/growth & development , Gene Duplication , Gene Expression Profiling , Genome, Plant , Indoleacetic Acids/metabolism , Phylogeny , Prunus persica/classification , Prunus persica/growth & development , Ubiquitin-Protein Ligases/metabolism
6.
Molecules ; 24(10)2019 May 22.
Article in English | MEDLINE | ID: mdl-31121837

ABSTRACT

In order to fully understand the variation of the fruit alpha-glucosidase inhibitory activity-related phytochemical basis in the Chinese peach [Prunus persica (L.) Batsch], mature fruit from 33 cultivars was used for the investigation of fruit phenolic phytochemical attributes, including total phenolics, flavonoids, anthocyanins, and procyanidins, as well as the alpha-glucosidase inhibitory activity in vitro. Alpha-glucosidase inhibitory activity varied significantly among tested peach cultivars and was strongly correlated with total phenolics, total procyanidins, and total flavonoids. Untargeted UPLC-Q-TOF/MS-based metabolomics were used to comprehensively discriminate between peaches with different inhibitory activity on alpha-glucosidase. Principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA) were used for this process. Twenty-three differential compounds were identified between peach cultivars with high and low alpha-glucosidase inhibitory activity, and nine, including procyanidin C1, procyanidin trimer isomer 1, procyanidin trimer isomer 2, procyanidin B1, procyanidin dimer, epicatechin-epicatechin-epicatechin, phloridzin, kaempferol 3-(2'',6''-di-(E)-p-coumarylglucoside), and luteolin 3'-methyl ether 7-malonylglucoside, were identified as marker compounds responsible for the discrimination. Overall, variations in metabolites in peach pulp reflect the diversity in peach germplasm, and these nine compounds are good candidate markers for future genetic breeding of peach fruit with high alpha-glucosidase inhibitory activity.


Subject(s)
Glycoside Hydrolase Inhibitors/chemistry , Metabolomics/methods , Phytochemicals/chemistry , Prunus persica/chemistry , Chromatography, High Pressure Liquid , Glycoside Hydrolase Inhibitors/pharmacology , Least-Squares Analysis , Nutritive Value , Phytochemicals/pharmacology , Principal Component Analysis , Prunus persica/classification , Seeds/chemistry
7.
BMC Genet ; 20(1): 101, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31888445

ABSTRACT

BACKGROUND: Peach (Prunus persica L.) is a diploid species and model plant of the Rosaceae family. In the past decade, significant progress has been made in peach genetic research via DNA markers, but the number of these markers remains limited. RESULTS: In this study, we performed a genome-wide DNA markers detection based on sequencing data of six distantly related peach accessions. A total of 650,693~1,053,547 single nucleotide polymorphisms (SNPs), 114,227~178,968 small insertion/deletions (InDels), 8386~12,298 structure variants (SVs), 2111~2581 copy number variants (CNVs) and 229,357~346,940 simple sequence repeats (SSRs) were detected and annotated. To demonstrate the application of DNA markers, 944 SNPs were filtered for association study of fruit ripening time and 15 highly polymorphic SSRs were selected to analyze the genetic relationship among 221 accessions. CONCLUSIONS: The results showed that the use of high-throughput sequencing to develop DNA markers is fast and effective. Comprehensive identification of DNA markers, including SVs and SSRs, would be of benefit to genetic diversity evaluation, genetic mapping, and molecular breeding of peach.


Subject(s)
Genetic Markers , Prunus persica/genetics , Whole Genome Sequencing/methods , Chromosome Mapping , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , INDEL Mutation , Microsatellite Repeats , Polymorphism, Single Nucleotide , Prunus persica/classification
8.
PLoS One ; 13(4): e0195974, 2018.
Article in English | MEDLINE | ID: mdl-29659634

ABSTRACT

The basic helix-loop-helix (bHLH) transcription factor family is a superfamily found in all eukaryotes that plays important roles in regulating growth and development. Over the past several decades, many bHLH superfamily genes have been identified and characterized in herbaceous and woody plants. However, the genes belonging to the bHLH superfamily in peach (Prunus persica) have not yet been comprehensively identified and characterized. Here, we identified 95 members of the bHLH superfamily in the peach genome, and these genes were classified into 19 subfamilies based on a phylogenetic comparison with bHLH proteins from Arabidopsis. The members within each subfamily were highly conserved according to the analysis of motif compositions and exon/intron organizations. The 95 bHLH genes were unevenly distributed on chromosomes 1 to 8 of the peach genome. We identified 57 pairs of bHLH members that were orthologous between peach and Arabidopsis. Additionally, 48 pairs of paralogous bHLH genes were identified on the eight chromosomes of the peach genome. Coupled with relative expression analysis of bHLH genes in red-fleshed peach fruit at five developmental stages, we identified several bHLH genes that might be involved in fruit development and anthocyanin biosynthesis. This study provides insight into the molecular mechanisms through which these genes are involved in the regulation of biological and biochemical processes in peach and lays the foundation for further studies on these genes.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Genome, Plant , Genome-Wide Association Study , Multigene Family , Prunus persica/genetics , Amino Acid Motifs , Amino Acid Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites , Fruit/genetics , Gene Expression Regulation, Plant , Phylogeny , Position-Specific Scoring Matrices , Protein Binding , Prunus persica/classification , Sequence Analysis, DNA
9.
Plant Cell Physiol ; 59(1): e2, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29216377

