Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.804
Filter
1.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Article in English | MEDLINE | ID: mdl-38708178

ABSTRACT

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Liposomes , Nanoparticles , Pseudomonas Infections , Pseudomonas aeruginosa , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Humans , Pseudomonas Infections/drug therapy , Nanoparticles/chemistry , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Drug Carriers/chemistry , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Lipids/chemistry , Lipids/pharmacology , Quorum Sensing/drug effects , A549 Cells , Alginates/chemistry
2.
Front Cell Infect Microbiol ; 14: 1386483, 2024.
Article in English | MEDLINE | ID: mdl-38756229

ABSTRACT

Background: Ducrosia anethifolia is an aromatic desert plant used in Saudi folk medicine to treat skin infections. It is widely found in Middle Eastern countries. Methods: A methanolic extract of the plant was prepared, and its phytoconstituents were determined using LC-MS. In-vitro and in-vivo antibacterial and antibiofilm activities of the methanolic extract were evaluated against multidrug-resistant bacteria. The cytotoxic effect was assessed using HaCaT cell lines in-vitro. Diabetic mice were used to study the in-vivo antibiofilm and wound healing activity using the excision wound method. Results: More than 50 phytoconstituents were found in the extract after LC-MS analysis. The extract exhibited antibacterial activity against both the tested pathogens. The extract was free of irritant effects on mice skin, and no cytotoxicity was observed on HaCaT cells with an IC50 value of 1381 µg/ml. The ointment formulation of the extract increased the healing of diabetic wounds. The microbial load of both pathogens in the wounded tissue was also reduced after the treatment. The extract was more effective against methicillin-resistant Staphylococcus aureus (MRSA) than MDR-P. aeruginosa in both in vitro and in vivo experiments. Further, skin regeneration was also observed in histological studies. Conclusions: The results showed that D. anethifolia methanol extract supports wound healing in infected wounds in diabetic mice through antibacterial, antibiofilm, and wound healing activities.


Subject(s)
Anti-Bacterial Agents , Biofilms , Diabetes Mellitus, Experimental , Methicillin-Resistant Staphylococcus aureus , Plant Extracts , Pseudomonas aeruginosa , Wound Healing , Animals , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice , Anti-Bacterial Agents/pharmacology , Wound Healing/drug effects , Pseudomonas aeruginosa/drug effects , Humans , Diabetes Mellitus, Experimental/drug therapy , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Cell Line , HaCaT Cells , Male , Wound Infection/drug therapy , Wound Infection/microbiology , Disease Models, Animal , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
3.
Vet Q ; 44(1): 1-9, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726795

ABSTRACT

Antibiotic-resistant pathogens are a growing global issue, leading to untreatable infectious diseases in both humans and animals. Personalized bacteriophage (phage) therapy, the use of specific anti-bacterial viruses, is currently a leading approach to combat antibiotic-resistant infections. The implementation of phage therapy has primarily been focused on humans, almost neglecting the impact of such infections on the health and welfare of companion animals. Pets also have the potential to spread resistant infections to their owners or the veterinary staff through zoonotic transmission. Here, we showcase personalized phage-antibiotic treatment of a cat with a multidrug-resistant Pseudomonas aeruginosa implant-associated infection post-arthrodesis surgery. The treatment encompassed a tailored combination of an anti-P. aeruginosa phage and ceftazidime, precisely matched to the pathogen. The phage was topically applied to the surgical wound while the antibiotic was administered intramuscularly. After two treatment courses spanning 7 and 3 weeks, the surgical wound, which had previously remained open for five months, fully closed. To the best of our knowledge, this is the first case of personalized phage therapy application in felines, which provides further evidence of the effectiveness of this approach. The successful outcome paves the way for personalized phage-antibiotic treatments against persistent infections therapy in veterinary practice.


Subject(s)
Anti-Bacterial Agents , Cat Diseases , Phage Therapy , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Cats , Phage Therapy/veterinary , Pseudomonas Infections/veterinary , Pseudomonas Infections/drug therapy , Pseudomonas Infections/therapy , Cat Diseases/therapy , Cat Diseases/drug therapy , Cat Diseases/microbiology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/therapeutic use , Ceftazidime/therapeutic use , Drug Resistance, Multiple, Bacterial , Bacteriophages
5.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732269

ABSTRACT

New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant "high-priority pathogen", are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance.


