Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.818
Filter
2.
Microbiologyopen ; 13(3): e1415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38780167

ABSTRACT

The standard method of receptor activation involves the binding of signals or signal-loaded solute binding proteins (SBPs) to sensor domains. Many sensor histidine kinases (SHKs), which are activated by SBP binding, are encoded adjacent to their corresponding sbp gene. We examined three SBPs of Pseudomonas aeruginosa PAO1, encoded near the genes for the AgtS (PA0600) and AruS (PA4982) SHKs, to determine how common this arrangement is. Ligand screening and microcalorimetric studies revealed that the SBPs PA0602 and PA4985 preferentially bind to GABA (KD = 2.3 and 0.58 µM, respectively), followed by 5-aminovalerate (KD = 30 and 1.6 µM, respectively) and ethanoldiamine (KD = 2.3 and 0.58 µM, respectively). In contrast, AgtB (PA0604) exclusively recognizes 5-aminovaleric acid (KD = 2.9 µM). However, microcalorimetric titrations did not show any binding between the AgtS sensor domain and AgtB or PA0602, regardless of the presence of ligands. Similarly, bacterial two-hybrid assays did not demonstrate an interaction between PA4985 and the AruS sensor domain. Therefore, sbp and shk genes located nearby are not always functionally linked. We previously identified PA0222 as a GABA-specific SBP. The presence of three SBPs for GABA may be linked to GABA's role as a trigger for P. aeruginosa virulence.


Subject(s)
Bacterial Proteins , Protein Binding , Pseudomonas aeruginosa , gamma-Aminobutyric Acid , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/enzymology , gamma-Aminobutyric Acid/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Amino Acids, Neutral/metabolism , Histidine Kinase/metabolism , Histidine Kinase/genetics , Calorimetry
3.
BMC Microbiol ; 24(1): 175, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773370

ABSTRACT

BACKGROUND: Data about the prevalence of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum beta-lactamase (ESBL) production in P. aeruginosa compared to the Enterobacteriaceae family is limited. The availability of limited therapeutic options raises alarming concerns about the treatment of multidrug-resistant P. aeruginosa. This study aimed to assess the presence of PMQR and ESBL genes among P. aeruginosa strains. METHODS: Fifty-six P. aeruginosa strains were isolated from 330 patients with different clinical infections. Phenotypically fluoroquinolone-resistant isolates were tested by PCR for the presence of six PMQR genes. Then, blaTEM, blaSHV, and blaCTX-M type ESBL genes were screened to study the co-existence of different resistance determinants. RESULTS: Overall, 22/56 (39.3%) of the studied P. aeruginosa isolates were phenotypically resistant to fluoroquinolones. PMQR-producing P. aeruginosa isolates were identified in 20 isolates (90.9%). The acc(6')-Ib-cr was the most prevalent PMQR gene (77.3%). The qnr genes occurred in 72.7%, with the predominance of the qnrA gene at 54.5%, followed by the qnrS gene at 27.3%, then qnrB and qnrC at 22.7%. The qepA was not detected in any isolate. The acc(6')-Ib-cr was associated with qnr genes in 65% of positive PMQR isolates. Significant differences between the fluoroquinolone-resistant and fluoroquinolone-susceptible isolates in terms of the antibiotic resistance rates of amikacin, imipenem, and cefepime (P value < 0.0001) were found. The ESBL genes were detected in 52% of cephalosporin-resistant P. aeruginosa isolates. The most frequent ESBL gene was blaCTX-M (76.9%), followed by blaTEM (46.2%). No isolates carried the blaSHV gene. The acc(6')-Ib-cr gene showed the highest association with ESBL genes, followed by the qnrA gene. The correlation matrix of the detected PMQR and ESBL genes indicated overall positive correlations. The strongest and most highly significant correlation was between qnrA and acc(6')-Ib-cr (r = 0.602) and between qnrA and blaCTX-M (r = 0.519). CONCLUSION: A high prevalence of PMQR genes among the phenotypic fluoroquinolone-resistant P. aeruginosa isolates was detected, with the co-carriage of different PMQR genes. The most frequent PMQR was the acc(6')-Ib-cr gene. Co-existence between PMQR and ESBL genes was found, with 75% of PMQR-positive isolates carrying at least one ESBL gene. A high and significant correlation between the ESBL and PMQR genes was detected.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Plasmids , Pseudomonas Infections , Pseudomonas aeruginosa , Quinolones , beta-Lactamases , Humans , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/enzymology , beta-Lactamases/genetics , Egypt , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/microbiology , Pseudomonas Infections/epidemiology , Quinolones/pharmacology , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Fluoroquinolones/pharmacology , Adult , Female , Male
4.
Braz J Microbiol ; 55(2): 1189-1203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705960

