Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 226: 24-30, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27960125

ABSTRACT

Currently, various chemical-mechanical treatments were widely used in biofuel production to achieve high total sugar yields. However, the interaction between two treatments was scarcely investigated. In this study, we employed a ball milling process to create ultrastructural changes for Douglas-fir (Pseudotsuga menziesii) micronized wood powders. The 0, 30, and 60min ball milled wood powders resulted in a crystallinity index of 0.41, 0.21, and 0.10 respectively. It was found that the ultrastructural changes accelerate monomeric sugars production without influencing the yield of sugar degradation products. The optimal acid bisulfite treatment time was substantially decreased from 120min to 40min as the cellulose crystallinity decreased. Meanwhile, total sugar yield increased from 65% to 92% and had a linear relation with a decrease of the cellulose crystallinity.


Subject(s)
Monosaccharides/chemistry , Pseudotsuga/chemistry , Sulfites/chemistry , Wood/chemistry , Wood/ultrastructure , Biofuels , Carbohydrate Metabolism , Cellulose/chemistry , Crystallization , Furaldehyde/chemistry , Furaldehyde/isolation & purification , Kinetics , Monosaccharides/metabolism , Particle Size , Pseudotsuga/ultrastructure , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
2.
Carbohydr Polym ; 94(1): 642-6, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23544585

ABSTRACT

Direct fluorination was applied to wood flour in order to improve its compatibility with polymers and thus enhance the properties of wood-polymer composites. Fourier-transform infrared spectra and (19)F solid-state nuclear magnetic resonance results underlined a successful covalent grafting of fluorine atoms onto the wood chemical structure. No physical damage of the wood particles was observed during scanning electron microscopy analysis. The thermal behaviour of the wood flour was also studied by thermogravimetric analysis. The hydrophilic property changes of wood flour were examined by evaluating the water content and the rate of water uptake of samples under different relative humidity conditions. A decrease in the wood flour water content was noted after fluorination. All these studies tend to prove the efficiency of this treatment on wood hydrophilia.


Subject(s)
Halogenation , Polyesters/chemistry , Wood/chemistry , Absorption , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Picea/chemistry , Picea/ultrastructure , Powders , Pseudotsuga/chemistry , Pseudotsuga/ultrastructure , Spectroscopy, Fourier Transform Infrared , Surface Properties , Thermogravimetry , Water/chemistry , Wood/ultrastructure
3.
Sex Plant Reprod ; 25(3): 215-25, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22806585

ABSTRACT

Pollen of larch (Larix × marschlinsii) and Douglas-fir (Pseudotsuga menziesii) was used in homospecific and heterospecific crosses. Germination of heterospecific pollen in ovulo was reduced in post-pollination prefertilization drops. This provides evidence of selection against foreign pollen by open-pollinated exposed ovules in these two sister taxa, which share the same type of pollination mechanism. Of the other prezygotic stages in pollen-ovule interactions, uptake of pollen by stigmatic hairs did not show any selection. Pollen tube penetration of the nucellus was similar for hetero- and homospecific pollen tubes, but heterospecific tubes only delivered gametes in one cross. To test for differences in the post-pollination prefertilization drops of each species, drops were gathered and analysed. Glucose and fructose were present in similar amounts in Douglas-fir and larch, while sucrose was found in larch only. Other carbohydrates such as xylose and melezitose were species-specific. In P. menziesii, sucrose is absent due to its conversion to glucose and fructose by apoplastic invertases. In contrast, Larix × marschlinsii drops have sucrose because they lack apoplastic invertases. The presence of invertase activity shows that the composition of gymnosperm post-pollination prefertilization drops is not static but dynamic. Drops of these two species also differed in their calcium concentrations.


