Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 799
Filter
1.
Methods Mol Biol ; 2807: 229-242, 2024.
Article in English | MEDLINE | ID: mdl-38743232

ABSTRACT

The identification of RNA modifications at single nucleotide resolution has become an emerging area of interest within biology and specifically among virologists seeking to ascertain how this untapped area of RNA regulation may be altered or hijacked upon viral infection. Herein, we describe a straightforward biochemical approach modified from two original published Ψ mapping protocols, BID-seq and PRAISE, to specifically identify pseudouridine modifications on mRNA transcripts from an HIV-1 infected T cell line. This protocol could readily be adapted for other viral infected cell types and additionally for populations of purified virions from infected cells.


Subject(s)
HIV-1 , Pseudouridine , RNA, Messenger , RNA, Viral , Pseudouridine/metabolism , Pseudouridine/genetics , HIV-1/genetics , Humans , RNA, Viral/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , HIV Infections/virology , HIV Infections/genetics , RNA Processing, Post-Transcriptional , Cell Line
2.
Methods Mol Biol ; 2726: 169-207, 2024.
Article in English | MEDLINE | ID: mdl-38780732

ABSTRACT

Nucleotide modifications are occurrent in all types of RNA and play an important role in RNA structure formation and stability. Modified bases not only possess the ability to shift the RNA structure ensemble towards desired functional confirmations. By changes in the base pairing partner preference, they may even enlarge or reduce the conformational space, i.e., the number and types of structures the RNA molecule can adopt. However, most methods to predict RNA secondary structure do not provide the means to include the effect of modifications on the result. With the help of a heavily modified transfer RNA (tRNA) molecule, this chapter demonstrates how to include the effect of different base modifications into secondary structure prediction using the ViennaRNA Package. The constructive approach demonstrated here allows for the calculation of minimum free energy structure and suboptimal structures at different levels of modified base support. In particular we, show how to incorporate the isomerization of uridine to pseudouridine ( Ψ ) and the reduction of uridine to dihydrouridine (D).


Subject(s)
Nucleic Acid Conformation , RNA , RNA/chemistry , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Nucleotides/chemistry , Base Pairing , Computational Biology/methods , Thermodynamics , Software , Uridine/chemistry , Models, Molecular , Pseudouridine/chemistry
3.
Int J Biol Macromol ; 270(Pt 2): 132433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759861

ABSTRACT

Nanopore direct RNA sequencing provided a promising solution for unraveling the landscapes of modifications on single RNA molecules. Here, we proposed NanoMUD, a computational framework for predicting the RNA pseudouridine modification (Ψ) and its methylated analog N1-methylpseudouridine (m1Ψ), which have critical application in mRNA vaccination, at single-base and single-molecule resolution from direct RNA sequencing data. Electric signal features were fed into a bidirectional LSTM neural network to achieve improved accuracy and predictive capabilities. Motif-specific models (NNUNN, N = A, C, U or G) were trained based on features extracted from designed dataset and achieved superior performance on molecule-level modification prediction (Ψ models: min AUC = 0.86, max AUC = 0.99; m1Ψ models: min AUC = 0.87, max AUC = 0.99). We then aggregated read-level predictions for site stoichiometry estimation. Given the observed sequence-dependent bias in model performance, we trained regression models based on the distribution of modification probabilities for sites with known stoichiometry. The distribution-based site stoichiometry estimation method allows unbiased comparison between different contexts. To demonstrate the feasibility of our work, three case studies on both in vitro and in vivo transcribed RNAs were presented. NanoMUD will make a powerful tool to facilitate the research on modified therapeutic IVT RNAs and provides useful insight to the landscape and stoichiometry of pseudouridine and N1-pseudouridine on in vivo transcribed RNA species.


Subject(s)
Pseudouridine , Sequence Analysis, RNA , Pseudouridine/chemistry , Sequence Analysis, RNA/methods , RNA/chemistry , Nanopores , Neural Networks, Computer , Nanopore Sequencing/methods
4.
Cell Rep ; 43(5): 114203, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38722744

ABSTRACT

Leishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Ψ), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Ψ in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Ψ and its parental strain at ∼2.4-3 Å resolution using cryo-EM. Our findings demonstrate the significance of a single Ψ on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs.