ABSTRACT

Alginate is a major extra polymeric substance in the biofilm formed by mucoid Pseudomonas aeruginosa. It is the main proven perpetrator of lung infections in patients suffering from cystic fibrosis. Alginate lyases are very important in the treatment of cystic fibrosis. This study evaluated the role of standalone and in conjugation, effect of alginate lyase of SG4 + isolated from Paenibacillus lautus in enhancing in vitro bactericidal activity of gentamicin and amikacin on mucoid P. aeruginosa. Using Response Surface Methodology (RSM) alginate lyase SG4 + production was optimized in shake flask and there 8.49-fold enhancement in enzyme production. In fermenter, maximum growth (10.15 mg/ml) and alginate lyase (1.46 International Units) production, 1.71-fold was increased using Central Composite Design (CCD). Further, fermentation time was reduced from 48 to 20 h. To the best of our knowledge this is the first report in which CCD was used for fermenter studies to optimize alginate lyase production. The Km and Vmax of purified enzyme were found to be 2.7 mg/ml and 0.84 mol/ml-min, respectively. The half-life (t 1/2) of purified alginate lyase SG4 + at 37 °C was 180 min. Alginate lyase SG4 + in combination with gentamicin and amikacin eradiated 48.4- 52.3% and 58- 64.6%, alginate biofilm formed by P. aeruginosa strains, respectively. The study proves that alginate lyase SG4 + has excellent exopolysaccharide disintegrating ability and may be useful in development of potent therapeutic agent to treat P. aeruginosa biofilms.


Subject(s)
Anti-Bacterial Agents , Biofilms , Paenibacillus , Polysaccharide-Lyases , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Biofilms/drug effects , Biofilms/growth & development , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/genetics , Anti-Bacterial Agents/pharmacology , Paenibacillus/genetics , Paenibacillus/enzymology , Paenibacillus/drug effects , Gentamicins/pharmacology , Amikacin/pharmacology , Fermentation , Microbial Sensitivity Tests , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Alginates/metabolism
5.
Microbiol Spectr ; 12(6): e0061424, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38727230

ABSTRACT

We describe four cases of a novel carbapenem-resistant Pseudomonas aeruginosa ST179 clone carrying the blaKPC-2 or blaKPC-35 gene together with blaIMP-16, imported from Peru to Spain and isolated from leukemia patients. All isolates were multidrug-resistant but remained susceptible to fosfomycin, cefiderocol, and colistin. Whole-genome sequencing revealed that blaKPC-2 and blaKPC-35 were located in an IncP6 plasmid, whereas blaIMP-16 was in a chromosomal type 1 integron. This study highlights the global threat of multidrug-resistant P. aeruginosa clones and underscores the importance of monitoring and early detection of emerging resistance mechanisms to guide appropriate treatment strategies. The importation and spread of such clones emphasize the urgent need to implement strict infection control measures to prevent the dissemination of carbapenem-resistant bacteria. IMPORTANCE: This is the first documented case of a Pseudomonas aeruginosa ST179 strain carrying the blaKPC-35 gene, and it represents the first report of a P. aeruginosa co-harboring blaIMP-16 and either blaKPC-2 or blaKPC-35, which wre imported from Peru to Spain, highlighting a threat due to the capacity of spreading carbapenem-resistance via plasmid conjugation.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Drug Resistance, Multiple, Bacterial , Pseudomonas Infections , Pseudomonas aeruginosa , beta-Lactamases , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/enzymology , Humans , Spain , Peru , Pseudomonas Infections/microbiology , Carbapenems/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Male , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Whole Genome Sequencing , Female , Middle Aged , Adult
6.
Sci Rep ; 14(1): 9364, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654065

ABSTRACT

The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.