ABSTRACT

Applying next-generation sequencing (NGS) technologies to species of agricultural interest has the potential to accelerate the understanding and exploration of genetic resources. The storage, availability and maintenance of huge quantities of NGS-generated data remains a major challenge. The PeachVar-DB portal, available at http://hpc-bioinformatics.cineca.it/peach, is an open-source catalog of genetic variants present in peach (Prunus persica L. Batsch) and wild-related species of Prunus genera, annotated from 146 samples publicly released on the Sequence Read Archive (SRA). We designed a user-friendly web-based interface of the database, providing search tools to retrieve single nucleotide polymorphism (SNP) and InDel variants, along with useful statistics and information. PeachVar-DB results are linked to the Genome Database for Rosaceae (GDR) and the Phytozome database to allow easy access to other external useful plant-oriented resources. In order to extend the genetic diversity covered by the PeachVar-DB further, and to allow increasingly powerful comparative analysis, we will progressively integrate newly released data.


Subject(s)
Computational Biology/methods , Genetic Variation , Genome, Plant/genetics , Prunus persica/genetics , Data Mining/methods , Databases, Genetic , High-Throughput Nucleotide Sequencing/methods , Internet , Phylogeny , Polymorphism, Single Nucleotide , Prunus persica/classification , Rosaceae/classification , Rosaceae/genetics
10.
Food Res Int ; 99(Pt 1): 133-146, 2017 09.
Article in English | MEDLINE | ID: mdl-28784469

ABSTRACT

The aim of this study was to investigate the aroma and sensory profiles of various types of peaches (Prunus persica L. Batsch.). Forty-three commercial cultivars comprising peaches, flat peaches, nectarines, and canning peaches (pavías) were grown over two consecutive harvest years. Fruits were assessed for chemical aroma and sensory profiles. Chemical aroma profile was obtained by proton transfer reaction-mass spectrometry (PTR-MS) and spectral masses were tentatively identified with PTR-Time of Flight-MS (PTR-Tof-MS). Sensory analysis was performed at commercial maturity considering seven aroma/flavor attributes. The four types of peaches showed both distinct chemical aroma and sensory profiles. Flat peaches and canning peaches showed most distinct patterns according to discriminant analysis. The sensory data were related to the volatile compounds by partial least square regression. γ-Hexalactone, γ-octalactone, hotrienol, acetic acid and ethyl acetate correlated positively, and benzeneacetaldehyde, trimethylbenzene and acetaldehyde negatively to the intensities of aroma and ripe fruit sensory scores.


Subject(s)
Fruit/chemistry , Mass Spectrometry/methods , Olfactory Perception , Prunus persica/chemistry , Smell , Volatile Organic Compounds/analysis , Fruit/classification , Fruit/growth & development , Humans , Judgment , Prunus persica/classification , Prunus persica/growth & development
11.
J Sci Food Agric ; 97(10): 3374-3383, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27990650

ABSTRACT

BACKGROUND: Sugars and antioxidants in peaches contribute to fresh fruit quality and nutrition; however, information on widely grown cultivars and changes induced after peach jam preparation is limited. In the present study, colour, sugars and antioxidant parameters were determined in fruit and jam from 45 peach and nectarine cultivars. RESULTS: Pronounced varietal differences were found in sorbitol (42-fold range), total phenolics (TPs) and antioxidant capacities (10- to 19-fold range). Sorbitol levels were greater in non-melting peach, followed by nectarine, and lower values were found in melting peach cultivars. Late-harvested peach and nectarine cultivars tended to have a higher soluble solid content and antioxidant potential. Cultivars with relatively high antioxidant contents produced darker and redder jams, containing more antioxidants, than the jam or the fruit from the other cultivars. Jam-TPs were reduced by 48% compared to fruit-TPs, with greater reduction being noted in high antioxidant cultivars. The most favorable jam organoleptic characteristics were found in 'Morsiani 90', 'Amiga', 'Romea' and 'Alirosada', as well as in non-melting compared to melting peach cultivars. CONCLUSION: The best cultivars for each fruit flesh type and jam were identified. Peach jam could be an alternative substitute when fresh fruit is not available and when it is prepared with high antioxidant cultivars. © 2016 Society of Chemical Industry.