Subject(s)
Aldehydes , Anti-Bacterial Agents , Biofilms , Cyclopentane Monoterpenes , Olive Oil , Phenols , Pseudomonas aeruginosa , Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Olive Oil/chemistry , Olive Oil/pharmacology , Phenols/pharmacology , Phenols/chemistry , Aldehydes/pharmacology , Aldehydes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Bacterial Adhesion/drug effects
6.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739119

ABSTRACT

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ciprofloxacin , Disease Models, Animal , Keratitis , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Anti-Bacterial Agents/pharmacology , Swine , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Biofilms/drug effects , Keratitis/microbiology , Keratitis/drug therapy , Ciprofloxacin/pharmacology , Gentamicins/pharmacology , Meropenem/pharmacology
7.
Exp Clin Transplant ; 22(4): 300-306, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38742321

ABSTRACT

OBJECTIVES: In this study, we analyzed the effects of carbapenem-resistant Pseudomonas aeruginosa infection and mixed infection on the perioperative prognosis of lung transplant recipients and studied statistics on antibiotic resistance in P aeruginosa. MATERIALS AND METHODS: This was a retrospective casecontrol study. We collected data on lung transplant recipients with combined lower respiratory tract P aeruginosa infection within 48 hours after lung transplant at the China-Japan Friendship Hospital from August 2018 to April 2022. We grouped recipients according to P aeruginosa resistance to carbapenem antibiotics and summarized the clinical characteristics of carbapenem-resistant P aeruginosa infection. We analyzed the effects of carbapenemresistant P aeruginosa infection and mixed infections on all-cause mortality 30 days after lung transplant by Cox regression. We used the Kaplan-Meier method to plot survival curves. RESULTS: Patients in the carbapenem-resistant P aeruginosa group had a higher all-cause mortality rate than those in the carbapenem-sensitive P aeruginosa group at both 7 days (6 patients [22.3%] vs 2 patients [4.5%]; P = .022) and 30 days (12 patients [44.4%] vs 7 patients [15.9%]; P = .003) after lung transplant. In multivariate analysis, both carbapenemresistant P aeruginosa infection and P aeruginosa combined with bacterial infection were independent risk factors for death 30 days after transplant in lung transplant recipients (P < .05). In subgroup analysis, carbapenem-resistant P aeruginosa combined with bacterial infection increased the risk of death 30 days after transplant in lung transplant recipients compared with carbapenem-sensitive P aeruginosa combined with bacterial infection (12 patients [60%] vs 6 patients [19.4%]; P < .001). CONCLUSIONS: Combined lower respiratory tract carbapenem-resistant P aeruginosa infection and P aeruginosa combined with bacterial infection early after lung transplant increased the risk of 30-day mortality after lung transplant.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Coinfection , Lung Transplantation , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Retrospective Studies , Pseudomonas Infections/mortality , Pseudomonas Infections/microbiology , Pseudomonas Infections/diagnosis , Pseudomonas Infections/drug therapy , Risk Factors , Lung Transplantation/adverse effects , Lung Transplantation/mortality , Carbapenems/pharmacology , Female , Male , Middle Aged , Time Factors , Anti-Bacterial Agents/therapeutic use , Adult , Treatment Outcome , Risk Assessment , beta-Lactam Resistance
8.
Pathog Dis ; 822024 Feb 07.
Article in English | MEDLINE | ID: mdl-38730561

ABSTRACT

Antibiotic resistance (ATBR) is increasing every year as the overuse of antibiotics (ATBs) and the lack of newly emerging antimicrobial agents lead to an efficient pathogen escape from ATBs action. This trend is alarming and the World Health Organization warned in 2021 that ATBR could become the leading cause of death worldwide by 2050. The development of novel ATBs is not fast enough considering the situation, and alternative strategies are therefore urgently required. One such alternative may be the use of non-thermal plasma (NTP), a well-established antimicrobial agent actively used in a growing number of medical fields. Despite its efficiency, NTP alone is not always sufficient to completely eliminate pathogens. However, NTP combined with ATBs is more potent and evidence has been emerging over the last few years proving this is a robust and highly effective strategy to fight resistant pathogens. This minireview summarizes experimental research addressing the potential of the NTP-ATBs combination, particularly for inhibiting planktonic and biofilm growth and treating infections in mouse models caused by methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The published studies highlight this combination as a promising solution to emerging ATBR, and further research is therefore highly desirable.