Subject(s)
Catalytic Domain , Cystathionine gamma-Lyase , Hydrogen Sulfide , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzymology , Cystathionine gamma-Lyase/metabolism , Cystathionine gamma-Lyase/chemistry , Crystallography, X-Ray , Substrate Specificity , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/chemistry , Models, Molecular , Cysteine/metabolism , Cysteine/chemistry , Protein Conformation , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Humans , Homocysteine/metabolism , Homocysteine/chemistry , Catalysis
7.
Microbiol Spectr ; 12(6): e0171423, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38629835

ABSTRACT

In this study, the genetic differences and clinical impact of the carbapenemase-encoding genes among the community and healthcare-acquired infections were assessed. This retrospective, multicenter cohort study was conducted in Colombia and included patients infected with carbapenem-resistant Gram-negative rods between 2017 and 2021. Carbapenem resistance was identified by Vitek, and carbapenemase-encoding genes were identified by whole-genome sequencing (WGS) to classify the alleles and sequence types (STs). Descriptive statistics were used to determine the association of any pathogen or gene with clinical outcomes. A total of 248 patients were included, of which only 0.8% (2/248) had community-acquired infections. Regarding the identified bacteria, the most prevalent pathogens were Pseudomonas aeruginosa and Klebsiella pneumoniae. In the WGS analysis, 228 isolates passed all the quality criteria and were analyzed. The principal carbapenemase-encoding gene was blaKPC, specifically blaKPC-2 [38.6% (88/228)] and blaKPC-3 [36.4% (83/228)]. These were frequently detected in co-concurrence with blaVIM-2 and blaNDM-1 in healthcare-acquired infections. Notably, the only identified allele among community-acquired infections was blaKPC-3 [50.0% (1/2)]. In reference to the STs, 78 were identified, of which Pseudomonas aeruginosa ST111 was mainly related to blaKPC-3. Klebsiella pneumoniae ST512, ST258, ST14, and ST1082 were exclusively associated with blaKPC-3. Finally, no particular carbapenemase-encoding gene was associated with worse clinical outcomes. The most identified genes in carbapenemase-producing Gram-negative rods were blaKPC-2 and blaKPC-3, both related to gene co-occurrence and diverse STs in the healthcare environment. Patients had several systemic complications and poor clinical outcomes that were not associated with a particular gene.IMPORTANCEAntimicrobial resistance is a pandemic and a worldwide public health problem, especially carbapenem resistance in low- and middle-income countries. Limited data regarding the molecular characteristics and clinical outcomes of patients infected with these bacteria are available. Thus, our study described the carbapenemase-encoding genes among community- and healthcare-acquired infections. Notably, the co-occurrence of carbapenemase-encoding genes was frequently identified. We also found 78 distinct sequence types, of which two were novel Pseudomonas aeruginosa, which could represent challenges in treating these infections. Our study shows that in low and middle-income countries, such as Colombia, the burden of carbapenem resistance in Gram-negative rods is a concern for public health, and regardless of the allele, these infections are associated with poor clinical outcomes. Thus, studies assessing local epidemiology, prevention strategies (including trials), and underpinning genetic mechanisms are urgently needed, especially in low and middle-income countries.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Pseudomonas aeruginosa , beta-Lactamases , Humans , Colombia/epidemiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Retrospective Studies , Male , Female , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Middle Aged , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/classification , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Adult , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Aged , Cross Infection/microbiology , Cross Infection/epidemiology , Carbapenems/pharmacology , Community-Acquired Infections/microbiology , Community-Acquired Infections/epidemiology , Whole Genome Sequencing , Adolescent , Young Adult
8.
Int J Biol Macromol ; 267(Pt 1): 131420, 2024 May.
Article in English | MEDLINE | ID: mdl-38583835

ABSTRACT

Natural product bulgecin A potentiates the activity of ß-lactam antibiotics by inhibition of three lytic transglycosylases in Pseudomonas aeruginosa, of which MltD is one. MltD exhibits both endolytic and exolytic reactions in the turnover of the cell-wall peptidoglycan and tolerates the presence or absence of stem peptides in its substrates. The present study reveals structural features of the multimodular MltD, presenting a catalytic module and four cell-wall-binding LysM modules that account for these attributes. Three X-ray structures are reported herein for MltD that disclose one unpredicted LysM module tightly attached to the catalytic domain, whereas the other LysM modules are mobile, and connected to the catalytic domain through long flexible linkers. The formation of crystals depended on the presence of bulgecin A. The expansive active-site cleft is highlighted by the insertion of a helical region, a hallmark of the family 1D of lytic transglycosylases, which was mapped out in a ternary complex of MltD:bulgecinA:chitotetraose, revealing at the minimum the presence of eight subsites (from -4 to +4, with the seat of reaction at subsites -1 and + 1) for binding of sugars of the substrate for the endolytic reaction. The mechanism of the exolytic reaction is revealed in one of the structures, showing how the substrate's terminal anhydro-NAM moiety could be sequestered at subsite +2. Our results provide the structural insight for both the endolytic and exolytic activities of MltD during cell-wall-turnover events.


