Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 18-26, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814239

ABSTRACT

Plastic contamination can cause damage to the water quality of fish farm ponds, and also affect the quality of the final product. Pseudomonas mendocina was found to biodegrade plastics. Our study aimed to investigate the physicochemical properties and drug resistance of P. mendocina isolated from local freshwater aquaculture farms. Firstly, the strain was isolated from aquaculture water and then identified by matrix-assisted flight mass spectrometry and 16S rDNA sequencing. Then, biochemical and antibiotic resistance analyses were performed, and a microbial high-throughput growth detector was used to assess the growth of the strain. Finally, PCR and proteomics analyses were conducted to determine drug-resistance-related genes/proteins. According to the results of the spectrum diagram and sequencing, the isolated bacteria were identified as P. mendocina, and were positive for reactions of ADH, MTE, LAC, MNE, FRU, CIT, MLT, ONPG, and ACE. P. mendocina was sensitive to most of the antibiotics, and its resistance to CHL, MIN, and TIC/CLA was intermediate. Additionally, gyrB was the resistance gene, and mdtA2, mdtA3, mdaB, and emrK1 were closely related to the drug resistance of P. mendocina. Our results show the biochemical properties of P. mendocina in isolated aquaculture water, and provide a new perspective for P. mendocina involved in the biological removal of plastics or microplastics in freshwater aquaculture farms.


Subject(s)
Aquaculture , Fresh Water , Pseudomonas mendocina , Fresh Water/microbiology , Pseudomonas mendocina/genetics , Pseudomonas mendocina/isolation & purification , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Phylogeny , Farms , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Animals
2.
Bioresour Technol ; 393: 130047, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37989421

ABSTRACT

A salt-tolerant strain, Pseudomonas mendocina A4, was isolated from brackish-water ponds showing simultaneous heterotrophic nitrification-aerobic denitrification and phosphorus removal capability. The optimal conditions for nitrogen and phosphate removal of strain A4 were pH 7-8, carbon/nitrogen ratio 10, phosphorus/nitrogen ratio 0.2, temperature 30 °C, and salinity range of 0-5 % using sodium succinate as the carbon source. The nitrogen and phosphate removal efficiencies were 96-100 % and 88-96 % within 24 h, respectively. The nitrogen and phosphate removal processes were matched with the modified Gompertz model, and the underlying mechanisms were confirmed by the activities of key metabolic enzymes. Under 10 % salinity, the immobilization technology was employed to enhance the nitrogen and phosphate removal efficiencies of strain A4, achieving 87 % and 76 %, respectively. These findings highlight the potential application of strain A4 in both freshwater and marine culture wastewater treatment.


Subject(s)
Denitrification , Nitrogen Radioisotopes , Pseudomonas mendocina , Phosphates , Pseudomonas mendocina/metabolism , Nitrogen/metabolism , Aerobiosis , Nitrification , Phosphorus , Heterotrophic Processes , Carbon , Nitrites/chemistry
3.
Foodborne Pathog Dis ; 20(11): 502-508, 2023 11.
Article in English | MEDLINE | ID: mdl-37729068

ABSTRACT

The purpose of this research was to analyze the functional portraits and genomic features of carbapenem-resistant Pseudomonas mendocina carrying NDM-1 and IMP-1. The resistance mechanism of the strain was verified by in vivo experiments. Genomic data were aligned and analyzed in the NCBI database. Growth curve measurements were used to describe the growth characteristics of the bacteria. The virulence of P. mendocina strain was analyzed by serum killing assay and biofilm formation assay. Plasmid conjugation experiments were performed to verify the transferability of plasmids carrying drug-resistance genes. The P. mendocina strain was highly resistant to carbapenems. In addition, ST typing is unknown and has been submitted to Genebank. The strain carried two carbapenemase genes, including NDM-1 and IMP-1. Among them, blaNDM-1 was located on a 5.62832 Mb chromosome, and blaIMP-1 was located on a 172.851 Kb transferable plasmid, which was a very close relative of pIMP-NY7610 in China. The strain also had a variety of virulence genes, which were expressed in the siderophore, capsule, pilus, alginate, flagella, etc. The study suggests that the functional portrait and genomic features of carbapenem-resistant P. mendocina harboring blaNDM-1 and blaIMP-1 are unique to China. This outcome represents antibiotic resistance exhibited in the genus Pseudomonas by acquiring chromosomes and plasmid genes. The monitoring and supervision of antimicrobial usage must be strengthened since the multi-drug-resistant and moderately virulent P. mendocina will attract much attention in the near future.