Subject(s)
Anti-Bacterial Agents , Biofilms , Plasma Gases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Plasma Gases/pharmacology , Animals , Humans , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Mice , Methicillin-Resistant Staphylococcus aureus/drug effects , Drug Resistance, Bacterial , Drug Resistance, Microbial , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Disease Models, Animal , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy
9.
PLoS One ; 19(5): e0304491, 2024.
Article in English | MEDLINE | ID: mdl-38805522

ABSTRACT

Due to high tolerance to antibiotics and pronounced virulence, bacterial biofilms are considered a key factor and major clinical challenge in persistent wound infections. They are typically composed of multiple species, whose interactions determine the biofilm's structural development, functional properties and thus the progression of wound infections. However, most attempts to study bacterial biofilms in vitro solely rely on mono-species populations, since cultivating multi-species biofilms, especially for prolonged periods of time, poses significant challenges. To address this, the present study examined the influence of bacterial composition on structural biofilm development, morphology and spatial organization, as well as antibiotic tolerance and virulence on human skin cells in the context of persistent wound infections. By creating a wound-mimetic microenvironment, the successful cultivation of dual-species biofilms of two of the most prevalent wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was realized over a period of 72 h. Combining quantitative analysis with electron microscopy and label-free imaging enabled a comprehensive evaluation of the dynamics of biofilm formation and matrix secretion, revealing a twofold increased maturation of dual-species biofilms. Antibiotic tolerance was comparable for both mono-species cultures, however, dual-species communities showed a 50% increase in tolerance, mediated by a significantly reduced penetration of the applied antibiotic into the biofilm matrix. Further synergistic effects were observed, where dual-species biofilms exacerbated wound healing beyond the effects observed from either Pseudomonas or Staphylococcus. Consequently, predicting biofilm development, antimicrobial tolerance and virulence for multi-species biofilms based solely on the results from mono-species biofilms is unreliable. This study underscores the substantial impact of a multi-species composition on biofilm functional properties and emphasizes the need to tailor future studies reflecting the bacterial composition of the respective in vivo situation, leading to a more comprehensive understanding of microbial communities in the context of basic microbiology and the development of effective treatments.


Subject(s)
Anti-Bacterial Agents , Biofilms , Pseudomonas aeruginosa , Staphylococcus aureus , Wound Infection , Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/pathogenicity , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Humans , Virulence/drug effects , Wound Infection/microbiology , Wound Infection/drug therapy , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy
10.
Front Cell Infect Microbiol ; 14: 1352339, 2024.
Article in English | MEDLINE | ID: mdl-38808066

ABSTRACT

Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of ß-lactam and ß-lactam/ß-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.


Subject(s)
Abscess , Anti-Bacterial Agents , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Mice , Abscess/drug therapy , Abscess/microbiology , Drug Combinations , Drug Resistance, Multiple, Bacterial , Female , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Azithromycin/administration & dosage , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Colistin/administration & dosage
11.
Microb Biotechnol ; 17(5): e14487, 2024 May.
Article in English | MEDLINE | ID: mdl-38801351

ABSTRACT

Pseudomonas aeruginosa is a notorious multidrug-resistant pathogen that poses a serious and growing threat to the worldwide public health. The expression of resistance determinants is exquisitely modulated by the abundant regulatory proteins and the intricate signal sensing and transduction systems in this pathogen. Downregulation of antibiotic influx porin proteins and upregulation of antibiotic efflux pump systems owing to mutational changes in their regulators or the presence of distinct inducing molecular signals represent two of the most efficient mechanisms that restrict intracellular antibiotic accumulation and enable P. aeruginosa to resist multiple antibiotics. Treatment of P. aeruginosa infections is extremely challenging due to the highly inducible mechanism of antibiotic resistance. This review comprehensively summarizes the regulatory networks of the major porin proteins (OprD and OprH) and efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY) that play critical roles in antibiotic influx and efflux in P. aeruginosa. It also discusses promising therapeutic approaches using safe and efficient adjuvants to enhance the efficacy of conventional antibiotics to combat multidrug-resistant P. aeruginosa by controlling the expression levels of porins and efflux pumps. This review not only highlights the complexity of the regulatory network that induces antibiotic resistance in P. aeruginosa but also provides important therapeutic implications in targeting the inducible mechanism of resistance.