Subject(s)
Catalytic Domain , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzymology , Models, Molecular , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Biological Products/chemistry , Biological Products/pharmacology , Crystallography, X-Ray , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Wall , Substrate Specificity
9.
J Antimicrob Chemother ; 79(5): 1030-1037, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38488311

ABSTRACT

OBJECTIVES: To characterize VIM-type metallo-ß-lactamase (MBL)-encoding genomic islands (GIs) in Pseudomonas aeruginosa and P. putida group isolates from Polish hospitals from 2001-2015/16. METHODS: Twelve P. aeruginosa and 20 P. putida group isolates producing VIM-like MBLs were selected from a large collection of these based on epidemiological and typing data. The organisms represented all major epidemic genotypes of these species spread in Poland with chromosomally located blaVIM gene-carrying integrons. The previously determined short-read sequences were complemented by long-read sequencing in this study. The comparative structural analysis of the GIs used a variety of bioinformatic tools. RESULTS: Thirty different GIs with blaVIM integrons were identified in the 32 isolates, of which 24 GIs from 26 isolates were integrative and conjugative elements (ICEs) of the clc family. These in turn were dominated by 21 variants of the GI2/ICE6441 subfamily with a total of 19 VIM integrons, each inserted in the same position within the ICE's Tn21-like transposon Tn4380. The three other ICEs formed a novel ICE6705 subfamily, lacking Tn4380 and having different VIM integrons located in another site of the elements. The remaining six non-ICE GIs represented miscellaneous structures. The presence of various integrons in the same ICE sublineage, and of the same integron in different GIs, indicated circulation and recombination of the integron-carrying genetic platforms across Pseudomonas species/genotypes. CONCLUSIONS: Despite the general diversity of the blaVIM-carrying GIs in Pseudomonas spp. in Poland, a clear predominance of broadly spread and rapidly evolving clc-type ICEs was documented, confirming their significant role in antimicrobial resistance epidemiology.


Subject(s)
Genomic Islands , Integrons , Pseudomonas Infections , beta-Lactamases , Poland/epidemiology , beta-Lactamases/genetics , Integrons/genetics , Humans , Pseudomonas Infections/microbiology , Pseudomonas Infections/epidemiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/drug effects , Pseudomonas/genetics , Pseudomonas/enzymology , Pseudomonas/isolation & purification , Anti-Bacterial Agents/pharmacology , Genotype , Microbial Sensitivity Tests , DNA Transposable Elements/genetics
10.
J Biol Chem ; 300(4): 107143, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458396

ABSTRACT

A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E. coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E. coli to vancomycin and rifampin, which poorly cross the outer membrane of intact cells. Four of the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E. coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.


Subject(s)
Amidohydrolases , Enzyme Inhibitors , Escherichia coli , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Escherichia coli/drug effects , Escherichia coli/enzymology , Lipopolysaccharides/biosynthesis , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Drug Resistance, Bacterial/drug effects , Cell Membrane/drug effects
11.
J Biol Chem ; 300(4): 107148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462162

ABSTRACT

Bathy phytochromes are a subclass of bacterial biliprotein photoreceptors that carry a biliverdin IXα chromophore. In contrast to prototypical phytochromes that adopt a red-light-absorbing Pr ground state, the far-red light-absorbing Pfr-form is the thermally stable ground state of bathy phytochromes. Although the photobiology of bacterial phytochromes has been extensively studied since their discovery in the late 1990s, our understanding of the signal transduction process to the connected transmitter domains, which are often histidine kinases, remains insufficient. Initiated by the analysis of the bathy phytochrome PaBphP from Pseudomonas aeruginosa, we performed a systematic analysis of five different bathy phytochromes with the aim to derive a general statement on the correlation of photostate and autokinase output. While all proteins adopt different Pr/Pfr-fractions in response to red, blue, and far-red light, only darkness leads to a pure or highly enriched Pfr-form, directly correlated with the lowest level of autokinase activity. Using this information, we developed a method to quantitatively correlate the autokinase activity of phytochrome samples with well-defined stationary Pr/Pfr-fractions. We demonstrate that the off-state of the phytochromes is the Pfr-form and that different Pr/Pfr-fractions enable the organisms to fine-tune their kinase output in response to a certain light environment. Furthermore, the output response is regulated by the rate of dark reversion, which differs significantly from 5 s to 50 min half-life. Overall, our study indicates that bathy phytochromes function as sensors of light and darkness, rather than red and far-red light, as originally postulated.