Subject(s)
Carbapenems , Pseudomonas mendocina , Carbapenems/pharmacology , Pseudomonas mendocina/genetics , beta-Lactamases/genetics , Plasmids/genetics , Drug Resistance, Microbial , Microbial Sensitivity Tests , Genomics , China , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
4.
Environ Res ; 231(Pt 1): 116062, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37149028

ABSTRACT

Nitrogen (N) and phosphorous (P) removal by a single bacterium could improve the biological reaction efficiency and reduce the operating cost and complexity in wastewater treatment plants (WWTPs). Here, an isolated strain was identified as Pseudomonas mendocina SCZ-2 and showed high performance of heterotrophic nitrification (HN) and aerobic denitrification (AD) without intermediate accumulation. During the AD process, the nitrate removal efficiency and rate reached a maximum of 100% and 47.70 mg/L/h, respectively, under optimal conditions of sodium citrate as carbon source, a carbon-to-nitrogen ratio of 10, a temperature of 35 °C, and shaking a speed of 200 rpm. Most importantly, the strain SCZ-2 could rapidly and simultaneously eliminate N and P with maximum NH4+-N, NO3--N, NO2--N, and PO43--P removal rates of 14.38, 17.77, 20.13 mg N/L/h, and 2.93 mg P/L/h, respectively. Both the N and P degradation curves matched well with the modified Gompertz model. Moreover, the amplification results of functional genes, whole genome sequencing, and enzyme activity tests provided theoretical support for simultaneous N and P removal pathways. This study deepens our understanding of the role of HN-AD bacteria and provides more options for simultaneous N and P removal from actual sewage.


Subject(s)
Denitrification , Pseudomonas mendocina , Pseudomonas mendocina/metabolism , Nitrogen/metabolism , Aerobiosis , Nitrification , Phosphorus , Carbon , Nitrites
5.
Bioresour Technol ; 379: 129039, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37037332

ABSTRACT

A highly efficient aerobic denitrifying microbe was isolated from sewage sludge by using a denitrifier enrichment strategy based on decreasing carbon content. The microbe was identified as Pseudomonas mendocina HITSZ-D1 (hereafter, D1). Investigation of the conditions under which D1 grew and denitrified revealed that it performed good growth and nitrate removal performance under a wide range of conditions. In particular, D1 rapidly removed all types of inorganic nitrogen without accumulation of the intermediate products nitrite and nitrous oxide. Overall, D1 showed a total nitrogen removal efficiency >96% at a C/N ratio of 8. The biotransformation modes and fates of three typical types of inorganic nitrogen were also assessed. Moreover, D1 had significantly higher denitrification efficiency and enzyme activities than other aerobic denitrifying microbes (Paracoccus denitrificans, Pseudomonas aeruginosa, and Pseudomonas putida). These results suggest that D1 has great potential for treating wastewater containing high concentrations of nitrogen.


Subject(s)
Nitrites , Pseudomonas mendocina , Nitrites/metabolism , Pseudomonas mendocina/metabolism , Sewage , Denitrification , Nitrates/metabolism , Nitrogen/metabolism , Nitrification , Aerobiosis
6.
Chemosphere ; 318: 137897, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36657580

ABSTRACT

The high hydrophobicity of n-hexane is the main reason why it is difficult to be removed biologically. In this study, the effects of bamboo-charcoal modified by bimetallic Fe/Pd (BBC) on n-hexane biodegradation by Pseudomonas mendocina NX-1 (PM) was investigated. The n-hexane removal efficiency was increased in the presence of BC. The highest n-hexane removal efficiency at 90.0% was achieved at 0.05 g L-1 BCE and 3 g L-1 NH4+ under pH 7.7 and 35 °C. Additionally, protein content (45.9 µg mL-1) and negative cell surface zeta potential (-26.4 mV) were increased during biodegradation process, with PM-BBC being 43.1 µg mL-1 and 19.1 mV. Bacterial growth was improved and maximum cell surface hydrophobicity was obtained after 20 h, which was 59.4% higher than the control with PM-BBC (37.7%) or PM (16.1%), showing biodegradation products of 1-butanol and acetic acid. The results indicate that BBC improved n-hexane biodegradation efficiency by promoting bacterial growth, reducing cell zeta potential, exposing hydrophobic proteins, and increasing cell surface hydrophobicity of bacterial strain NX-1. This investigation suggests that BBC-enhanced biodegradation can be promising to treat n-hexane-containing gas.