Subject(s)
Anti-Bacterial Agents , Gene Expression Regulation, Bacterial , Membrane Transport Proteins , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Humans , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Porins/metabolism , Porins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport
12.
Int J Pharm ; 658: 124208, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38723731

ABSTRACT

Pseudomonas aeruginosa (PA), a predominant pathogen in lung infections, poses significant challenges due to its biofilm formation, which is the primary cause of chronic and recalcitrant pulmonary infections. Bacteria within these biofilms exhibit heightened resistance to antibiotics compared to their planktonic counterparts, and their secreted toxins exacerbate lung infections. Diverging from traditional antibacterial therapy for biofilm eradication, this study introduces a novel dry powder inhalation containing muco-inert ciprofloxacin and colistin co-encapsulated liposomes (Cipro-Col-Lips) prepared using ultrasonic spray freeze drying (USFD) technique. This USFD dry powder is designed to efficiently deliver muco-inert Cipro-Col-Lips to the lungs. Once deposited, the liposomes rapidly diffuse into the airway mucus, reaching the biofilm sites. The muco-inert Cipro-Col-Lips neutralize the biofilm-secreted toxins and simultaneously trigger the release of their therapeutic payload, exerting a synergistic antibiofilm effect. Our results demonstrated that the optimal USFD liposomal dry powder formulation exhibited satisfactory in vitro aerosol performance in terms of fine particle fraction (FPF) of 44.44 ± 0.78 %, mass median aerodynamic diameter (MMAD) of 4.27 ± 0.21 µm, and emitted dose (ED) of 99.31 ± 3.31 %. The muco-inert Cipro-Col-Lips effectively penetrate the airway mucus and accumulate at the biofilm site, neutralizing toxins and safeguarding lung cells. The triggered release of ciprofloxacin and colistin works synergistically to reduce the biofilm's antibiotic resistance, impede the development of antibiotic resistance, and eliminate 99.99 % of biofilm-embedded bacteria, including persister bacteria. Using a PA-beads induced biofilm-associated lung infection mouse model, the in vivo efficacy of this liposomal dry powder aerosol was tested, and the results demonstrated that this liposomal dry powder aerosol achieved a 99.7 % reduction in bacterial colonization, and significantly mitigated inflammation and pulmonary fibrosis. The USFD dry powder inhalation containing muco-inert Cipro-Col-Lips emerges as a promising therapeutic strategy for treating PA biofilm-associated lung infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ciprofloxacin , Colistin , Dry Powder Inhalers , Liposomes , Pseudomonas Infections , Pseudomonas aeruginosa , Ciprofloxacin/administration & dosage , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Biofilms/drug effects , Colistin/administration & dosage , Colistin/pharmacology , Administration, Inhalation , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pseudomonas Infections/drug therapy , Mice , Aerosols , Lung/microbiology , Lung/drug effects , Powders , Female , Particle Size
13.
PLoS One ; 19(5): e0303490, 2024.
Article in English | MEDLINE | ID: mdl-38753636

ABSTRACT

Due to over-prescription of antibiotics, antimicrobial resistance has emerged to be a critical concern globally. Many countries have tightened the control of antibiotic usage, which, in turn, promotes the search for alternatives to antibiotics. Quite a few phytochemicals have been investigated. Benzyl isothiocyanate (BITC) is an important secondary metabolite in cruciferous species and exhibited potent antimicrobial activity under in vitro conditions. In this research, we undertook a comparative mouse model study of BITC with gentamycin sulfate (positive antibiotic control) and ceftiofur hydrochloride (negative antibiotic control) against Pseudomonas aeruginosa infection. Our results showed that BITC exhibited comparable or better antimicrobial activity and lower infiltration of mouse immune cells upon comparing to gentamycin sulfate. Furthermore, BITC did not impose any toxicity to the air pouch skin tissues. In summary, our current study suggests that BITC could be an alternative to antibiotics and deserves further in vivo and clinical trial studies.