Subject(s)
Bacterial Proteins , Darkness , Phytochrome , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Histidine Kinase/metabolism , Histidine Kinase/genetics , Light , Photoreceptors, Microbial/metabolism , Phytochrome/metabolism , Phytochrome/chemistry , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/metabolism , Enzyme Activation
12.
J Biol Chem ; 300(4): 107165, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484801

ABSTRACT

ClpG is a novel autonomous disaggregase found in Pseudomonas aeruginosa that confers resistance to lethal heat stress. The mechanism by which ClpG specifically targets protein aggregates for disaggregation is unknown. In their recent work published in JBC, Katikaridis et al. (2023) identify an avidity-based mechanism by which four or more ClpG subunits, through specific N-terminal hydrophobic residues located on an exposed ß-sheet loop, interact with multiple hydrophobic patches on an aggregated protein substrate. This study establishes a model for substrate binding to a prokaryotic disaggregase that should inform further investigations into other autonomous disaggregases.


Subject(s)
Bacterial Proteins , Protein Binding , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Aggregates , Hydrophobic and Hydrophilic Interactions , Endopeptidase Clp/metabolism , Endopeptidase Clp/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/chemistry
13.
Redox Biol ; 72: 103128, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554523

ABSTRACT

YbbN/CnoX are proteins that display a Thioredoxin (Trx) domain linked to a tetratricopeptide domain. YbbN from Escherichia coli (EcYbbN) displays a co-chaperone (holdase) activity that is induced by HOCl. Here, we compared EcYbbN with YbbN proteins from Xylella fastidiosa (XfYbbN) and from Pseudomonas aeruginosa (PaYbbN). EcYbbN presents a redox active Cys residue at Trx domain (Cys63), 24 residues away from SQHC motif (SQHC[N24]C) that can form mixed disulfides with target proteins. In contrast, XfYbbN and PaYbbN present two Cys residues in the CXXC (CAPC) motif, while only PaYbbN shows the Cys residue equivalent to Cys63 of EcYbbN. Our phylogenetic analysis revealed that most of the YbbN proteins are in the bacteria domain of life and that their members can be divided into four groups according to the conserved Cys residues. EcYbbN (SQHC[N24]C), XfYbbN (CAPC[N24]V) and PaYbbN (CAPC[N24]C) are representatives of three sub-families. In contrast to EcYbbN, both XfYbbN and PaYbbN: (1) reduced an artificial disulfide (DTNB) and (2) supported the peroxidase activity of Peroxiredoxin Q from X. fastidiosa, suggesting that these proteins might function similarly to the canonical Trx enzymes. Indeed, XfYbbN was reduced by XfTrx reductase with a high catalytic efficiency (kcat/Km = 1.27 x 107 M-1 s-1), similar to the canonical XfTrx (XfTsnC). Furthermore, EcYbbN and XfYbbN, but not PaYbbN displayed HOCl-induced holdase activity. Remarkably, EcYbbN gained disulfide reductase activity while lost the HOCl-activated chaperone function, when the SQHC was replaced by CQHC. In contrast, the XfYbbN CAPA mutant lost the disulfide reductase activity, while kept its HOCl-induced chaperone function. In all cases, the induction of the holdase activity was accompanied by YbbN oligomerization. Finally, we showed that deletion of ybbN gene did not render in P. aeruginosa more sensitive stressful treatments. Therefore, YbbN/CnoX proteins display distinct properties, depending on the presence of the three conserved Cys residues.


Subject(s)
Escherichia coli , Oxidoreductases , Pseudomonas aeruginosa , Thioredoxins , Xylella , Amino Acid Sequence , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Oxidation-Reduction , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxidoreductases/chemistry , Phylogeny , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Thioredoxins/metabolism , Thioredoxins/genetics , Thioredoxins/chemistry , Xylella/enzymology , Xylella/genetics , Xylella/metabolism
14.
Biochimie ; 220: 1-10, 2024 May.
Article in English | MEDLINE | ID: mdl-38104713