Subject(s)
Germination/physiology , Larix/physiology , Pollen/physiology , Pollination/physiology , Pseudotsuga/physiology , Calcium/analysis , Calcium/metabolism , Carbohydrates/analysis , Crosses, Genetic , Hybridization, Genetic , Larix/enzymology , Larix/ultrastructure , Ovule/enzymology , Ovule/physiology , Ovule/ultrastructure , Pollen/enzymology , Pollen/ultrastructure , Pollen Tube/enzymology , Pollen Tube/physiology , Pollen Tube/ultrastructure , Pseudotsuga/enzymology , Pseudotsuga/ultrastructure , beta-Fructofuranosidase/metabolism
4.
Protoplasma ; 234(1-4): 77-85, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18854917

ABSTRACT

The identification of nucleolar proteins and immunocytochemical localization of small nuclear ribonucleoprotein (snRNP) elements revealed the presence of three types of nuclear bodies in Douglas fir microspore nuclei. One type consists of structures resembling Cajal bodies (CBs) and contains nucleolar proteins as well as snRNPs and U2 snRNA. The second type is bizonal bodies, which are nuclear bodies also linked with the splicing system. The bizonal body comprises two parts: the first contains Sm proteins and stains strongly with silver stain, and the second resembles CBs in terms of the degree of silver staining and molecular composition. Douglas fir is the second species after larch where the presence of bizonal bodies has been demonstrated. Pseudotsuga menziesii Mirb and Larix decidua Mill are species with one of the longest microsporogenesis processes known in plants. The presence of bizonal bodies in both species may be linked to the intensification of the splicing processes in microspores with an exceptionally long cell cycle. The third type of structure is dense bodies, whose morphology and degree of silver staining strongly indicate their functional and spatial relationship to the dense part of bizonal bodies.


Subject(s)
Cell Nucleus/ultrastructure , Coiled Bodies/ultrastructure , Intranuclear Inclusion Bodies/ultrastructure , Pseudotsuga/ultrastructure , snRNP Core Proteins/metabolism , Pseudotsuga/physiology , Spores/metabolism , Spores/ultrastructure
5.
Plant Cell Environ ; 30(5): 559-69, 2007 May.
Article in English | MEDLINE | ID: mdl-17407534

ABSTRACT

This study investigated the mechanisms involved in the regulation of stomatal closure in Douglas-fir and evaluated the potential impact of compensatory adjustments in response to increasing tree height upon these mechanisms. In the laboratory, we measured leaf hydraulic conductance (K(leaf)) as leaf water potential (Psi(l)) declined for comparison with in situ diurnal patterns of stomatal conductance (g(s)) and Psi(l) in Douglas-fir across a height gradient, allowing us to infer linkages between diurnal changes in K(leaf) and g(s). A recently developed timed rehydration technique was used in conjunction with data from pressure-volume curves to develop hydraulic vulnerability curves for needles attached to small twigs. Laboratory-measured K(leaf) declined with increasing leaf water stress and was substantially reduced at Psi(l) values of -1.34, -1.45, -1.56 and -1.92 MPa for foliage sampled at mean heights of approximately 20, 35, 44 and 55 m, respectively. In situ g(s) measurements showed that stomatal closure was initiated at Psi(l) values of -1.21, -1.36, -1.74 and -1.86 MPa along the height gradient, which was highly correlated with Psi(l) values at loss of K(leaf). Cryogenic scanning electron microscopy (SEM) images showed that relative abundances of embolized tracheids in the central vein increased with increasing leaf water stress. Leaf embolism appeared to be coupled to changes in g(s) and might perform a vital function in stomatal regulation of plant water status and water transport in conifers. The observed trends in g(s) and K(leaf) in response to changes in Psi(l) along a height gradient suggest that the foliage at the tops of tall trees is capable of maintaining stomatal conductance at more negative Psi(l). This adaptation may allow taller trees to continue to photosynthesize during periods of greater water stress.


Subject(s)
Plant Leaves/physiology , Plant Transpiration/physiology , Pseudotsuga/physiology , Trees/physiology , Water/physiology , Circadian Rhythm/physiology , Plant Leaves/ultrastructure , Pseudotsuga/ultrastructure , Trees/ultrastructure , Xylem/physiology , Xylem/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...