Subject(s)
Pseudouridine , RNA, Transfer , Ribosomes , Pseudouridine/metabolism , Ribosomes/metabolism , RNA, Transfer/metabolism , RNA, Transfer/genetics , Leishmania/metabolism , Leishmania/genetics , Cryoelectron Microscopy , RNA, Ribosomal/metabolism , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , Nucleic Acid Conformation , Models, Molecular
5.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38622357

ABSTRACT

Pseudouridine is an RNA modification that is widely distributed in both prokaryotes and eukaryotes, and plays a critical role in numerous biological activities. Despite its importance, the precise identification of pseudouridine sites through experimental approaches poses significant challenges, requiring substantial time and resources.Therefore, there is a growing need for computational techniques that can reliably and quickly identify pseudouridine sites from vast amounts of RNA sequencing data. In this study, we propose fuzzy kernel evidence Random Forest (FKeERF) to identify pseudouridine sites. This method is called PseU-FKeERF, which demonstrates high accuracy in identifying pseudouridine sites from RNA sequencing data. The PseU-FKeERF model selected four RNA feature coding schemes with relatively good performance for feature combination, and then input them into the newly proposed FKeERF method for category prediction. FKeERF not only uses fuzzy logic to expand the original feature space, but also combines kernel methods that are easy to interpret in general for category prediction. Both cross-validation tests and independent tests on benchmark datasets have shown that PseU-FKeERF has better predictive performance than several state-of-the-art methods. This new method not only improves the accuracy of pseudouridine site identification, but also provides a certain reference for disease control and related drug development in the future.


Subject(s)
Pseudouridine , Random Forest , Pseudouridine/genetics , RNA/genetics , Base Sequence
6.
Int J Biol Macromol ; 267(Pt 1): 131427, 2024 May.
Article in English | MEDLINE | ID: mdl-38583833

ABSTRACT

Due to the health emergency created by SARS-CoV-2, the virus that causes the COVID-19 disease, the rapid implementation of a new vaccine technology was necessary. mRNA vaccines, being one of the cutting-edge new technologies, attracted significant interest and offered a lot of hope. The potential of these vaccines in preventing admission to hospitals and serious illness in people with comorbidities has recently been called into question due to the vaccines' rapidly waning immunity. Mounting evidence indicates that these vaccines, like many others, do not generate sterilizing immunity, leaving people vulnerable to recurrent infections. Additionally, it has been discovered that the mRNA vaccines inhibit essential immunological pathways, thus impairing early interferon signaling. Within the framework of COVID-19 vaccination, this inhibition ensures an appropriate spike protein synthesis and a reduced immune activation. Evidence is provided that adding 100 % of N1-methyl-pseudouridine (m1Ψ) to the mRNA vaccine in a melanoma model stimulated cancer growth and metastasis, while non-modified mRNA vaccines induced opposite results, thus suggesting that COVID-19 mRNA vaccines could aid cancer development. Based on this compelling evidence, we suggest that future clinical trials for cancers or infectious diseases should not use mRNA vaccines with a 100 % m1Ψ modification, but rather ones with the lower percentage of m1Ψ modification to avoid immune suppression.


Subject(s)
COVID-19 , Neoplasms , Pseudouridine , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Neoplasms/immunology , Pseudouridine/metabolism , COVID-19 Vaccines/immunology , Animals , mRNA Vaccines , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Pneumonia, Viral/prevention & control , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology
7.
ACS Synth Biol ; 13(4): 1303-1311, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38529630

ABSTRACT

In this study, we proposed a biological approach to efficiently produce pseudouridine (Ψ) from glucose and uracil in vivo using engineered Escherichia coli. By screening host strains and core enzymes, E. coli MG1655 overexpressing Ψ monophosphate (ΨMP) glycosidase and ΨMP phosphatase was obtained, which displayed the highest Ψ concentration. Then, optimization of the RBS sequences, enhancement of ribose 5-phosphate supply in the cells, and overexpression of the membrane transport protein UraA were investigated. Finally, fed-batch fermentation of Ψ in a 5 L fermentor can reach 27.5 g/L with a yield of 89.2 mol % toward uracil and 25.6 mol % toward glucose within 48 h, both of which are the highest to date. In addition, the Ψ product with a high purity of 99.8% can be purified from the fermentation broth after crystallization. This work provides an efficient and environmentally friendly protocol for allowing for the possibility of Ψ bioproduction on an industrial scale.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Pseudouridine/metabolism , Glucose/metabolism , Uracil/metabolism , Bioreactors , Fermentation , Metabolic Engineering , Membrane Transport Proteins/metabolism , Escherichia coli Proteins/metabolism
8.
Chem Commun (Camb) ; 60(30): 4088-4091, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38511312