ABSTRACT

Cholesterol oxidases (ChOxes) are enzymes that catalyze the oxidation of cholesterol to cholest-4-en-3-one. These enzymes find wide applications across various diagnostic and industrial settings. In addition, as a pathogenic factor of several bacteria, they have significant clinical implications. The current classification system for ChOxes is based on the type of bond connecting FAD to the apoenzyme, which does not adequately illustrate the enzymatic and structural characteristics of these proteins. In this study, we have adopted an integrative approach, combining evolutionary analysis, classic enzymatic techniques and computational approaches, to elucidate the distinct features of four various ChOxes from Rhodococcus sp. (RCO), Cromobacterium sp. (CCO), Pseudomonas aeruginosa (PCO) and Burkhoderia cepacia (BCO). Comparative and evolutionary analysis of substrate-binding domain (SBD) and FAD-binding domain (FBD) helped to reveal the origin of ChOxes. We discovered that all forms of ChOxes had a common ancestor and that the structural differences evolved later during divergence. Further examination of amino acid variations revealed SBD as a more variable compared to FBD independently of FAD coupling mechanism. Revealed differences in amino acid positions turned out to be critical in determining common for ChOxes properties and those that account for the individual differences in substrate specificity. A novel look with the help of chemical descriptors on found distinct features were sufficient to attempt an alternative classification system aimed at application approach. While univocal characteristics necessary to establish such a system remain elusive, we were able to demonstrate the substrate and protein features that explain the differences in substrate profile.


Subject(s)
Bacterial Proteins , Cholesterol Oxidase , Substrate Specificity , Cholesterol Oxidase/chemistry , Cholesterol Oxidase/metabolism , Cholesterol Oxidase/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Rhodococcus/enzymology , Pseudomonas aeruginosa/enzymology , Evolution, Molecular , Amino Acid Sequence , Protein Domains , Flavin-Adenine Dinucleotide/metabolism , Flavin-Adenine Dinucleotide/chemistry , Phylogeny
15.
J Biol Chem ; 299(10): 105198, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660917

ABSTRACT

The bacterial cell envelope is the structure with which the bacterium engages with, and is protected from, its environment. Within this envelop is a conserved peptidoglycan polymer which confers shape and strength to the cell envelop. The enzymatic processes that build, remodel, and recycle the chemical components of this cross-linked polymer are preeminent targets of antibiotics and exploratory targets for emerging antibiotic structures. We report a comprehensive kinetic and structural analysis for one such enzyme, the Pseudomonas aeruginosa anhydro-N-acetylmuramic acid (anhNAM) kinase (AnmK). AnmK is an enzyme in the peptidoglycan-recycling pathway of this pathogen. It catalyzes the pairing of hydrolytic ring opening of anhNAM with concomitant ATP-dependent phosphoryl transfer. AnmK follows a random-sequential kinetic mechanism with respect to its anhNAM and ATP substrates. Crystallographic analyses of four distinct structures (apo AnmK, AnmK:AMPPNP, AnmK:AMPPNP:anhNAM, and AnmK:ATP:anhNAM) demonstrate that both substrates enter the active site independently in an ungated conformation of the substrate subsites, with protein loops acting as gates for anhNAM binding. Catalysis occurs within a closed conformational state for the enzyme. We observe this state crystallographically using ATP-mimetic molecules. A remarkable X-ray structure for dimeric AnmK sheds light on the precatalytic and postcatalytic ternary complexes. Computational simulations in conjunction with the high-resolution X-ray structures reveal the full catalytic cycle. We further report that a P. aeruginosa strain with disrupted anmK gene is more susceptible to the ß-lactam imipenem compared to the WT strain. These observations position AnmK for understanding the nexus among peptidoglycan recycling, susceptibility to antibiotics, and bacterial virulence.


Subject(s)
Bacterial Proteins , Models, Molecular , Phosphotransferases , Pseudomonas aeruginosa , Anti-Bacterial Agents , Catalysis , Crystallography, X-Ray , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phosphotransferases/genetics , Phosphotransferases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Protein Structure, Tertiary , Enzyme Activation/genetics , Drug Resistance, Bacterial/genetics
16.
J Biol Chem ; 299(9): 105152, 2023 09.
Article in English | MEDLINE | ID: mdl-37567475

ABSTRACT

The ESKAPE bacteria are the six highly virulent and antibiotic-resistant pathogens that require the most urgent attention for the development of novel antibiotics. Detailed knowledge of target proteins specific to bacteria is essential to develop novel treatment options. The methylerythritol-phosphate (MEP) pathway, which is absent in humans, represents a potentially valuable target for the development of novel antibiotics. Within the MEP pathway, the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) catalyzes a crucial, rate-limiting first step and a branch point in the biosynthesis of the vitamins B1 and B6. We report the high-resolution crystal structures of DXPS from the important ESKAPE pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae in both the co-factor-bound and the apo forms. We demonstrate that the absence of the cofactor thiamine diphosphate results in conformational changes that lead to disordered loops close to the active site that might be important for the design of potent DXPS inhibitors. Collectively, our results provide important structural details that aid in the assessment of DXPS as a potential target in the ongoing efforts to combat antibiotic resistance.