Subject(s)
Pseudomonas mendocina , Pseudomonas mendocina/metabolism , Charcoal/pharmacology , Charcoal/metabolism , Biodegradation, Environmental , Hexanes/metabolism
7.
Sci Rep ; 12(1): 21765, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36526696

ABSTRACT

PmlR2, a class II LitR/CarH family transcriptional regulator, and PmSB-LOV, a "short" LOV-type blue light photoreceptor, are adjacently encoded in Pseudomonas mendocina NBRC 14162. An effector protein for the "short" LOV-type photoreceptor in Pseudomonas has not yet been identified. Here, we show that PmlR2 is an effector protein of PmSB-LOV. Transcriptional analyses revealed that the expression of genes located near pmlR2 and its homolog gene, pmlR1, was induced in response to illumination. In vitro DNA-protein binding analyses showed that recombinant PmlR2 directly binds to the promoter region of light-inducible genes. Furthermore PmSB-LOV exhibited a typical LOV-type light-induced spectral change. Gel-filtration chromatography demonstrated that the illuminated PmSB-LOV was directly associated with PmlR2, whereas non-illuminated proteins did not interact. The inhibition of PmlR2 function following PmSB-LOV binding was verified by surface plasmon resonance: the DNA-binding ability of PmlR2 was specifically inhibited in the presence of blue light-illuminated-PmSB-LOV. An In vitro transcription assay showed a dose-dependent reduction in PmlR2 repressor activity in the presence of illuminated PmSB-LOV. Overall, evidence suggests that the DNA-binding activity of PmlR2 is inhibited by its direct association with blue light-activated PmSB-LOV, enabling transcription of light-inducible promoters by RNA polymerase.


Subject(s)
Pseudomonas mendocina , Pseudomonas mendocina/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Promoter Regions, Genetic , Protein Binding , DNA/metabolism
8.
Chemosphere ; 307(Pt 1): 135700, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35850225

ABSTRACT

Soil that contained polybutylene adipate-co-terephthalate (PBAT) was incubated with Priestia megaterium, Pseudomonas mendocina, and Pseudomonas pseudoalcaligenes to improve the biodegradative process of this polymer. The mixture of Pr. megaterium and Ps. mendocina was highly effective at biodegrading the PBAT, and after eight weeks of soil incubation, approximately 84% of the PBAT film weight was lost. Mixtures of the other two species also positively affected the synergistic degradation of PBAT film in the soil, but the mixture of three species had a negative effect. The residual PBAT film microstructure clearly demonstrated the degradation of PBAT, and the degree of degradation was related to the different species. Cleavage of the PBAT film ester bond after soil microbial action affected its properties. The incubation of PBAT in soil that contained these species affected soil dehydrogenase and soil lipase in particular. The secretion of lipase by these species could play an important role in the degradation of PBAT in the soil.


Subject(s)
Bacillus megaterium , Pseudomonas mendocina , Pseudomonas oleovorans , Pseudomonas pseudoalcaligenes , Adipates , Esters , Lipase , Oxidoreductases , Phthalic Acids , Polyenes , Polyesters/chemistry , Polymers , Soil
9.
Curr Microbiol ; 79(2): 69, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35059829

ABSTRACT

An arsenic resistant bacteria SMSKVR-3 has been isolated from the rhizospheric soil of the metal-contaminated site of khetri copper mines situated in the Jhunjhunu district of Rajasthan, India. The strain showed homology with Pseudomonas mendocina strain ATCC 25411. This gram-negative isolate exhibited optimal growth in M9 minimal media with temperature and salt concentration as 30 °C and 0.25% (w/v), respectively, at pH 7.0. The similar growth pattern and SEM analysis of this strain exposed to M9 minimal media alone, M9 media supplemented with 300 mM arsenate [As(V)] or M9 media supplemented with 1.34 mM arsenite [As(III)] indicate the existence of the strong arsenic resistance mechanism. The isolate was able to produce siderophores and was able to reduce As(V) to As(III). A decrease in polyP concentration from 354.8 µg/1010 CFU mL-1 at 0 h to 0.043 µg/1010 CFU mL-1 at 8 h incubation with As(V) was in correlation with the change in intracellular As(V) concentration (116.98 mg L-1/1010 cells at 0 h to 88.65 mg L-1/1010 at 8 h) with time. This shows the possible role of polyP bodies in the regulation of As(V) concentration inside the cell. The presence of arsC gene in P.mendocina SMSKVR-3 was confirmed by the PCR amplification of arsC gene. The BLAST analysis of the sequenced gene represented 98.59% identity with the P. mendocina S5.2 arsenate reductase. These results indicate that the observed arsenic resistance in SMSKVR-3 is due to a combination of siderophore production, the transformation of As(V) to As(III) by arsenate reductase, multi-drug efflux pump, and polyP bodies mediated metal resistance mechanism.