ABSTRACT

We combined the CRISPR-Cas13a system with CMC chemical labeling, developing an approach that enables precise identification of pseudouridine (Ψ) sites at specific loci within ribosomal RNA (rRNA), messenger RNA (mRNA) and small nuclear RNAs (snRNA). This method, with good efficiency and simplicity, detects Ψ sites through fluorescence measurement, providing a straightforward and fast validation for targeted Ψ sites of interest.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Pseudouridine , Pseudouridine/genetics , RNA, Small Nuclear/genetics , RNA, Ribosomal , RNA, Messenger/genetics
9.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 799-811, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38545978

ABSTRACT

Pseudouridine is the most abundant modified nucleoside found in non-coding RNA and is widely used in biological and pharmaceutical fields. However, current methods for pseudouridine production suffer from drawbacks such as complex procedures, low efficiency and high costs. This study presents a novel enzymatic cascade reaction route in Escherichia coli, enabling the whole-cell catalytic synthesis of pseudouridine from uridine. Initially, a metabolic pathway was established through plasmid-mediated overexpression of endogenous pseudouridine-5-phosphase glycosidase, ribokinase, and ribonucleoside hydrolase, resulting in the accumulation of pseudouridine. Subsequently, highly active endogenous ribonucleoside hydrolase was screened to enhance uridine hydrolysis and provide more precursors for pseudouridine synthesis. Furthermore, modifications were made to the substrates and products transport pathways to increase the pseudouridine yield while avoiding the accumulation of by-product uridine. The resulting recombinant strain Ψ-7 catalyzed the conversion of 30 g/L uridine into 27.24 g/L pseudouridine in 24 h, achieving a conversion rate of 90.8% and a production efficiency of 1.135 g/(L·h). These values represent the highest reported yield and production efficiency achieved by enzymatic catalysis methods to date.


Subject(s)
Escherichia coli , Pseudouridine , Pseudouridine/genetics , Pseudouridine/chemistry , Pseudouridine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Uridine/genetics , Uridine/chemistry , Uridine/metabolism , Catalysis , Hydrolases/metabolism
10.
Nucleic Acids Res ; 52(8): 4644-4658, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38375885

ABSTRACT

Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.


Subject(s)
Pseudouridine , RNA, Archaeal , RNA, Transfer , Sulfolobus , Pseudouridine/metabolism , Sulfolobus/genetics , Sulfolobus/metabolism , RNA, Transfer/metabolism , RNA, Transfer/genetics , RNA, Archaeal/genetics , RNA, Archaeal/metabolism , RNA, Archaeal/chemistry , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , RNA Processing, Post-Transcriptional , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism
11.
ChemMedChem ; 19(7): e202300600, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38235959

ABSTRACT

All widely used mRNA vaccines against COVID-19 contain in their sequence 1-methylpseudouridine (m1Ψ) instead of uridine. In this publication, we report two high resolution crystal structures (at up to 1.01 and 1.32 Å, respectively) of one such double-stranded 12-mer RNA sequence crystallized in two crystal forms. The structures are compared with similar structures which do not contain this modification. Additionally, the X-ray structure of 1-methyl-pseudouridine itself was determined.


Subject(s)
Pseudouridine , Pseudouridine/analogs & derivatives , RNA , Humans , Pseudouridine/chemistry , mRNA Vaccines , COVID-19 Vaccines
12.
Analyst ; 149(4): 1310-1317, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38247383