Subject(s)
Anti-Bacterial Agents , Isothiocyanates , Pseudomonas Infections , Pseudomonas aeruginosa , Isothiocyanates/pharmacology , Animals , Pseudomonas aeruginosa/drug effects , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Disease Models, Animal , Female , Microbial Sensitivity Tests
14.
Nanoscale ; 16(21): 10306-10317, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38727538

ABSTRACT

As a highly contagious opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa) is one of the main causes of healthcare-associated infections. The drug-resistant nature of P. aeruginosa can render antibiotic treatments ineffective, leading to a high morbidity and mortality. Higher specificity and reduced toxicity are features of immunotherapy, which can generate robust immune responses and preserve long-term immunological memory to completely eradicate infections. In this study, we developed a type of P. aeruginosa vaccine based on a metal-organic framework. Specifically, MIL-101-Al nanoparticles were synthesized to encapsulate antigens derived from the bacterial lysate (BL) of PAO1, a drug-resistant P. aeruginosa, and the adjuvant unmethylated cytosine-phosphate-guanine oligonucleotide (CpG), which were then modified with palmitic acid (PAA) to obtain MIL-BC@PAA. The stability and biocompatibility were significantly increased by capping with PAA. Moreover, MIL-BC@PAA showed significantly enhanced uptake by antigen presenting cells (APCs), and promoted their maturation. Importantly, immunity studies revealed the greatly elicited antigen-specific humoral and cellular responses, and a protection rate of about 70% was observed in P. aeruginosa-challenged mice. Overall, these results demonstrate the promising potential of MIL-BC@PAA as an ideal nanovaccine for P. aeruginosa vaccination.


Subject(s)
Adjuvants, Immunologic , Metal-Organic Frameworks , Palmitic Acid , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/drug effects , Animals , Mice , Pseudomonas Infections/immunology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/prevention & control , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Palmitic Acid/chemistry , Female , Nanoparticles/chemistry , Mice, Inbred BALB C , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/pharmacology
15.
BMJ Open Respir Res ; 11(1)2024 May 03.
Article in English | MEDLINE | ID: mdl-38702073

ABSTRACT

The major cause of mortality in people with cystic fibrosis (pwCF) is progressive lung disease characterised by acute and chronic infections, the accumulation of mucus, airway inflammation, structural damage and pulmonary exacerbations. The prevalence of Pseudomonas aeruginosa rises rapidly in the teenage years, and this organism is the most common cause of chronic lung infection in adults with cystic fibrosis (CF). It is associated with an accelerated decline in lung function and premature death. New P. aeruginosa infections are treated with antibiotics to eradicate the organism, while chronic infections require long-term inhaled antibiotic therapy. The prevalence of P. aeruginosa infections has decreased in CF registries since the introduction of CF transmembrane conductance regulator modulators (CFTRm), but clinical observations suggest that chronic P. aeruginosa infections usually persist in patients receiving CFTRm. This indicates that pwCF may still need inhaled antibiotics in the CFTRm era to maintain long-term control of P. aeruginosa infections. Here, we provide an overview of the changing perceptions of P. aeruginosa infection management, including considerations on detection and treatment, the therapy burden associated with inhaled antibiotics and the potential effects of CFTRm on the lung microbiome. We conclude that updated guidance is required on the diagnosis and management of P. aeruginosa infection. In particular, we highlight a need for prospective studies to evaluate the consequences of stopping inhaled antibiotic therapy in pwCF who have chronic P. aeruginosa infection and are receiving CFTRm. This will help inform new guidelines on the use of antibiotics alongside CFTRm.


Subject(s)
Anti-Bacterial Agents , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Administration, Inhalation , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Pseudomonas Infections/drug therapy
16.
Sci Adv ; 10(22): eadl5576, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820163

ABSTRACT

Despite great progress in the field, chronic Pseudomonas aeruginosa (Pa) infections remain a major cause of mortality in patients with cystic fibrosis (pwCF), necessitating treatment with antibiotics. Pf is a filamentous bacteriophage produced by Pa and acts as a structural element in Pa biofilms. Pf presence has been associated with antibiotic resistance and poor outcomes in pwCF, although the underlying mechanisms are unclear. We have investigated how Pf and sputum biopolymers impede antibiotic diffusion using pwCF sputum and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf in sputum reduces the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches.