Subject(s)
Antioxidants/analysis , Fruit/chemistry , Plant Preparations/chemistry , Prunus/chemistry , Food Handling , Fruit/classification , Phenotype , Prunus/classification , Prunus persica/chemistry , Prunus persica/classification
12.
Int J Mol Sci ; 17(11)2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27869753

ABSTRACT

Polygalacturonase (PG) is an important hydrolytic enzyme involved in pectin degradation during fruit softening. However, the roles of PG family members in fruit softening remain unclear. We identified 45 PpPG genes in the peach genome which are clustered into six subclasses. PpPGs consist of four to nine exons and three to eight introns, and the exon/intron structure is basically conserved in all but subclass E. Only 16 PpPG genes were expressed in ripening fruit, and their expression profiles were analyzed during storage in two peach cultivars with different softening characteristics. Eight PGs (PpPG1, -10, -12, -13, -15, -23, -21, and -22) in fast-softening "Qian Jian Bai" (QJB) fruit and three PGs (PpPG15, -21, and -22) in slow-softening "Qin Wang" (QW) fruit exhibited softening-associated patterns; which also were affected by ethylene treatment. Our results suggest that the different softening characters in QW and QJB fruit is related to the amount of PG members. While keeping relatively lower levels during QW fruit softening, the expression of six PGs (PpPG1, -10, -12, -11, -14, and -35) rapidly induced by ethylene. PpPG24, -25 and -38 may not be involved in softening of peach fruit.


Subject(s)
Fruit/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Plant Proteins/genetics , Polygalacturonase/genetics , Prunus persica/genetics , Base Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Ethylenes/biosynthesis , Fruit/metabolism , Gene Expression Profiling/methods , Isoenzymes/classification , Isoenzymes/genetics , Isoenzymes/metabolism , Multigene Family , Phylogeny , Plant Proteins/metabolism , Polygalacturonase/classification , Polygalacturonase/metabolism , Prunus persica/classification , Prunus persica/enzymology , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Species Specificity
13.
Yi Chuan ; 38(3): 254-70, 2016 03.
Article in Chinese | MEDLINE | ID: mdl-27001479

ABSTRACT

The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles.


Subject(s)
Genome, Plant , Multigene Family , Plant Proteins/genetics , Prunus persica/genetics , Transcription Factors/genetics , Amino Acid Motifs , Amino Acid Sequence , Evolution, Molecular , Gene Expression Regulation, Plant , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants/chemistry , Plants/classification , Plants/genetics , Protein Structure, Tertiary , Prunus persica/chemistry , Prunus persica/classification , Prunus persica/metabolism , Sequence Alignment , Transcription Factors/chemistry , Transcription Factors/metabolism
14.
Sci Rep ; 5: 16794, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26610240

ABSTRACT

Peach (Prunus persica, Rosaceae) is an extremely popular tree fruit worldwide, with an annual production near 20 million tons. Peach is widely thought to have origins in China, but its evolutionary history is largely unknown. The oldest evidence for the peach has been Chinese archaeological records dating to 8000-7000 BP. Here, we report eight fossil peach endocarps from late Pliocene strata of Kunming City, Yunnan, southwestern China. The fossils are identical to modern peach endocarps, including size comparable to smaller modern varieties, a single seed, a deep dorsal groove, and presence of deep pits and furrows. These fossils show that China has been a critical region for peach evolution since long before human presence, much less agriculture. Peaches evolved their modern morphology under natural selection, presumably involving large, frugivorous mammals such as primates. Much later, peach size and variety increased through domestication and breeding.


Subject(s)
Biological Evolution , Fruit/anatomy & histology , Phylogeny , Prunus persica/classification , Archaeology , Breeding , Fossils , Fruit/physiology , Genetic Variation , Humans , Prunus persica/anatomy & histology , Prunus persica/physiology , Selection, Genetic
15.
Plant Foods Hum Nutr ; 70(4): 433-40, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26497505

ABSTRACT

Large amounts of fruit seeds, especially peach, are discarded annually in juice or conserve producing industries which is a potential waste of valuable resource and serious disposal problem. Regarding the fact that peach seeds can be obtained as a byproduct from processing companies their exploitation should be greater and, consequently more information of cultivars' kernels and their composition is required. A total of 25 samples of kernels from various peach germplasm (including commercial cultivars, perspective hybrids and vineyard peach accessions) differing in origin and ripening time were characterized by evaluation of their sugar composition. Twenty characteristic carbohydrates and sugar alcohols were determined and quantified using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC/PAD). Sucrose, glucose and fructose are the most important sugars in peach kernels similar to other representatives of the Rosaceae family. Also, high amounts of sugars in seeds of promising hybrids implies that through conventional breeding programs peach kernels with high sugar content can be obtained. In addition, by the means of several pattern recognition methods the variables that discriminate peach kernels arising from diverse germplasm and different stage of maturity were identified and successful models for further prediction were developed. Sugars such as ribose, trehalose, arabinose, galactitol, fructose, maltose, sorbitol, sucrose, iso-maltotriose were marked as most important for such discrimination.


Subject(s)
Carbohydrates/analysis , Prunus persica , Seeds/chemistry , Chromatography, High Pressure Liquid , Food Handling , Fructose/analysis , Fruit/chemistry , Glucose/analysis , Prunus persica/chemistry , Prunus persica/classification , Prunus persica/growth & development , Sucrose/analysis , Sweetening Agents , Waste Products
SELECTION OF CITATIONS
SEARCH DETAIL
...