Subject(s)
Coenzymes , Klebsiella pneumoniae , Pseudomonas aeruginosa , Transferases , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Transferases/chemistry , Transferases/metabolism , Protein Conformation , Coenzymes/metabolism , Vitamin B 6/biosynthesis , Thiamine/biosynthesis , Apoenzymes/chemistry , Apoenzymes/metabolism , Thiamine Pyrophosphate/metabolism , Catalytic Domain , Drug Resistance, Bacterial
17.
Int. j. morphol ; 41(2): 466-470, abr. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1440328

ABSTRACT

SUMMARY: The appearance of Pseudomonas aeruginosa strains with multi-resistance to antibiotics is a clinical problem of great relevance. The methods for detecting these resistances are laborious and slow, which is a complication when treating patients promptly. In this work, we developed a simple method for simultaneous detection of several carbapenem resistance genes using a multiplex PCR assay. The PCR assay developed, followed by electrophoretic separation of fragments, allows to simultaneously identify the presence of 6 antibiotic resistance genes: bla-VIM (261 bp), bla-IMP (587 bp), bla-SPM (648 bp), bla-GIM-1 (753 bp), bla-NDM-1 (813 bp) and bla-KPC (882 bp). We analyzed 7 clinical isolates of P. aeruginosa obtained in Chile, finding the resistance genes bla-VIM, bla-IMP, bla-SPM, bla-GIM, and bla-NDM in 5 of them. We found a perfect correlation between the detection of various resistance genes by PCR and the results obtained by antibiograms. Interestingly, 2 of the strains possessed 3 different resistance genes simultaneously. Finally, in this work, we found the presence of 3 genes never described before in clinical isolates of P. aeruginosa in Chile (bla-IMP, bla-SPM, and bla-GIM-1). We developed a rapid multiplex PCR test for the simultaneous detection of up to 6 antibiotic resistance genes of the metallo-β-lactamase family in P. aeruginosa.


La aparición de cepas de Pseudomonas aeruginosa con resistencias a diversos antibióticos es un problema clínico de gran relevancia. Los métodos de detección de dichas resistencias son laboriosos y lentos, lo que genera una complicación al momento de tratar a los pacientes oportunamente. En este trabajo desarrollamos un método simple de detección simultánea de varios genes de resistencia a carbapenem, mediante un sistema de PCR múltiple. El ensayo de PCR desarrollado, seguido de una separación electroforética de los amplicones, permite distinguir simultáneamente la presencia de 6 genes de resistencia a antibióticos: bla-VIM (261 pb), bla-IMP (587 pb), bla-SPM (648 pb), bla-GIM-1 (753 pb), bla-NDM-1 (813 pb) y bla-KPC (882 pb). Analizamos 7 aislados clínicos obtenidos en Chile, encontrando en 5 de ellos los genes de resistencia bla-VIM, bla-IMP, bla-SPM, bla-GIM y bla-NDM. Encontramos una perfecta correlación entre la detección de diversos genes de resistencia y los resultados obtenidos mediante antibiogramas. Interesantemente, 2 de las cepas mostraron poseer simultáneamente 3 genes de resistencia distintos. Por último, en este trabajo encontramos la presencia de 3 genes nunca antes descritos en aislados clínicos de P. aeruginosa en Chile (bla-IMP, bla-SPM y bla-GIM-1). Hemos desarrollado un test rápido de PCR múltiple, para la detección simultánea de hasta 6 genes de resistencia a antibióticos de la familia.a de las metallo-b-lactamases en P. aeruginosa.


Subject(s)
Pseudomonas aeruginosa/enzymology , beta-Lactamases/genetics , Pseudomonas aeruginosa/genetics , Drug Resistance, Bacterial , Multiplex Polymerase Chain Reaction
18.
Nature ; 615(7951): 300-304, 2023 03.
Article in English | MEDLINE | ID: mdl-36859542

ABSTRACT

Gram-negative bacteria surround their cytoplasmic membrane with a peptidoglycan (PG) cell wall and an outer membrane (OM) with an outer leaflet composed of lipopolysaccharide (LPS)1. This complex envelope presents a formidable barrier to drug entry and is a major determinant of the intrinsic antibiotic resistance of these organisms2. The biogenesis pathways that build the surface are also targets of many of our most effective antibacterial therapies3. Understanding the molecular mechanisms underlying the assembly of the Gram-negative envelope therefore promises to aid the development of new treatments effective against the growing problem of drug-resistant infections. Although the individual pathways for PG and OM synthesis and assembly are well characterized, almost nothing is known about how the biogenesis of these essential surface layers is coordinated. Here we report the discovery of a regulatory interaction between the committed enzymes for the PG and LPS synthesis pathways in the Gram-negative pathogen Pseudomonas aeruginosa. We show that the PG synthesis enzyme MurA interacts directly and specifically with the LPS synthesis enzyme LpxC. Moreover, MurA was shown to stimulate LpxC activity in cells and in a purified system. Our results support a model in which the assembly of the PG and OM layers in many proteobacterial species is coordinated by linking the activities of the committed enzymes in their respective synthesis pathways.