Subject(s)
Anti-Bacterial Agents , Pseudomonas aeruginosa , Sputum , Static Electricity , Sputum/microbiology , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/virology , Humans , Cystic Fibrosis/metabolism , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Tobramycin/pharmacology , Diffusion , Biofilms/drug effects , Bacteriophages
17.
Sci Rep ; 14(1): 8598, 2024 04 13.
Article in English | MEDLINE | ID: mdl-38615146

ABSTRACT

Pseudomonas aeruginosa is a major cause of nosocomial infections and the leading cause of chronic lung infections in cystic fibrosis and chronic obstructive pulmonary disease patients. Antibiotic treatment remains challenging because P. aeruginosa is resistant to high concentrations of antibiotics and has a remarkable ability to acquire mutations conferring resistance to multiple groups of antimicrobial agents. Here we report that when P. aeruginosa is plated on ciprofloxacin (cipro) plates, the majority of cipro-resistant (ciproR) colonies observed at and after 48 h of incubation carry mutations in genes related to the Stringent Response (SR). Mutations in one of the major SR components, spoT, were present in approximately 40% of the ciproR isolates. Compared to the wild-type strain, most of these isolates had decreased growth rate, longer lag phase and altered intracellular ppGpp content. Also, 75% of all sequenced mutations were insertions and deletions, with short deletions being the most frequently occurring mutation type. We present evidence that most of the observed mutations are induced on the selective plates in a subpopulation of cells that are not instantly killed by cipro. Our results suggests that the SR may be an important contributor to antibiotic resistance acquisition in P. aeruginosa.


Subject(s)
Ciprofloxacin , Pseudomonas Infections , Humans , Ciprofloxacin/pharmacology , Pseudomonas aeruginosa/genetics , Pseudomonas Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Bone Plates
18.
PLoS One ; 19(4): e0296542, 2024.
Article in English | MEDLINE | ID: mdl-38626002

ABSTRACT

The emergence and spread of multidrug-resistant pathogens like Pseudomonas aeruginosa are major concerns for public health worldwide. This study aimed to assess the prevalence of P. aeruginosa in clinical, environmental, and poultry sources in Bangladesh, along with their antibiotic susceptibility and the profiling of ß-lactamase and virulence genes using standard molecular and microbiology techniques. We collected 110 samples from five different locations, viz., BAU residential area (BAURA; n = 15), BAU Healthcare Center (BAUHCC; n = 20), BAU Veterinary Teaching Hospital (BAUVTH; n = 22), Poultry Market (PM; n = 30) and Mymensingh Medical College Hospital (MCCH; n = 23). After overnight enrichment in nutrient broth, 89 probable Pseudomonas isolates (80.90%) were screened through selective culture, gram-staining and biochemical tests. Using genus- and species-specific PCR, we confirmed 22 isolates (20.0%) as P. aeruginosa from these samples. Antibiogram profiling revealed that 100.0% P. aeruginosa isolates (n = 22) were multidrug-resistant isolates, showing resistance against Doripenem, Penicillin, Ceftazidime, Cefepime, and Imipenem. Furthermore, resistance to aztreonam was observed in 95.45% isolates. However, P. aeruginosa isolates showed a varying degree of sensitivity against Amikacin, Gentamicin, and Ciprofloxacin. The blaTEM gene was detected in 86.0% isolates, while blaCMY, blaSHV and blaOXA, were detected in 27.0%, 18.0% and 5.0% of the P. aeruginosa isolates, respectively. The algD gene was detected in 32.0% isolates, whereas lasB and exoA genes were identified in 9.0% and 5.0% P. aeruginosa isolates. However, none of the P. aeruginosa isolates harbored exoS gene. Hence, this study provides valuable and novel insights on the resistance and virulence of circulating P. aeruginosa within the clinical, environmental, and poultry environments of Bangladesh. These findings are crucial for understanding the emergence of ß-lactamase resistance in P. aeruginosa, highlighting its usefulness in the treatment and control of P. aeruginosa infections in both human and animal populations.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , Humans , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas aeruginosa , beta-Lactamases/genetics , beta-Lactamases/therapeutic use , Virulence/genetics , Hospitals, Animal , Bangladesh , Poultry , Hospitals, Teaching , Pseudomonas Infections/epidemiology , Pseudomonas Infections/veterinary , Pseudomonas Infections/drug therapy , Microbial Sensitivity Tests
19.
PLoS One ; 19(4): e0301944, 2024.
Article in English | MEDLINE | ID: mdl-38626111