Subject(s)
Arsenic , Pseudomonas mendocina , Arsenic/analysis , Copper/pharmacology , India , Siderophores
10.
Bioresour Technol ; 345: 126541, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34910970

ABSTRACT

Two biosafety strains, identified as Pseudomonas mendocina S16 and Enterobacter cloacae DS'5, were isolated from freshwater aquaculture ponds and showed significant heterotrophic nitrification-aerobic denitrification abilities. Within 48 h, the inorganic nitrogen removal efficiencies in the two strains were 66.59 %-97.97 % (S16) and 72.27 %-96.44 % (DS'5). The optimal conditions for organic nitrogen removal of the two strains were temperature 20-35 °C and carbon/nitrogen (C/N) ratio 10-20 while using sodium citrate as the carbon source. Sequence amplification demonstrated the presence of the denitrification genes in both the two strains, and quantitative real-time PCR results showed that the coupled expression of nap + nar would improve the nitrate removal rate in S16. The nitrogen removal efficiencies of the two strains in immobilization culture systems were 79.80 %-98.58 % (S16) and 60.80 %-98.40 % (DS'5). This study indicated the great potential application of the two strains in aquaculture tail water treatment.


Subject(s)
Pseudomonas mendocina , Wastewater , Aerobiosis , Aquaculture , Bacteria , Denitrification , Enterobacter cloacae/genetics , Heterotrophic Processes , Nitrification , Nitrites , Nitrogen , Ponds
11.
J Hazard Mater ; 419: 126330, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34171668

ABSTRACT

Two-phase partitioning bioreactors (TPPBs) have been extensively used for volatile organic compounds (VOCs) removal. To date, most studies have focused on improving the mass transfer of gas phases/non-aqueous phases (NAPs)/aqueous phases, whereas the NAP/biological phases and gas/biological phases transfer has been neglected. Herein, chitosan was introduced into a TPPB to increase cell surface hydrophobicity (CSH) and improve the n-hexane mass transfer. The performance and stability of the TPPB with chitosan for n-hexane biodegradation were investigated, and it was found out that the TPPB with chitosan achieved maximum removal efficiency and elimination capacity of 80.6% and 26.5 g m-3 h-1, thereby reaching much higher values than those obtained without chitosan (61.3% and 15.2 g m-3 h-1). Chitosan not only obvio usly increased cell surface hydrophobicity and cell dry biomass on the surface of silicone oil, but might also allow hydrophobic cells in aqueous phases to directly capture and biodegrade n-hexane, resulting in an obvious improvement of mass transfer from the gas phase to biomass. Stability enhancement was another attractive advantage from chitosan addition. This study might provide a new strategy for the development of TPPB in the hydrophobic VOCs treatment.


Subject(s)
Chitosan , Pseudomonas mendocina , Biodegradation, Environmental , Bioreactors , Hexanes
12.
Appl Environ Microbiol ; 87(11)2021 05 11.
Article in English | MEDLINE | ID: mdl-33741630