Subject(s)
Bacterial Outer Membrane , Cell Wall , Pseudomonas aeruginosa , Cell Wall/metabolism , Lipopolysaccharides/metabolism , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/metabolism , Pseudomonas aeruginosa/cytology , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/metabolism , Peptidoglycan/biosynthesis , Peptidoglycan/metabolism
19.
J Biol Chem ; 299(4): 103044, 2023 04.
Article in English | MEDLINE | ID: mdl-36803963

ABSTRACT

Enzymes require flexible regions to adopt multiple conformations during catalysis. The mobile regions of enzymes include gates that modulate the passage of molecules in and out of the enzyme's active site. The enzyme PA1024 from Pseudomonas aeruginosa PA01 is a recently discovered flavin-dependent NADH:quinone oxidoreductase (NQO, EC 1.6.5.9). Q80 in loop 3 (residues 75-86) of NQO is ∼15 Å away from the flavin and creates a gate that seals the active site through a hydrogen bond with Y261 upon NADH binding. In this study, we mutated Q80 to glycine, leucine, or glutamate to investigate the mechanistic significance of distal residue Q80 in NADH binding in the active site of NQO. The UV-visible absorption spectrum reveals that the mutation of Q80 minimally affects the protein microenvironment surrounding the flavin. The anaerobic reductive half-reaction of the NQO-mutants yields a ≥25-fold increase in the Kd value for NADH compared to the WT enzyme. However, we determined that the kred value was similar in the Q80G, Q80L, and wildtype enzymes and only ∼25% smaller in the Q80E enzyme. Steady-state kinetics with NQO-mutants and NQO-WT at varying concentrations of NADH and 1,4-benzoquinone establish a ≤5-fold decrease in the kcat/KNADH value. Moreover, there is no significant difference in the kcat/KBQ (∼1 × 106 M-1s-1) and kcat (∼24 s-1) values in NQO-mutants and NQO-WT. These results are consistent with the distal residue Q80 being mechanistically essential for NADH binding to NQO with minimal effect on the quinone binding to the enzyme and hydride transfer from NADH to flavin.


Subject(s)
NAD(P)H Dehydrogenase (Quinone) , NAD , Pseudomonas aeruginosa , Flavins/metabolism , Kinetics , Mutation , NAD/metabolism , Oxidation-Reduction , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics
20.
Biochem Biophys Res Commun ; 645: 30-39, 2023 02 19.
Article in English | MEDLINE | ID: mdl-36680934

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative bacterium capable of widespread niches, which is also one of the main bacteria that cause patient infection. The metabolic diversity of Pseudomonas aeruginosa is an essential factor in adapting to a variety of environments. Based on the previous studies, adaptive genetic variation in the glycerol kinase GlpK, the glycerol 3-phosphotransferase, contributes to the fitness of bacteria in human bodies, such as Mycobacterium tuberculosis and Escherichia coli. Thus, this study aimed to explore the molecular evolution and function of glpK in P. aeruginosa. Using extensive population genomic data, we have identified the prevalence of two glpK copies in P. aeruginosa that clustered into distinct branches, which were later known as Clade 1 and 2. The evolution analysis revealed that glpK in Clade 1 derived from an ancestral P. aeruginosa species and the other from an ancient horizontal gene transfer event. In addition, we confirmed that the GlpK in Clade 2 still retained glycerol kinase activity but was much weaker than that of GlpK in Clade 1. We demonstrated the importance of the critical amino acid Q70 in GlpK glycerol kinase activity by point mutation. Furthermore, Co-expression network analysis implied that the two glpK copies of P. aeruginosa regulate separate networks and may be a strategy to improve fitness in P. aeruginosa.


Subject(s)
Glycerol Kinase , Pseudomonas aeruginosa , Humans , Glycerol/metabolism , Glycerol Kinase/genetics , Glycerol Kinase/metabolism , Phosphorylation , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...