ABSTRACT

Antimicrobial de-escalation refers to reducing the spectrum of antibiotics used in treating bacterial infections. This strategy is widely recommended in many antimicrobial stewardship programs and is believed to reduce patients' exposure to broad-spectrum antibiotics and prevent resistance. However, the ecological benefits of de-escalation have not been universally observed in clinical studies. This paper conducts computer simulations to assess the ecological effects of de-escalation on the resistance prevalence of Pseudomonas aeruginosa-a frequent pathogen causing nosocomial infections. Synthetic data produced by the models are then used to estimate the sample size and study period needed to observe the predicted effects in clinical trials. Our results show that de-escalation can reduce colonization and infections caused by bacterial strains resistant to the empiric antibiotic, limit the use of broad-spectrum antibiotics, and avoid inappropriate empiric therapies. Further, we show that de-escalation could reduce the overall super-infection incidence, and this benefit becomes more evident under good compliance with hand hygiene protocols among health care workers. Finally, we find that any clinical study aiming to observe the essential effects of de-escalation should involve at least ten arms and last for four years-a size never attained in prior studies. This study explains the controversial findings of de-escalation in previous clinical studies and illustrates how mathematical models can inform outcome expectations and guide the design of clinical studies.


Subject(s)
Anti-Infective Agents , Pseudomonas Infections , Humans , Clinical Trials as Topic , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/therapeutic use , Pseudomonas Infections/drug therapy , Intensive Care Units
20.
Sci Rep ; 14(1): 9056, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643191

ABSTRACT

The impact of evolving treatment regimens, airway clearance strategies, and antibiotic combinations on the incidence and prevalence of respiratory infection in cystic fibrosis (CF) in children and adolescents remains unclear. The incidence, prevalence, and prescription trends from 2002 to 2019 with 18,339 airway samples were analysed. Staphylococcus aureus [- 3.86% (95% CI - 5.28-2.43)] showed the largest annual decline in incidence, followed by Haemophilus influenzae [- 3.46% (95% CI - 4.95-1.96)] and Pseudomonas aeruginosa [- 2.80%95% CI (- 4.26-1.34)]. Non-tuberculous mycobacteria and Burkholderia cepacia showed a non-significant increase in incidence. A similar pattern of change in prevalence was observed. No change in trend was observed in infants < 2 years of age. The mean age of the first isolation of S. aureus (p < 0.001), P. aeruginosa (p < 0.001), H. influenza (p < 0.001), Serratia marcescens (p = 0.006) and Aspergillus fumigatus (p = 0.02) have increased. Nebulised amikacin (+ 3.09 ± 2.24 prescription/year, p = 0.003) and colistin (+ 1.95 ± 0.3 prescriptions/year, p = 0.032) were increasingly prescribed, while tobramycin (- 8.46 ± 4.7 prescriptions/year, p < 0.001) showed a decrease in prescription. Dornase alfa and hypertonic saline nebulisation prescription increased by 16.74 ± 4.1 prescriptions/year and 24 ± 4.6 prescriptions/year (p < 0.001). There is a shift in CF among respiratory pathogens and prescriptions which reflects the evolution of cystic fibrosis treatment strategies over time.


Subject(s)
Cystic Fibrosis , Pneumonia , Pseudomonas Infections , Child , Infant , Humans , Adolescent , Cystic Fibrosis/complications , Cystic Fibrosis/epidemiology , Cystic Fibrosis/microbiology , Staphylococcus aureus , Respiratory System/microbiology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pneumonia/drug therapy , Pseudomonas aeruginosa
SELECTION OF CITATIONS
SEARCH DETAIL
...