ABSTRACT

The widely prescribed pharmaceutical metformin and its main metabolite, guanylurea, are currently two of the most common contaminants in surface and wastewater. Guanylurea often accumulates and is poorly, if at all, biodegraded in wastewater treatment plants. This study describes Pseudomonas mendocina strain GU, isolated from a municipal wastewater treatment plant, using guanylurea as its sole nitrogen source. The genome was sequenced with 36-fold coverage and mined to identify guanylurea degradation genes. The gene encoding the enzyme initiating guanylurea metabolism was expressed, and the enzyme was purified and characterized. Guanylurea hydrolase, a newly described enzyme, was shown to transform guanylurea to one equivalent (each) of ammonia and guanidine. Guanidine also supports growth as a sole nitrogen source. Cell yields from growth on limiting concentrations of guanylurea revealed that metabolism releases all four nitrogen atoms. Genes encoding complete metabolic transformation were identified bioinformatically, defining the pathway as follows: guanylurea to guanidine to carboxyguanidine to allophanate to ammonia and carbon dioxide. The first enzyme, guanylurea hydrolase, is a member of the isochorismatase-like hydrolase protein family, which includes biuret hydrolase and triuret hydrolase. Although homologs, the three enzymes show distinct substrate specificities. Pairwise sequence comparisons and the use of sequence similarity networks allowed fine structure discrimination between the three homologous enzymes and provided insights into the evolutionary origins of guanylurea hydrolase.IMPORTANCE Metformin is a pharmaceutical most prescribed for type 2 diabetes and is now being examined for potential benefits to COVID-19 patients. People taking the drug pass it largely unchanged, and it subsequently enters wastewater treatment plants. Metformin has been known to be metabolized to guanylurea. The levels of guanylurea often exceed that of metformin, leading to the former being considered a "dead-end" metabolite. Metformin and guanylurea are water pollutants of emerging concern, as they persist to reach nontarget aquatic life and humans, the latter if it remains in treated water. The present study has identified a Pseudomonas mendocina strain that completely degrades guanylurea. The genome was sequenced, and the genes involved in guanylurea metabolism were identified in three widely separated genomic regions. This knowledge advances the idea that guanylurea is not a dead-end product and will allow for bioinformatic identification of the relevant genes in wastewater treatment plant microbiomes and other environments subjected to metagenomic sequencing.


Subject(s)
Bacterial Proteins/metabolism , Guanidine/analogs & derivatives , Hydrolases/metabolism , Metabolic Networks and Pathways , Metformin/metabolism , Urea/analogs & derivatives , Water Pollutants, Chemical/metabolism , Ammonia/metabolism , Bacterial Proteins/genetics , Biodegradation, Environmental , Biomineralization , Genome, Bacterial/genetics , Guanidine/metabolism , Hydrolases/genetics , Multigene Family , Pseudomonas mendocina/genetics , Pseudomonas mendocina/isolation & purification , Pseudomonas mendocina/metabolism , Substrate Specificity , Urea/metabolism , Wastewater/microbiology
13.
Genes (Basel) ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33477842

ABSTRACT

Pseudomonas mendocina is an environmental bacterium, rarely isolated in clinical specimens, although it has been described as producing endocarditis and sepsis. Little is known about its genome. Whole genome sequencing can be used to learn about the phylogeny, evolution, or pathogenicity of these isolates. Thus, the aim of this study was to analyze the resistome, virulome, and phylogenetic relationship of two P. mendocina strains, Ps542 and Ps799, isolated from a healthy Anas platyrhynchos fecal sample and a lettuce, respectively. Among all of the small number of P.mendocina genomes available in the National Center for Biotechnology Information (NCBI) repository, both strains were placed within one of two well-defined phylogenetic clusters. Both P. mendocina strains lacked antimicrobial resistance genes, but the Ps799 genome showed a MOBP3 family relaxase. Nevertheless, this study revealed that P. mendocina possesses an important number of virulence factors, including a leukotoxin, flagella, pili, and the Type 2 and Type 6 Secretion Systems, that could be responsible for their pathogenesis. More phenotypical and in vivo studies are needed to deepen the association with human infections and the potential P. mendocina pathogenicity.


Subject(s)
Endocarditis/microbiology , Genome, Bacterial , Pseudomonas mendocina/pathogenicity , Sepsis/microbiology , Virulence Factors/genetics , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Drug Resistance, Microbial/genetics , Ducks/microbiology , Endocarditis/drug therapy , Endodeoxyribonucleases/genetics , Feces/microbiology , Food Microbiology , Humans , Lactuca/microbiology , Phylogeny , Pseudomonas mendocina/genetics , Sepsis/drug therapy , Whole Genome Sequencing
14.
J Basic Microbiol ; 61(4): 351-361, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33448070