ABSTRACT

RNA modification, particularly pseudouridine (Ψ), has played an important role in the development of the mRNA-based COVID-19 vaccine. This is because Ψ enhances RNA stability against nuclease activity and decreases the anti-RNA immune response. Ψ also provides structural flexibility to RNA by enhancing base stacking compared with canonical nucleobases. In this report, we demonstrate the first application of pseudouridine-modified RNA as a probe (Ψ-RNA) for label-free nucleic acid biosensing. It is known that MoS2 has a differential affinity for nucleic acids, which may be translated into a unique electronic signal. Herein, the Ψ-RNA probe interacts with the pristine MoS2 surface and causes a change in interfacial electrochemical charge transfer in the MoS2 nanosheets. Compared with an unmodified RNA probe, Ψ-RNA exhibited faster adsorption and higher affinity for MoS2. Moreover, Ψ-RNA could bind to complementary RNA and DNA targets with almost equal affinity when engaged with the MoS2 surface. Ψ-RNA maintained robust interactions with the MoS2 surface following the hybridization event, perhaps through its extra amino group. The detection sensitivity of the Ψ-RNA/MoS2 platform was as low as 500 attomoles, while the results also indicate that the probe can distinguish between complementary targets, single mismatches, and non-complementary nucleic acid sequences with statistical significance. This proof-of-concept study shows that the Ψ-RNA probe may solve numerous problems of adsorption-based biosensing platforms due to its stability and structural flexibility.


Subject(s)
Biosensing Techniques , Nucleic Acids , Humans , Pseudouridine/chemistry , RNA Probes , Molybdenum/chemistry , COVID-19 Vaccines , RNA/chemistry , Biosensing Techniques/methods
13.
Methods Mol Biol ; 2741: 273-287, 2024.
Article in English | MEDLINE | ID: mdl-38217659

ABSTRACT

Regulatory RNAs, as well as many RNA families, contain chemically modified nucleotides, including pseudouridines (ψ). To map nucleotide modifications, approaches based on enzymatic digestion of RNA followed by nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis were implemented several years ago. However, detection of ψ by mass spectrometry (MS) is challenging as ψ exhibits the same mass as uridine. Thus, a chemical labeling strategy using acrylonitrile was developed to detect this mass-silent modification. Acrylonitrile reacts specifically to ψ to form 1-cyanoethylpseudouridine (Ceψ), resulting in a mass shift of ψ detectable by MS. Here, a protocol detailing the steps from the purification of RNA by polyacrylamide gel electrophoresis, including in-gel labeling of ψ, to MS data interpretation to map ψ and other modifications is proposed. To demonstrate its efficiency, the protocol was applied to bacterial regulatory RNAs from E. coli: 6S RNA and transfer-messenger RNA (tmRNA, also known as 10Sa RNA). Moreover, ribonuclease P (RNase P) was also mapped using this approach. This method enabled the detection of several ψ at single nucleotide resolution.


Subject(s)
Acrylonitrile , Pseudouridine , Humans , Pseudouridine/genetics , Tandem Mass Spectrometry , Escherichia coli/genetics , Escherichia coli/metabolism , RNA , RNA, Bacterial/metabolism , Nucleotides , RNA Processing, Post-Transcriptional , RNA, Transfer/genetics
14.
Biochem J ; 481(1): 1-16, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38174858

ABSTRACT

RNA-guided pseudouridylation, a widespread post-transcriptional RNA modification, has recently gained recognition for its role in cellular processes such as pre-mRNA splicing and the modulation of premature termination codon (PTC) readthrough. This review provides insights into its mechanisms, functions, and potential therapeutic applications. It examines the mechanisms governing RNA-guided pseudouridylation, emphasizing the roles of guide RNAs and pseudouridine synthases in catalyzing uridine-to-pseudouridine conversion. A key focus is the impact of RNA-guided pseudouridylation of U2 small nuclear RNA on pre-mRNA splicing, encompassing its influence on branch site recognition and spliceosome assembly. Additionally, the review discusses the emerging role of RNA-guided pseudouridylation in regulating PTC readthrough, impacting translation termination and genetic disorders. Finally, it explores the therapeutic potential of pseudouridine modifications, offering insights into potential treatments for genetic diseases and cancer and the development of mRNA vaccine.


Subject(s)
Pseudouridine , RNA Precursors , Pseudouridine/genetics , Pseudouridine/metabolism , RNA Precursors/metabolism , RNA, Guide, CRISPR-Cas Systems , RNA/metabolism , RNA Processing, Post-Transcriptional , Protein Biosynthesis
15.
J Biol Chem ; 300(1): 105548, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092148

ABSTRACT

Therapeutic mRNAs are generated using modified nucleotides, namely N1-methylpseudouridine (m1Ψ) triphosphate, so that the mRNA evades detection by the immune system. RNA modifications, even at a single-nucleotide position, perturb RNA structure, although it is not well understood how structure and function is impacted by globally modified RNAs. Therefore, we examined the metastasis-associated lung adenocarcinoma transcript 1 triple helix, a highly structured stability element that includes single-, double-, and triple-stranded RNA, globally modified with N6-methyladenosine (m6A), pseudouridine (Ψ), or m1Ψ. UV thermal denaturation assays showed that m6A destabilizes both the Hoogsteen and Watson-Crick faces of the RNA by ∼20 °C, Ψ stabilizes the Hoogsteen and Watson-Crick faces of the RNA by ∼12 °C, and m1Ψ has minimal effect on the stability of the Hoogsteen face of the RNA but increases the stability of the Watson-Crick face by ∼9 °C. Native gel-shift assays revealed that binding of the methyltransferase-like protein 16 to the metastasis-associated lung adenocarcinoma transcript 1 triple helix was weakened by at least 8-, 99-, and 23-fold, respectively, when RNA is globally modified with m6A, Ψ, or m1Ψ. These results demonstrate that a more thermostable RNA structure does not lead to tighter RNA-protein interactions, thereby highlighting the regulatory power of RNA modifications by multiple means.


Subject(s)
RNA, Long Noncoding , RNA , Methyltransferases/genetics , Methyltransferases/metabolism , Nucleic Acid Conformation , Nucleotides , Pseudouridine , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
16.
Phys Chem Chem Phys ; 26(2): 992-999, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38088148

ABSTRACT

Pseudouridine (Ψ) and N1-methylpseudouridine (m1Ψ) are among the key modifications in the field of mRNA therapeutics and vaccine research. The accuracy of the design and development of therapeutic RNAs containing such modifications depends on the accuracy of the secondary structure prediction, which in turn depends on the nearest neighbor (NN) thermodynamic parameters for the standard and modified residues. Here, we propose a simple approach based on molecular dynamics simulations and linear interaction energy (LIE) approximation that is able to predict the NN free energy parameters for U-A, Ψ-A and m1Ψ-A pairs in reasonable agreement with the recent experimental reports. We report the NN thermodynamic parameters for different U, Ψ and m1Ψ base pairs, which might be helpful for a deeper understanding of the effect of these modifications in RNA. The predicted NN free energy parameters in this study are able to closely reproduce the folding free energies of duplexes containing internal Ψ for which the thermodynamic data were available. Additionally, we report the predicted folding free energies for the duplexes containing internal m1Ψ.


Subject(s)
Pseudouridine , RNA , RNA/chemistry , Pseudouridine/chemistry , Nucleic Acid Conformation , Base Pairing , Entropy , Thermodynamics
17.
Nature ; 625(7993): 189-194, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057663

ABSTRACT

In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect1,2. Modified ribonucleotides are commonly incorporated into therapeutic IVT mRNAs to decrease their innate immunogenicity3-5, but their effects on mRNA translation fidelity have not been fully explored. Here we demonstrate that incorporation of N1-methylpseudouridine into mRNA results in +1 ribosomal frameshifting in vitro and that cellular immunity in mice and humans to +1 frameshifted products from BNT162b2 vaccine mRNA translation occurs after vaccination. The +1 ribosome frameshifting observed is probably a consequence of N1-methylpseudouridine-induced ribosome stalling during IVT mRNA translation, with frameshifting occurring at ribosome slippery sequences. However, we demonstrate that synonymous targeting of such slippery sequences provides an effective strategy to reduce the production of frameshifted products. Overall, these data increase our understanding of how modified ribonucleotides affect the fidelity of mRNA translation, and although there are no adverse outcomes reported from mistranslation of mRNA-based SARS-CoV-2 vaccines in humans, these data highlight potential off-target effects for future mRNA-based therapeutics and demonstrate the requirement for sequence optimization.


Subject(s)
Frameshifting, Ribosomal , Pseudouridine , RNA, Messenger , Animals , Humans , Mice , BNT162 Vaccine/adverse effects , BNT162 Vaccine/genetics , BNT162 Vaccine/immunology , Frameshifting, Ribosomal/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Pseudouridine/analogs & derivatives , Pseudouridine/metabolism , Ribosomes/metabolism , Protein Biosynthesis
18.
Am J Physiol Renal Physiol ; 326(1): F30-F38, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37916286