ABSTRACT

This study focuses on analyzing the protein expression pattern of intracellular proteins when Pseudomonas mendocina SMSKVR-3 exposed to 300 mM of arsenate to find out the proteins that are overexpressed or exclusively expressed in response to arsenate. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of protein expression at different time intervals showed the highest number of protein bands (14) that are overexpressed at 8 h of the time interval. It was also observed that treatment with at least 200 mM of As(V) is required to induce a difference in protein expression. Two-dimensional (2D)-PAGE analysis of 8-h sample exhibited 146 unique spots, 45 underexpressed, and 46 overexpressed spots in arsenate-treated sample. Based on the highest percent volume and fold change, three unique spots and one overexpressed spot were selected and analyzed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis followed by the MASCOT search. These proteins were identified as ribosome-recycling factor (20.13 kDa), polyphosphate:ADP/GDP phosphotransferase (40.88 kDa), ribonuclease P protein component (14.96 kDa) and cobalt-precorrin-5B C(1)-methyltransferase (38.43 kDa) with MASCOT score of 54, 81, 94, and 100, respectively. All of these proteins help the bacteria to overcome arsenate stress.


Subject(s)
Arsenates/metabolism , Arsenates/toxicity , Pseudomonas mendocina/drug effects , Pseudomonas mendocina/metabolism , Bacterial Proteins/metabolism , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
J Hazard Mater ; 403: 123679, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33264878

ABSTRACT

A cocultivation of the Pseudomonas mendocina with Actinomucor elegans was developed and investigated to improve the biodegradation of polylactic acid/polybutylene adipate-co-terephthalate (PLA/PBAT). And the coculture system could produce an efficient PLA/PBAT-degrading enzymes system to degrade PLA/PBAT films. The results showed that the protease activity (11.50 U/mL) and lipase activity (40.46 U/mL) of the coculture exceeded that of the monoculture (P. mendocina of 7.31 U/mL, A. elegans of 32.47 U/mL). The degradation rate of PLA/PBAT films using the coculture system was 18.95 wt% within 5 days, which was considerably higher than that of P. mendocina (12.94 wt%) and A. elegans (9.27 wt%) individually, suggesting that P. mendocina and A. elegans had synergistic degradation. In addition, P. mendocina and A. elegans could secrete proteases and lipases, respectively, which could catalyze the ester bonds of PLA1 and PBAT in PLA/PBAT films, respectively, and hydrolyze them into different monomers and oligomers as nutrition sources. Therefore, the PLA/PBAT films could be completely degraded. In this study, the PLA/PBAT films were efficiently degraded in the coculture system for the first time, which significantly improved the biodegradation of PLA/PBAT films.


Subject(s)
Pseudomonas mendocina , Adipates , Coculture Techniques , Mucorales , Phthalic Acids , Polyenes , Polyesters
16.
Bioresour Technol ; 319: 124198, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33038648

ABSTRACT

Six bacterial strains with simultaneous nitrification-denitrification abilities were isolated from a Beijing sewage treatment plant to improve nitrogen biodegradation efficiency. One of these strains, X49, was identified as Pseudomonas mendocina, and was characterized as the best strain with which to rapidly degrade a high concentration of inorganic nitrogen. X49 completely converted 5-100 mg.L-1 of ammonia in 12 h, with no nitrite accumulation; the maximum removal rate of 26.39 mg (N).L-1.h-1 was achieved between 4 h and 6 h. In 16 h, the strain removed 100 mg.L-1 nitrite and 72.61 mg.L-1 nitrate under aerobic conditions, at degredation rates which reached 4.54 and 6.25 mg (N).L-1.h-1, respectively. Our results suggest that P. mendocina X49 achieved efficient and simultaneous nitrification and denitrification ability under heterotrophic aerobic conditions.


Subject(s)
Ammonium Compounds , Pseudomonas mendocina , Aerobiosis , Beijing , Denitrification , Heterotrophic Processes , Nitrification , Nitrites , Nitrogen
17.
Bioresour Technol ; 320(Pt A): 124324, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33147528

ABSTRACT

The performance of nitrate removal by Pseudomonas mendocina GL6 cells immobilized on bamboo biochar was investigated. The results showed that immobilized bacterial cells performed better nitrate removal than the free bacterial cells, and the nitrate removal rate increased from 6.51 mg/(L·h) of free cells to 8.34 mg/(L·h) of immobilized cells. The nitrate removal of immobilized bacterial cells fitted well to the zero-order kinetics model. Moreover, bath experiments showed that immobilized bacterial cells displayed more nitrate removal capacity under different conditions than free bacterial cells due to the protection of biochar carrier. The subsequent mechanistic study suggested that biochar promoted the expression level of denitrification functional genes (napA and nirK) and electron transfer genes involved in denitrification (napB and napC), which resulted in the increase of nitrate removal efficiency. Thus, biochar-immobilized P. mendocina GL6 has much potential to remove nitrate from wastewater via aerobic denitrification.


Subject(s)
Pseudomonas mendocina , Sasa , Charcoal , Denitrification , Nitrates , Nitrogen
18.
Int J Biol Macromol ; 163: 2023-2031, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32941898

ABSTRACT

Pseudomonas mendocina NK-01 previously isolated by our lab is able to accumulate medium-chain-length polyhydroxyalkanoate (mcl-PHA) intracellularly and secrete alginate oligosaccharide (AO) to the extracellular milieu. The present study aimed at investigating whether improved production of mcl-PHA and AO by P. mendocina can be accomplished by genome reduction. In this study, 14 large genomic fragments accounting for 7.7% of the genome of P. mendocina NK-01 were sequentially deleted to generate a series of genome-reduced strains by an upp-based markerless knockout method. As a result, the intracellular ATP/ADP ratio of the strain NKU421 with the largest deletion improved by 11 times compared to NK-01. More importantly, the mcl-PHA and AO yields of NKU421 increased by 114.8% and 27.8%, respectively. Enhancing mcl-PHA and AO production by NKU421 may be attributed to improved transcriptional levels of PHA synthase genes and AO secretion-related genes. The present study suggests that rational reduction of bacterial genome is a feasible approach to construct an optimal chassis for enhanced production of bacterial metabolites. In the future, further reduction of the NKU421 genome can be expected to create high-performance chassis for the development of microbial cell factories.


Subject(s)
Genome, Bacterial/genetics , Oligosaccharides/genetics , Polyhydroxyalkanoates/biosynthesis , Pseudomonas mendocina/genetics , Acyltransferases/genetics , Alginates/metabolism , Metabolic Engineering , Polyhydroxyalkanoates/genetics
19.
Curr Microbiol ; 77(11): 3473-3479, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32894325

ABSTRACT

Even though organisms with squalene hopene cyclase activity involved in hopanoid synthesis has been reported earlier, their existence along with carotenoid synthesis is rarely reported. Here, we report the existence of hopanoid and C30 carotenoid biosynthetic pathway in Pseudomonas mendocina, the squalene hopene cyclase producing endophyte of the medicinal plant Murraya koenigii. The enzyme squalene hopene cyclase from Pseudomonas mendocina is involved in the synthesis of dehydrosqualene-mediated alternate pathway for carotenoid biosynthesis. The hopanoids are involved in membrane stability and integrity, and the carotene chromophores are involved in the photo protection of the cell. The orange-colored C30 carotenoid pigment 4-4' diaponeurosporenic acid in the extracellular extract of Pseudomonas mendocina with squalene cyclase activity was detected by the combination of UV/Vis spectrometry, FTIR, and Mass Spectrometry. 4-4' diaponeurosporenic acid could be traced as the end product of the carotenoid pathway and belonged to the xanthophyll group of carotenoids.


Subject(s)
Lyases , Pseudomonas mendocina , Biosynthetic Pathways/genetics , Carotenoids
20.
Mol Biotechnol ; 62(9): 456-465, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32757148

ABSTRACT

Squalene hopene cyclases catalyse the conversion of a linear substrate squalene to a cyclic product with high stereo-selectivity.The enzyme squalene hopene cyclase from Pseudomonas mendocina expressed in E. coli BL21 (DE3) was evaluated for its synthetic drug transforming ability. Nine synthetic drugs were selected as substrates for biotransformation reactions by the enzyme. The homology modelling of the protein and docking of the selected ligands were performed using GOLD suite docking software. The drug which showed maximum binding with the active-site residues of the enzyme was selected for biotransformation studies. On transformation with the enzyme, Glibenclamide, the selected antidiabetic drug alone showed significant changes in the FT/IR spectra; hence, it was selected for LCMS analysis to confirm the transformations. From the chromatogram and MS spectra, the mono-oxygenation of the product due to the enzymatic activity was confirmed. The drug transforming ability of the purified SHC could be used as an ideal tool for the generation of new and active substrate derivatives.


Subject(s)
Bacterial Proteins/chemistry , Glyburide/chemistry , Intramolecular Transferases/chemistry , Pseudomonas mendocina/enzymology , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Intramolecular Transferases/genetics , Pseudomonas mendocina/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...