ABSTRACT

Plasma nucleosides-pseudouridine (PU) and N2N2-dimethyl guanosine (DMG) predict the progression of type 2 diabetic kidney disease (DKD) to end-stage renal disease, but the mechanisms underlying this relationship are not well understood. We used a well-characterized model of type 2 diabetes (db/db mice) and control nondiabetic mice (db/m mice) to characterize the production and excretion of PU and DMG levels using liquid chromatography-mass spectrometry. The fractional excretion of PU and DMG was decreased in db/db mice compared with control mice at 24 wk before any changes to renal function. We then examined the dynamic changes in nucleoside metabolism using in vivo metabolic flux analysis with the injection of labeled nucleoside precursors. Metabolic flux analysis revealed significant decreases in the ratio of urine-to-plasma labeling of PU and DMG in db/db mice compared with db/m mice, indicating significant tubular dysfunction in diabetic kidney disease. We observed that the gene and protein expression of the renal tubular transporters involved with nucleoside transport in diabetic kidneys in mice and humans was reduced. In conclusion, this study strongly suggests that tubular handling of nucleosides is altered in early DKD, in part explaining the association of PU and DMG with human DKD progression observed in previous studies.NEW & NOTEWORTHY Tubular dysfunction explains the association between the nucleosides pseudouridine and N2N2-dimethyl guanosine and diabetic kidney disease.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Mice , Animals , Diabetic Nephropathies/metabolism , Pseudouridine/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Nucleosides/metabolism , Renal Elimination , Kidney/metabolism , Guanosine/metabolism
19.
Nat Protoc ; 19(2): 517-538, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37968414

ABSTRACT

Pseudouridine (Ψ) is an abundant RNA modification that is present in and affects the functions of diverse non-coding RNA species, including rRNA, tRNA and small nuclear RNA. Ψ also exists in mammalian mRNA and probably exhibits functional roles; however, functional investigations of mRNA Ψ modifications in mammals have been hampered by the lack of a quantitative method that detects Ψ at base precision. We have recently developed bisulfite-induced deletion sequencing (BID-seq), which provides the community with a quantitative method to map RNA Ψ distribution transcriptome-wide at single-base resolution. Here, we describe an optimized BID-seq protocol for mapping Ψ distribution across cellular mRNAs, which includes fast steps in both library preparation and data analysis. This protocol generates highly reproducible results by inducing high deletion ratios at Ψ modification within diverse sequence contexts, and meanwhile displayed almost zero background deletions at unmodified uridines. When used for transcriptome-wide Ψ profiling in mouse embryonic stem cells, the current protocol uncovered 8,407 Ψ sites from as little as 10 ng of polyA+ RNA input. This optimized BID-seq workflow takes 5 days to complete and includes four main sections: RNA preparation, library construction, next-generation sequencing (NGS) and data analysis. Library construction can be completed by researchers who have basic knowledge and skills in molecular biology and genetics. In addition to the experimental protocol, we provide BID-pipe ( https://github.com/y9c/pseudoU-BIDseq ), a user-friendly data analysis pipeline for Ψ site detection and modification stoichiometry quantification, requiring only basic bioinformatic and computational skills to uncover Ψ signatures from BID-seq data.


Subject(s)
Pseudouridine , Transcriptome , Animals , Mice , Pseudouridine/analysis , Pseudouridine/genetics , RNA, Messenger/genetics , Gene Expression Profiling/methods , RNA, Ribosomal/genetics , Mammals/genetics
20.
Trends Biochem Sci ; 49(1): 12-27, 2024 01.
Article in English | MEDLINE | ID: mdl-38097411

ABSTRACT

The uridine modifications pseudouridine (Ψ), dihydrouridine, and 5-methyluridine are present in eukaryotic mRNAs. Many uridine-modifying enzymes are associated with human disease, underscoring the importance of uncovering the functions of uridine modifications in mRNAs. These modified uridines have chemical properties distinct from those of canonical uridines, which impact RNA structure and RNA-protein interactions. Ψ, the most abundant of these uridine modifications, is present across (pre-)mRNAs. Recent work has shown that many Ψs are present at intermediate to high stoichiometries that are likely conducive to function and at locations that are poised to influence pre-/mRNA processing. Technological innovations and mechanistic investigations are unveiling the functions of uridine modifications in pre-mRNA splicing, translation, and mRNA stability, which are discussed in this review.


Subject(s)
Pseudouridine , RNA , Humans , Pseudouridine/genetics , Pseudouridine/metabolism , RNA, Messenger/metabolism , RNA/metabolism , Uridine/chemistry , Uridine/metabolism , RNA Processing, Post-Transcriptional , RNA Precursors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...